Zlatanova J, Van Holde K: Histone H1 and transcription: still an enigma?. J Cell Sci. 1992, 103: 889-895.
CAS
PubMed
Google Scholar
Khochbin S, Wolffe AP: Developmentally regulated expression of linker-histone variants in vertebrates. Eur J Biochem. 1994, 225: 501-510. 10.1111/j.1432-1033.1994.00501.x.
Article
CAS
PubMed
Google Scholar
Bouvet P, Dimitrov S, Wolffe AP: Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev. 1994, 8: 1147-1159.
Article
CAS
PubMed
Google Scholar
Shen X, Gorovsky MA: Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell. 1996, 86: 475-483. 10.1016/S0092-8674(00)80120-8.
Article
CAS
PubMed
Google Scholar
Wolffe AP, Khochbin S, Dimitrov S: What do linker histones do in chromatin?. Bioessays. 1997, 19: 249-255. 10.1002/bies.950190311.
Article
CAS
PubMed
Google Scholar
Vermaak D, Steinbach OC, Dimitrov S, Rupp RA, Wolffe AP: The globular domain of histone H1 is sufficient to direct specific gene repression in early Xenopus embryos. Curr Biol. 1998, 8: 533-536. 10.1016/S0960-9822(98)70206-4.
Article
CAS
PubMed
Google Scholar
Lee HL, Archer TK: Prolonged glucocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter. EMBO J. 1998, 17: 1454-1466. 10.1093/emboj/17.5.1454.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dou Y, Mizzen CA, Abrams M, Allis CD, Gorovsky MA: Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Mol Cell. 1999, 4: 641-647. 10.1016/S1097-2765(00)80215-4.
Article
CAS
PubMed
Google Scholar
Koop R, Croce L, Beato M: Histone H1 enhances synergistic activation of the MMTV promoter in chromatin. EMBO J. 2002, 22: 588-599. 10.1093/emboj/cdg052.
Article
Google Scholar
Izaurralde E, Kas E, Laemmli UK: Highly preferential nucleation of histone H1 assembly on scaffold-associated regions. J Mol Biol. 1989, 210: 573-585. 10.1016/0022-2836(89)90133-2.
Article
CAS
PubMed
Google Scholar
Pennings S, Meersseman G, Bradbury EM: Linker histones H1 and H5 prevent the mobility of positioned nucleosomes. Proc Natl Acad Sci USA. 1994, 91: 10275-10279. 10.1073/pnas.91.22.10275.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dimitrov S, Wolffe AP: Remodeling of somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1° from chromatin and the acquisition of transcriptional competence. EMBO J. 1996, 15: 5897-5906.
PubMed Central
CAS
PubMed
Google Scholar
Lu ZH, Sittman DB, Romanowski P, Leno GH: Histone H1 reduces the frequency of initiation in Xenopus egg extract by limiting the assembly of prereplication complexes on sperm chromatin. Mol Biol Cell. 1998, 9: 1163-1176.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lu ZH, Xu H, Leno GH: DNA replication in quiescent cell nuclei: regulation by the nuclear envelope and chromatin structure. Mol Biol Cell. 1999, 10: 4091-4106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hartman PG, Chapman GE, Moss T, Bradbury EM: Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin. The three structural regions of the histone H1 molecule. Eur J Biochem. 1977, 77: 45-51. 10.1111/j.1432-1033.1977.tb11639.x.
Article
CAS
PubMed
Google Scholar
Hendzel MJ, Lever MA, Crawford E, Th'ng JP: The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo . J Biol Chem. 2004, 279: 20028-20034. 10.1074/jbc.M400070200.
Article
CAS
PubMed
Google Scholar
Allan J, Mitchell T, Harborne N, Bohm L, Crane-Robinson C: Roles of H1 domains in determining higher order chromatin structure and H1 location. J Mol Biol. 1986, 187: 591-601. 10.1016/0022-2836(86)90337-2.
Article
CAS
PubMed
Google Scholar
Lu X, Hansen JC: Identification of specific functional subdomains within the linker histone H10 C-terminal domain. J Biol Chem. 2004, 279: 8701-8707. 10.1074/jbc.M311348200.
Article
CAS
PubMed
Google Scholar
Roque A, Orrego M, Ponte I, Suau P: The preferential binding of histone H1 to DNA scaffold-associated regions is determined by its C-terminal domain. Nucleic Acids Res. 2004, 32: 6111-6119. 10.1093/nar/gkh945.
Article
PubMed Central
CAS
PubMed
Google Scholar
Widlak P, Kalinowska M, Parseghian MH, Lu X, Hansen JC, Garrard WT: The histone H1 C-terminal domain binds to the apoptotic nuclease, DNA fragmentation factor (DFF40/CAD) and stimulates DNA cleavage. Biochemistry. 2005, 44: 7871-7878. 10.1021/bi050100n.
Article
CAS
PubMed
Google Scholar
Hale TK, Contreras A, Morrison AJ, Herrera RE: Phosphorylation of the linker histone H1 by CDK regulates its binding to HP1α. Mol Cell. 2006, 22: 693-699. 10.1016/j.molcel.2006.04.016.
Article
CAS
PubMed
Google Scholar
Panyim S, Chalkley R: A new histone found only in mammalian tissues with little cell division. Biochem Biophys Res Commun. 1969, 37: 1042-1049. 10.1016/0006-291X(69)90237-X.
Article
CAS
PubMed
Google Scholar
Bucci LR, Brock WA, Meistrich ML: Distribution and synthesis of histone 1 subfractions during spermatogenesis in the rat. Exp Cell Res. 1982, 140: 111-118. 10.1016/0014-4827(82)90162-8.
Article
CAS
PubMed
Google Scholar
Lennox RW: Differences in evolutionary stability among mammalian H1 subtypes. Implications for the roles of H1 subtypes in chromatin. J Biol Chem. 1984, 259: 669-672.
CAS
PubMed
Google Scholar
Tanaka M, Hennebold JD, Macfarlane J, Adashi EY: A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (CS-H1) of sea urchin and the B4/H1M histone of the frog. Development. 2001, 128: 655-664.
CAS
PubMed
Google Scholar
Khochbin S: Histone H1 diversity: bridging regulatory signals to linker histone function. Gene. 2001, 27: 11-12.
Google Scholar
Lennox RW, Oshima RG, Cohen LH: The H1 histones and their interphase phosphorylated states in differentiated and undifferentiated cell lines derived from murine teratocarcinomas. J Biol Chem. 1982, 257: 5183-5189.
CAS
PubMed
Google Scholar
Hall JM, Cole RD: Modulation in proportions of H1 histone subfractions by differential changes in synthesis and turnover during butyrate treatment of neuroblastoma cells. Biochemistry. 1985, 24: 7765-7771. 10.1021/bi00347a040.
Article
CAS
PubMed
Google Scholar
Domínguez V, Piña B, Suau P: Histone H1 subtype synthesis in neurons and neuroblasts. Development. 1992, 115: 181-185.
PubMed
Google Scholar
Liao LW, Cole RD: Differences among fractions of H1 histones in their interactions with linear and superhelical DNA: circular dichroism. J Biol Chem. 1981, 256: 10124-10128.
CAS
PubMed
Google Scholar
Khadake JR, Manchanahalli R, Rao MRS: DNA- and chromatin-condensing properties of rat testes H1a and H1t compared to those of rat liver H1bdec; H1t is a poor condenser of chromatin. Biochemistry. 1995, 34: 15792-15801. 10.1021/bi00048a025.
Article
CAS
PubMed
Google Scholar
Talasz H, Sapojnikova N, Helliger W, Linder H, Puschendorf B: In vitro binding of H1 histone subtypes to nucleosomal organized mouse mammary tumor virus long terminal repeat promotor. J Biol Chem. 1998, 273: 32236-32243. 10.1074/jbc.273.48.32236.
Article
CAS
PubMed
Google Scholar
Gunjan A, Alexander BT, Sittman DB, Brown DT: Effects of histone H1 variant overexpression on chromatin structure. J Biol Chem. 1999, 274: 37950-37956. 10.1074/jbc.274.53.37950.
Article
CAS
PubMed
Google Scholar
Ponte I, Vidal-Taboada JM, Suau P: Evolution of the H1 histone class: evidence for the functional differentiation of the subtypes. Mol Biol Evol. 1998, 15: 702-708.
Article
CAS
PubMed
Google Scholar
Brown DT, Alexander BT, Sittman AB: Differential effect of H1 variant overexpression on cell cycle progression and gene expression. Nucleic Acids Res. 1996, 24: 486-493. 10.1093/nar/24.3.486.
Article
PubMed Central
CAS
PubMed
Google Scholar
Steinbach OC, Wolffe AP, Rupp RA: Somatic linker histones cause loss of mesodermal competence in Xenopus . Nature. 1997, 389: 395-399. 10.1038/38755.
Article
CAS
PubMed
Google Scholar
Alami R, Fan Y, Pack S, Sonbuchner TM, Besse A, Lin Q, Greally JM, Skoultchi AI, Bouhassira EE: Mammalian linker-histone subtypes differentially affect gene expression in vivo . Proc Natl Acad Sci USA. 2006, 100: 5920-5925. 10.1073/pnas.0736105100.
Article
Google Scholar
Caron F, Thomas JO: Exchange of histone H1 between segments of chromatin. J Mol Biol. 1981, 146: 513-537. 10.1016/0022-2836(81)90045-0.
Article
CAS
PubMed
Google Scholar
Lever MA, Th'ng JPH, Sun X, Hendzel MJ: Rapid exchange of histone H1.1 on chromatin in living human cells. Nature. 2000, 408: 873-876. 10.1038/35048603.
Article
CAS
PubMed
Google Scholar
Misteli T, Gunjam A, Hock R, Bustin M, Brown DT: Dynamic binding of histone H1 to chromatin in living cells. Nature. 2000, 408: 877-881. 10.1038/35048610.
Article
CAS
PubMed
Google Scholar
Th'ng JP, Sung R, Ye M, Hendzel MJ: H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain. J Biol Chem. 2005, 280: 27809-27814. 10.1074/jbc.M501627200.
Article
PubMed
Google Scholar
Rodríguez AT, Pérez L, Moran F, Montero F, Suau P: Cooperative interaction of the C-terminal domain of histone H1 with DNA. Biophys Chem. 1991, 39: 145-152. 10.1016/0301-4622(91)85016-J.
Article
PubMed
Google Scholar
Bates DL, Thomas JO: Histones H1 and H5: one or two molecules per nucleosome?. Nucleic Acids Res. 1981, 9: 5883-5894. 10.1093/nar/9.22.5883.
Article
PubMed Central
CAS
PubMed
Google Scholar
Doenecke D, Tönjes R: Differential distribution of lysine and arginine residues in the closely related histones H1° and H5. J Mol Biol. 1986, 187: 461-464. 10.1016/0022-2836(86)90446-8.
Article
CAS
PubMed
Google Scholar
Roque A, Iloro I, Ponte I, Arrondo JLR, Suau P: DNA-induced secondary structure of the carboxyl-terminal domain of histone H1. J Biol Chem. 2005, 280: 32141-32147. 10.1074/jbc.M505636200.
Article
CAS
PubMed
Google Scholar
Parseghian MH, Hamkalo BA: A compendium of the histone H1 family of somatic subtypes: an elusive cast of characters and their characteristics. Biochem. 2001, 79: 289-304.
CAS
Google Scholar
Dou Y, Bowen J, Liu Y, Gorovsky MA: Phosphorylation and ATP-dependent process increase the dynamic exchange of H1 in chromatin. J Cell Biol. 2002, 158: 1161-1170. 10.1083/jcb.200202131.
Article
PubMed Central
CAS
PubMed
Google Scholar
Contreras A, Hale TK, Stenoien DL, Rosen JM, Mancini MA, Herrera RE: The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol Cell Biol. 2003, 23: 8626-8636. 10.1128/MCB.23.23.8626-8636.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sarg B, Helliger W, Talasz H, Forg B, Lindner HH: Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1. J Biol Chem. 2006, 281: 6573-6580. 10.1074/jbc.M508957200.
Article
CAS
PubMed
Google Scholar
Kaul R, Allen M, Bradbury EM, Wenman WM: Sequence specific binding of chlamydial histone H1-like protein. Nucleic Acids Res. 1996, 24: 2981-2989. 10.1093/nar/24.15.2981.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wellman SE, Song Y, Mamoon NM: Sequence preference of mouse H1(0) and H1t. Biochemistry. 1999, 38: 13112-13118. 10.1021/bi9914917.
Article
CAS
PubMed
Google Scholar
Parseghian MH, Harris DA, Rishwain DR, Hamkalo BA: Characterization of a set of antibodies specific for three human histone H1 subtypes. Chromosoma. 1994, 103: 198-208.
Article
CAS
PubMed
Google Scholar
Thomas JO, Rees C: Exchange of histones H1 and H5 between chromatin fragments. A preference for higher-order structures. Eur J Biochem. 1983, 134: 109-115. 10.1111/j.1432-1033.1983.tb07538.x.
Article
CAS
PubMed
Google Scholar
Mohr E, Trieschmann L, Grossback U: Histone H1 in two subspecies of Chironomus thummi with different genome sizes: homologous chromosome sites differ largely in their content of a specific H1 variant. Proc Natl Acad Sci USA. 1989, 86: 9308-9312. 10.1073/pnas.86.23.9308.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schulze E, Nagel S, Gavenis K, Grossbach U: Structurally divergent histone H1 variants in chromosomes containing highly condensed interphase chromatin. J Cell Biol. 1994, 127: 1789-1798. 10.1083/jcb.127.6.1789.
Article
CAS
PubMed
Google Scholar
Carruthers LM, Hansen JC: The core histone N-termini function independently of linker histones during chromatin condensation. J Biol Chem. 2000, 275: 37285-37290. 10.1074/jbc.M006801200.
Article
CAS
PubMed
Google Scholar
Parseghian MH, Newcomb RL, Winokur ST, Hamkalo BA: The distribution of somatic H1 subtypes is non-random in active vs. inactive chromatin. Chromosome Res. 2000, 8: 405-424. 10.1023/A:1009262819961.
Article
CAS
PubMed
Google Scholar
Kamakaka RT, Thomas JO: Chromatin structure of transcriptionally competent and repressed genes. EMBO J. 1990, 9: 3997-4006.
PubMed Central
CAS
PubMed
Google Scholar
Garcia-Ramírez M, Leuba SH, Ausió J: One-step fractionation method for isolating H1 histones from chromatin under nondenaturing conditions. Prot Exp Purif. 1990, 1: 40-44. 10.1016/1046-5928(90)90043-X.
Article
Google Scholar
Böhm EL, Strickland WN, Strickland M, Thwaits B, Van der Westhuizen DR, Von Holt C: Purification of the five main calf thymus histone fractions by gel exclusion chromatography. FEBS Lett. 1973, 34: 217-221. 10.1016/0014-5793(73)80797-5.
Article
PubMed
Google Scholar
Seyedin SM, Kistler WS: H1 histone subfractions of mammalian testes. 1. Organ specificity in the rat. Biochemistry. 1997, 18: 1371-1375. 10.1021/bi00574a038.
Article
Google Scholar
Albig W, Meergans T, Doenecke D: Characterization of the H1.5 gene completes the set of human subtype genes. Gene. 1997, 184: 141-148. 10.1016/S0378-1119(96)00582-3.
Article
CAS
PubMed
Google Scholar
Parseghian MH, Henschen AH, Krieglstein KG, Hamkalo BA: A proposal for a coherent mammalian histone nomenclature correlated with amino acid sequences. Protein Sci. 1994, 3: 575-587.
Article
PubMed Central
CAS
PubMed
Google Scholar
Piña B, Martínez P, Suau P: Changes in H1 complement in differentiating rat-brain cortical neurons. Eur J Biochem. 1987, 164: 71-76. 10.1111/j.1432-1033.1987.tb10994.x.
Article
PubMed
Google Scholar
Fairall L, Buttinelli M, Panetta G: Bandshift, gel retardation or electrophoretic mobility shift assays. DNA-Protein Interactions. Edited by: Travers A, Buckle M. 2000, Oxford: Oxford University Press, 65-75.
Google Scholar