Davidson EH: Genomic Regulatory Systems; Development and Evolution. 2001, Academic Press, San Diego
Google Scholar
Schier AF: Nodal morphogens. Cold Spring Harb Perspect Biol. 2009, 1: a003459-10.1101/cshperspect.a003459.
Article
PubMed Central
PubMed
Google Scholar
Weng W, Stemple DL: Nodal signaling and vertebrate germ layer formation. Birth Defects Res C Embryo Today. 2003, 69: 325-332. 10.1002/bdrc.10027.
Article
CAS
PubMed
Google Scholar
Sampath K, Rubinstein AL, Cheng AM, Liang JO, Fekany K, Solnica-Krezel L, Korzh V, Halpern ME, Wright CV: Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature. 1998, 395: 185-189. 10.1038/26020.
Article
CAS
PubMed
Google Scholar
Hatta K, Kimmel CB, Ho RK, Walker C: The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature. 1991, 350: 339-341. 10.1038/350339a0.
Article
CAS
PubMed
Google Scholar
Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ: A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development. 1994, 120: 1919-1928.
CAS
PubMed
Google Scholar
Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, Schier AF, Talbot WS: Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature. 1998, 395: 181-185. 10.1038/26013.
Article
CAS
PubMed
Google Scholar
Varlet I, Collignon J, Robertson EJ: Nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development. 1997, 124: 1033-1044.
CAS
PubMed
Google Scholar
Hemmati-Brivanlou A, Melton DA: A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature. 1992, 359: 609-614. 10.1038/359609a0.
Article
CAS
PubMed
Google Scholar
Osada SI, Wright CV: Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development. 1999, 126: 3229-3240.
CAS
PubMed
Google Scholar
Erter CE, Solnica-Krezel L, Wright CV: Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev Biol. 1998, 204: 361-372. 10.1006/dbio.1998.9097.
Article
CAS
PubMed
Google Scholar
Chen Y, Schier AF: The zebrafish Nodal signal Squint functions as a morphogen. Nature. 2001, 411: 607-610. 10.1038/35079121.
Article
CAS
PubMed
Google Scholar
Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM: Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development. 2000, 127: 1173-1183.
CAS
PubMed Central
PubMed
Google Scholar
Chen X, Rubock MJ, Whitman M: A transcriptional partner for MAD proteins in TGF-beta signalling. Nature. 1996, 383: 691-696. 10.1038/383691a0.
Article
CAS
PubMed
Google Scholar
Germain S, Howell M, Esslemont GM, Hill CS: Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 2000, 14: 435-451.
CAS
PubMed Central
PubMed
Google Scholar
Howell M, Inman GJ, Hill CS: A novel Xenopus Smad-interacting forkhead transcription factor (XFast-3) cooperates with XFast-1 in regulating gastrulation movements. Development. 2002, 129: 2823-2834.
CAS
PubMed
Google Scholar
Liu Z, Lin X, Cai Z, Zhang Z, Han C, Jia S, Meng A, Wang Q: Global identification of SMAD2 target genes reveals a role for multiple co-regulatory factors in zebrafish early gastrulas. J Biol Chem. 2011, 286: 28520-28532. 10.1074/jbc.M111.236307.
Article
CAS
PubMed Central
PubMed
Google Scholar
Picozzi P, Wang F, Cronk K, Ryan K: Eomesodermin requires transforming growth factor-beta/activin signaling and binds Smad2 to activate mesodermal genes. J Biol Chem. 2009, 284: 2397-2408. 10.1074/jbc.M808704200.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yoon SJ, Wills AE, Chuong E, Gupta R, Baker JC: HEB and E2A function as SMAD/FOXH1 cofactors. Genes Dev. 2011, 25: 1654-1661. 10.1101/gad.16800511.
Article
CAS
PubMed Central
PubMed
Google Scholar
Costello I, Pimeisl IM, Drager S, Bikoff EK, Robertson EJ, Arnold SJ: The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat Cell Biol. 2011, 13: 1084-1091. 10.1038/ncb2304.
Article
CAS
PubMed Central
PubMed
Google Scholar
Arnold SJ, Hofmann UK, Bikoff EK, Robertson EJ: Pivotal roles for eomesodermin during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse. Development. 2008, 135: 501-511. 10.1242/dev.014357.
Article
CAS
PubMed
Google Scholar
Ryan K, Garrett N, Mitchell A, Gurdon JB: Eomesodermin, a key early gene in Xenopus mesoderm differentiation. Cell. 1996, 87: 989-1000. 10.1016/S0092-8674(00)81794-8.
Article
CAS
PubMed
Google Scholar
Teo AK, Arnold SJ, Trotter MW, Brown S, Ang LT, Chng Z, Robertson EJ, Dunn NR, Vallier L: Pluripotency factors regulate definitive endoderm specification through eomesodermin. Genes Dev. 2011, 25: 238-250. 10.1101/gad.607311.
Article
CAS
PubMed Central
PubMed
Google Scholar
Takizawa F, Araki K, Ito K, Moritomo T, Nakanishi T: Expression analysis of two Eomesodermin homologues in zebrafish lymphoid tissues and cells. Mol Immunol. 2007, 44: 2324-2331. 10.1016/j.molimm.2006.11.018.
Article
CAS
PubMed
Google Scholar
Bruce AE, Howley C, Zhou Y, Vickers SL, Silver LM, King ML, Ho RK: The maternally expressed zebrafish T-box gene eomesodermin regulates organizer formation. Development. 2003, 130: 5503-5517. 10.1242/dev.00763.
Article
CAS
PubMed
Google Scholar
Du S, Draper BW, Mione M, Moens CB, Bruce A: Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A. Dev Biol. 2012, 362: 11-23. 10.1016/j.ydbio.2011.10.036.
Article
CAS
PubMed Central
PubMed
Google Scholar
Alexander J, Rothenberg M, Henry GL, Stainier DY: Casanova plays an early and essential role in endoderm formation in zebrafish. Dev Biol. 1999, 215: 343-357. 10.1006/dbio.1999.9441.
Article
CAS
PubMed
Google Scholar
Bjornson CR, Griffin KJ, Farr GH, Terashima A, Himeda C, Kikuchi Y, Kimelman D: Eomesodermin is a localized maternal determinant required for endoderm induction in zebrafish. Dev Cell. 2005, 9: 523-533. 10.1016/j.devcel.2005.08.010.
Article
CAS
PubMed
Google Scholar
Kikuchi Y, Agathon A, Alexander J, Thisse C, Waldron S, Yelon D, Thisse B, Stainier DY: Casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev. 2001, 15: 1493-1505. 10.1101/gad.892301.
Article
CAS
PubMed Central
PubMed
Google Scholar
Reiter JF, Alexander J, Rodaway A, Yelon D, Patient R, Holder N, Stainier DY: Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 1999, 13: 2983-2995. 10.1101/gad.13.22.2983.
Article
CAS
PubMed Central
PubMed
Google Scholar
Reiter JF, Kikuchi Y, Stainier DY: Multiple roles for Gata5 in zebrafish endoderm formation. Development. 2001, 128: 125-135.
CAS
PubMed
Google Scholar
Kikuchi Y, Trinh LA, Reiter JF, Alexander J, Yelon D, Stainier DY: The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev. 2000, 14: 1279-1289.
CAS
PubMed Central
PubMed
Google Scholar
Slagle CE, Aoki T, Burdine RD: Nodal-dependent mesendoderm specification requires the combinatorial activities of FoxH1 and Eomesodermin. PLoS Genet. 2011, 7: e1002072-10.1371/journal.pgen.1002072.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bennett JT, Joubin K, Cheng S, Aanstad P, Herwig R, Clark M, Lehrach H, Schier AF: Nodal signaling activates differentiation genes during zebrafish gastrulation. Dev Biol. 2007, 304: 525-540. 10.1016/j.ydbio.2007.01.012.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hagos EG, Dougan ST: Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC Dev Biol. 2007, 7: 22-10.1186/1471-213X-7-22.
Article
PubMed Central
PubMed
Google Scholar
Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier AF: The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell. 1999, 97: 121-132. 10.1016/S0092-8674(00)80720-5.
Article
CAS
PubMed
Google Scholar
Flowers GP, Topczewska JM, Topczewski J: A zebrafish Notum homolog specifically blocks the Wnt/beta-catenin signaling pathway. Development. 2012, 139: 2416-2425. 10.1242/dev.063206.
Article
CAS
PubMed Central
PubMed
Google Scholar
Takeuchi JK, Lickert H, Bisgrove BW, Sun X, Yamamoto M, Chawengsaksophak K, Hamada H, Yost HJ, Rossant J, Bruneau BG: Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry. Proc Natl Acad Sci U S A. 2006, 104: 846-851. 10.1073/pnas.0608118104.
Article
Google Scholar
Kim SW, Yoon SJ, Chuong E, Oyolu C, Wills AE, Gupta R, Baker J: Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs. Dev Biol. 2011, 357: 492-504. 10.1016/j.ydbio.2011.06.009.
Article
CAS
PubMed
Google Scholar
Lee KL, Lim SK, Orlov YL, Yit le Y, Yang H, Ang LT, Poellinger L, Lim B: Graded Nodal/Activin signaling titrates conversion of quantitative phospho-Smad2 levels into qualitative embryonic stem cell fate decisions. PLoS Genet. 2011, 7: e1002130-10.1371/journal.pgen.1002130.
Article
CAS
PubMed Central
PubMed
Google Scholar
Feng Q, Zou X, Lu L, Li Y, Liu Y, Zhou J, Duan C: The stress-response gene redd1 regulates dorsoventral patterning by antagonizing Wnt/beta-catenin activity in zebrafish. PLoS One. 2012, 7: e52674-10.1371/journal.pone.0052674.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gokhman D, Livyatan I, Sailaja BS, Melcer S, Meshorer E: Multilayered chromatin analysis reveals E2f, Smad and Zfx as transcriptional regulators of histones. Nat Struct Mol Biol. 2013, 20: 119-126. 10.1038/nsmb.2448.
Article
CAS
PubMed
Google Scholar
Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P, Chen Y, DeSalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM: ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012, 22: 1813-1831. 10.1101/gr.136184.111.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP: Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell. 1998, 94: 585-594. 10.1016/S0092-8674(00)81600-1.
Article
CAS
PubMed
Google Scholar
Kispert A, Herrmann BG: The Brachyury gene encodes a novel DNA binding protein. EMBO J. 1993, 12: 3211-3220.
CAS
PubMed Central
PubMed
Google Scholar
Xu P, Zhu G, Wang Y, Sun J, Liu X, Chen YG, Meng A: Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos. J Mol Cell Biol. 2014, 6: 272-285. 10.1093/jmcb/mju028.
Article
CAS
PubMed
Google Scholar
Silvestri C, Narimatsu M, von Both I, Liu Y, Tan NB, Izzi L, McCaffery P, Wrana JL, Attisano L: Genome-wide identification of Smad/Foxh1 targets reveals a role for Foxh1 in retinoic acid regulation and forebrain development. Dev Cell. 2008, 14: 411-423. 10.1016/j.devcel.2008.01.004.
Article
CAS
PubMed
Google Scholar
Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, Buchman S, Chen CY, Chou A, Ienasescu H, Lim J, Shyr C, Tan G, Zhou M, Lenhard B, Sandelin A, Wasserman WW: JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 2014, 42: D142-D147. 10.1093/nar/gkt997.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schier AF, Neuhauss SC, Harvey M, Malicki J, Solnica-Krezel L, Stainier DY, Zwartkruis F, Abdelilah S, Stemple DL, Rangini Z, Yang H, Driever W: Mutations affecting the development of the embryonic zebrafish brain. Development. 1996, 123: 165-178.
CAS
PubMed
Google Scholar
Solnica-Krezel L, Stemple DL, Mountcastle-Shah E, Rangini Z, Neuhauss SC, Malicki J, Schier AF, Stainier DY, Zwartkruis F, Abdelilah S, Driever W: Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. Development. 1996, 123: 67-80.
CAS
PubMed
Google Scholar
Pogoda HM, Solnica-Krezel L, Driever W, Meyer D: The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of nodal signaling required for organizer formation. Curr Biol. 2000, 10: 1041-1049. 10.1016/S0960-9822(00)00669-2.
Article
CAS
PubMed
Google Scholar
Sirotkin HI, Gates MA, Kelly PD, Schier AF, Talbot WS: Fast1 is required for the development of dorsal axial structures in zebrafish. Curr Biol. 2000, 10: 1051-1054. 10.1016/S0960-9822(00)00679-5.
Article
CAS
PubMed
Google Scholar
Alexander J, Stainier DY: A molecular pathway leading to endoderm formation in zebrafish. Curr Biol. 1999, 9: 1147-1157. 10.1016/S0960-9822(00)80016-0.
Article
CAS
PubMed
Google Scholar
Dickmeis T, Mourrain P, Saint-Etienne L, Fischer N, Aanstad P, Clark M, Strahle U, Rosa F: A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev. 2001, 15: 1487-1492. 10.1101/gad.196901.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sollner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C, Nicolson T: Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science. 2003, 302: 282-286. 10.1126/science.1088443.
Article
PubMed
Google Scholar
Thisse B, Pflumio S, Fürthauer M, Loppin B, Heyer V, Degrave A, Woehl R, Lux A, Steffan T, Charbonnier XQ, Thisse C: Expression of the zebrafish genome during embryogenesis.ZFIN Direct Data Submission 2001, [], [http://zfin.org]
Knight RD, Nair S, Nelson SS, Afshar A, Javidan Y, Geisler R, Rauch GJ, Schilling TF: Lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development. 2003, 130: 5755-5768. 10.1242/dev.00575.
Article
CAS
PubMed
Google Scholar
Grinblat Y, Sive H: zic Gene expression marks anteroposterior pattern in the presumptive neurectoderm of the zebrafish gastrula. Dev Dyn. 2001, 222: 688-693. 10.1002/dvdy.1221.
Article
CAS
PubMed
Google Scholar
Dickmeis T, Aanstad P, Clark M, Fischer N, Herwig R, Mourrain P, Blader P, Rosa F, Lehrach H, Strahle U: Identification of nodal signaling targets by array analysis of induced complex probes. Dev Dyn. 2001, 222: 571-580. 10.1002/dvdy.1220.
Article
CAS
PubMed
Google Scholar
Waldrip WR, Bikoff EK, Hoodless PA, Wrana JL, Robertson EJ: Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell. 1998, 92: 797-808. 10.1016/S0092-8674(00)81407-5.
Article
CAS
PubMed
Google Scholar
Zhu Y, Richardson JA, Parada LF, Graff JM: Smad3 mutant mice develop metastatic colorectal cancer. Cell. 1998, 94: 703-714. 10.1016/S0092-8674(00)81730-4.
Article
CAS
PubMed
Google Scholar
Nomura M, Li E: Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature. 1998, 393: 786-790. 10.1038/31693.
Article
CAS
PubMed
Google Scholar
Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX: Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci U S A. 1998, 95: 9378-9383. 10.1073/pnas.95.16.9378.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng C: Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J. 1999, 18: 1280-1291. 10.1093/emboj/18.5.1280.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gentsch GE, Owens ND, Martin SR, Piccinelli P, Faial T, Trotter MW, Gilchrist MJ, Smith JC: In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. Cell Rep. 2013, 4: 1185-1196. 10.1016/j.celrep.2013.08.012.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mione M, Shanmugalingam S, Kimelman D, Griffin K: Overlapping expression of zebrafish T-brain-1 and eomesodermin during forebrain development. Mech Dev. 2001, 100: 93-97. 10.1016/S0925-4773(00)00501-3.
Article
CAS
PubMed
Google Scholar
Arnold SJ, Huang GJ, Cheung AF, Era T, Nishikawa S, Bikoff EK, Molnar Z, Robertson EJ, Groszer M: The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 2008, 22: 2479-2484. 10.1101/gad.475408.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li W, Cornell RA: Redundant activities of Tfap2a and Tfap2c are required for neural crest induction and development of other non-neural ectoderm derivatives in zebrafish embryos. Dev Biol. 2007, 304: 338-354. 10.1016/j.ydbio.2006.12.042.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cast AE, Gao C, Amack JD, Ware SM: An essential and highly conserved role for Zic3 in left-right patterning, gastrulation and convergent extension morphogenesis. Dev Biol. 2012, 364: 22-31. 10.1016/j.ydbio.2012.01.011.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bruce AE, Howley C, Dixon Fox M, Ho RK: T-box gene eomesodermin and the homeobox-containing Mix/Bix gene mtx2 regulate epiboly movements in the zebrafish. Dev Dyn. 2005, 233: 105-114. 10.1002/dvdy.20305.
Article
CAS
PubMed Central
PubMed
Google Scholar
Westerfield M: The Zebrafish Book. 1993, University of Oregon Press, Eugene
Google Scholar
Pei W, Noushmehr H, Costa J, Ouspenskaia MV, Elkahloun AG, Feldman B: An early requirement for maternal FoxH1 during zebrafish gastrulation. Dev Biol. 2007, 310: 10-22. 10.1016/j.ydbio.2007.07.011.
Article
CAS
PubMed Central
PubMed
Google Scholar
Morley RH, Lachani K, Keefe D, Gilchrist MJ, Flicek P, Smith JC, Wardle FC: A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proc Natl Acad Sci U S A. 2009, 106: 3829-3834. 10.1073/pnas.0808382106.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rikin A, Evans T: The tbx/bHLH transcription factor mga regulates gata4 and organogenesis. Dev Dyn. 2010, 239: 535-547. 10.1002/dvdy.22197.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wardle FC, Odom DT, Bell GW, Yuan B, Danford TW, Wiellette EL, Herbolsheimer E, Sive HL, Young RA, Smith JC: Zebrafish promoter microarrays identify actively transcribed embryonic genes. Genome Biol. 2006, 7: R71-10.1186/gb-2006-7-8-r71.
Article
PubMed Central
PubMed
Google Scholar
von Hofsten J, Elworthy S, Gilchrist MJ, Smith JC, Wardle FC, Ingham PW: Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo. EMBO Rep. 2008, 9: 683-689. 10.1038/embor.2008.73.
Article
CAS
PubMed Central
PubMed
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10: R25-10.1186/gb-2009-10-3-r25.
Article
PubMed Central
PubMed
Google Scholar
Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A: Manipulation of FASTQ data with Galaxy. Bioinformatics. 2010, 26: 1783-1785. 10.1093/bioinformatics/btq281.
Article
CAS
PubMed Central
PubMed
Google Scholar
Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 2005, 15: 1451-1455. 10.1101/gr.4086505.
Article
CAS
PubMed Central
PubMed
Google Scholar
Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010, 11: R86-10.1186/gb-2010-11-8-r86.
Article
PubMed Central
PubMed
Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9: R137-10.1186/gb-2008-9-9-r137.
Article
PubMed Central
PubMed
Google Scholar
Thorvaldsdottir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013, 14: 178-192. 10.1093/bib/bbs017.
Article
CAS
PubMed Central
PubMed
Google Scholar
Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP: Integrative genomics viewer. Nat Biotechnol. 2011, 29: 24-26. 10.1038/nbt.1754.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pavesi G, Mereghetti P, Zambelli F, Stefani M, Mauri G, Pesole G: MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes. Nucleic Acids Res. 2006, 34: W566-W570. 10.1093/nar/gkl285.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lenhard B, Wasserman WW: TFBS: Computational framework for transcription factor binding site analysis. Bioinformatics. 2002, 18: 1135-1136. 10.1093/bioinformatics/18.8.1135.
Article
CAS
PubMed
Google Scholar
Sanges R, Cordero F, Calogero RA: OneChannelGUI: a graphical interface to Bioconductor tools, designed for life scientists who are not familiar with R language. Bioinformatics. 2007, 23: 3406-3408. 10.1093/bioinformatics/btm469.
Article
CAS
PubMed
Google Scholar
da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37: 1-13. 10.1093/nar/gkn923.
Article
PubMed
Google Scholar
da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4: 44-57. 10.1038/nprot.2008.211.
Article
PubMed
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14: R36-10.1186/gb-2013-14-4-r36.
Article
PubMed Central
PubMed
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010, 28: 511-515. 10.1038/nbt.1621.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jowett T, Lettice L: Whole-mount in situ hybridizations on zebrafish embryos using a mixture of digoxigenin- and fluorescein-labelled probes. Trends Genet. 1994, 10: 73-74. 10.1016/0168-9525(94)90220-8.
Article
CAS
PubMed
Google Scholar
Stachel SE, Grunwald DJ, Myers PZ: Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development. 1993, 117: 1261-1274.
CAS
PubMed
Google Scholar
Schulte-Merker S, Hammerschmidt M, Beuchle D, Cho KW, De Robertis EM, Nusslein-Volhard C: Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development. 1994, 120: 843-852.
CAS
PubMed
Google Scholar
Thisse B, Thisse C: Fast release clones: a high throughput expression analysis.ZFIN Direct Data Submission 2004, [], [http://zfin.org/]