McCutcheon JP: The bacterial essence of tiny symbiont genomes. Curr Opin Microbiol. 2010, 13: 73-78. 10.1016/j.mib.2009.12.002.
Article
CAS
PubMed Central
PubMed
Google Scholar
Moran NA, Bennett GM: The tiniest tiny genomes. Annu Rev Microbiol. 2014, 68: 195-215. 10.1146/annurev-micro-091213-112901.
Article
CAS
PubMed
Google Scholar
McCutcheon JP, Moran NA: Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2012, 10: 13-26.
CAS
Google Scholar
Pérez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M, Michelena JM, Silva FJ, Moya A, Latorre A: A small microbial genome: the end of a long symbiotic relationship?. Science. 2006, 314: 312-313. 10.1126/science.1130441.
Article
PubMed
Google Scholar
Lamelas A, Gosalbes MJ, Manzano-Marín A, Peretó J, Moya A, Latorre A: Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont. PLoS Genet. 2011, 7: 1-11. 10.1371/journal.pgen.1002357.
Article
Google Scholar
McCutcheon JP, von Dohlen CD: An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol. 2011, 21: 1366-1372. 10.1016/j.cub.2011.06.051.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bennett GM, Moran NA: Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biol Evol. 2013, 5: 1675-1688. 10.1093/gbe/evt118.
Article
PubMed Central
PubMed
Google Scholar
Gil R, Sabater-Munoz B, Latorre A, Silva FJ, Moya A: Extreme genome reduction in Buchnera spp.: toward the minimal genome needed for symbiotic life. Proc Natl Acad Sci U S A. 2002, 99: 4454-4458. 10.1073/pnas.062067299.
Article
CAS
PubMed Central
PubMed
Google Scholar
McCutcheon JP, McDonald BR, Moran NA: Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet. 2009, 5: e1000565-10.1371/journal.pgen.1000565.
Article
PubMed Central
PubMed
Google Scholar
Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M: The 160-kilobase genome of the bacterial endosymbiont Carsonella . Science. 2006, 314: 267-10.1126/science.1134196.
Article
CAS
PubMed
Google Scholar
Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, Tanaka M, Satoh N, Bachtrog D, Wilson ACC, von Dohlen CD, Fukatsu T, McCutcheon JP: Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell. 2013, 153: 1567-1578. 10.1016/j.cell.2013.05.040.
Article
CAS
PubMed
Google Scholar
Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H: Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 2000, 407: 81-86. 10.1038/35024074.
Article
CAS
PubMed
Google Scholar
Hansen AK, Moran NA: Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc Natl Acad Sci U S A. 2011, 108: 2849-2854. 10.1073/pnas.1013465108.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shigenobu S, Wilson ACC: Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont. Cell Mol Life Sci. 2011, 68: 1297-1309. 10.1007/s00018-011-0645-2.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sloan DB, Nakabachi A, Richards S, Qu J, Murali SC, Gibbs RA, Moran NA: Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol Biol Evol. 2014, 31: 857-871. 10.1093/molbev/msu004.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jensen RA: Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 1976, 30: 409-425. 10.1146/annurev.mi.30.100176.002205.
Article
CAS
PubMed
Google Scholar
Khersonsky O, Tawfik DS: Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem. 2010, 79: 471-505. 10.1146/annurev-biochem-030409-143718.
Article
CAS
PubMed
Google Scholar
O’Brien PJ, Herschlag D: Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol. 1999, 6: R91-R105. 10.1016/S1074-5521(99)80033-7.
Article
PubMed
Google Scholar
D'Ari R, Casadesus J: Underground metabolism. BioEssays. 1998, 20: 181-186. 10.1002/(SICI)1521-1878(199802)20:2<181::AID-BIES10>3.0.CO;2-0.
Article
PubMed
Google Scholar
Carbonell P, Lecointre G, Faulon JL: Origins of specificity and promiscuity in metabolic networks. J Biol Chem. 2011, 286: 43994-44004. 10.1074/jbc.M111.274050.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nam H, Lewis NE, Lerman JA, Lee DH, Chang RL, Kim D, Palsson BO: Network context and selection in the evolution to enzyme specificity. Science. 2012, 337: 1101-1104. 10.1126/science.1216861.
Article
CAS
PubMed Central
PubMed
Google Scholar
Notebaart RA, Szappanos B, Kintses B, Pál F, Györkei A, Bogos B, Lázár V, Spohn R, Csörgő B, Wagner A, Ruppin E, Pál C, Papp B: Network-level architecture and the evolutionary potential of underground metabolism. Proc Natl Acad Sci U S A. 2014, 111: 11762-11767. 10.1073/pnas.1406102111.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yip SH, Matsumura I: Substrate ambiguous enzymes within the Escherichia coli proteome offer different evolutionary solutions to the same problem. Mol Biol Evol. 2013, 30: 2001-2012. 10.1093/molbev/mst105.
Article
CAS
PubMed Central
PubMed
Google Scholar
Greenspan RJ: The flexible genome. Nat Rev Genet. 2001, 2: 383-387. 10.1038/35072018.
Article
CAS
PubMed
Google Scholar
Adams NE, Thiaville JJ, Proestos J, Juárez-Vázquez AL, McCoy AJ, Barona-Gómez F, Iwata-Reuyl D, de Crécy-Lagard V, Maurelli AT: Promiscuous and adaptable enzymes fill “holes” in the tetrahydrofolate pathway in Chlamydia species. MBio. 2014, 5: e01378-01314. 10.1128/mBio.01378-14.
Article
PubMed Central
PubMed
Google Scholar
Tian J, Bryk R, Shi S, Erdjument-Bromage H, Tempst P, Nathan C: Mycobacterium tuberculosis appears to lack α-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol Microbiol 2005, 57:859–868.,
Wagner T, Bellinzoni M, Wehenkel A, O’Hare HM, Alzari PM: Functional plasticity and allosteric regulation of α-ketoglutarate decarboxylase in central mycobacterial metabolism. Chem Biol. 2011, 18: 1011-1020. 10.1016/j.chembiol.2011.06.004.
Article
CAS
PubMed
Google Scholar
van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernández JM, Jiménez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Morán F, Moya A: Reductive genome evolution in Buchnera aphidicola . Proc Natl Acad Sci U S A. 2003, 100: 581-586. 10.1073/pnas.0235981100.
Article
CAS
PubMed Central
PubMed
Google Scholar
Degnan PH, Ochman H, Moran NA: Sequence conservation and functional constraint on intergenic spacers in reduced genomes of the obligate symbiont Buchnera . PLoS Genet. 2011, 7: e1002252-10.1371/journal.pgen.1002252.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jiang Z, Jones DH, Khuri S, Tsinoremas NF, Wyss T, Jander G, Wilson ACC: Comparative analysis of genome sequences from four strains of the Buchnera aphidicola Mp endosymbion of the green peach aphid. Myzus persicae. BMC Genomics. 2013, 14: 917-10.1186/1471-2164-14-917.
Article
Google Scholar
Tamas I, Klasson L, Canbäck B, Näslund AK, Eriksson AS, Wernegreen JJ, Sandström JP, Moran NA, Andersson SG: 50 million years of genomic stasis in endosymbiotic bacteria. Science. 2002, 296: 2376-2379. 10.1126/science.1071278.
Article
CAS
PubMed
Google Scholar
Piskur J, Schnackerz KD, Andersen G, Bjornberg O: Comparative genomics reveals novel biochemical pathways. Trends Genet. 2007, 23: 369-372. 10.1016/j.tig.2007.05.007.
Article
CAS
PubMed
Google Scholar
Richardson G, Ding H, Rocheleau T, Mayhew G, Reddy E, Han Q, Christensen BM, Li J: An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes. Mol Biol Rep. 2010, 37: 3199-3205. 10.1007/s11033-009-9902-y.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28: 27-30. 10.1093/nar/28.1.27.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40: D109-D114. 10.1093/nar/gkr988.
Article
CAS
PubMed Central
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Zhou J, Rudd KE: EcoGene 3.0. Nucleic Acids Res. 2013, 41: D613-D624. 10.1093/nar/gks1235.
Article
CAS
PubMed Central
PubMed
Google Scholar
International Aphid Genomics Consortium: Genome sequence of the pea aphid Acyrthosiphon pisum . PLoS Biol 2010, 8:e1000313.,
Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, Munaretto C, Ulas S, Stelzer M, Grote A, Scheer M, Schomburg D: BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res. 2013, 41: D764-D772. 10.1093/nar/gks1049.
Article
CAS
PubMed Central
PubMed
Google Scholar
Primerano DA, Burns RO: Role of acetohydroxy acid isomeroreductase in biosynthesis of pantothenic acid in Salmonella typhimurium . J Bacteriol. 1983, 153: 259-269.
CAS
PubMed Central
PubMed
Google Scholar
Elischewski F, Puhler A, Kalinowski J: Pantothenate production in Escherichia coli K12 by enhanced expression of the panE gene encoding ketopantoate reductase. J Biotechnol. 1999, 75: 135-146. 10.1016/S0168-1656(99)00153-4.
Article
CAS
PubMed
Google Scholar
Wilson ACC, Ashton PD, Calevro F, Charles H, Colella S, Febvay G, Jander G, Kushlan PF, Macdonald SJ, Schwartz JF, Thomas GH, Douglas AE: Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola . Insect Mol Biol. 2010, 19: 249-258. 10.1111/j.1365-2583.2009.00942.x.
Article
CAS
PubMed
Google Scholar
Russell CW, Bouvaine S, Newell PD, Douglas AE: Shared metabolic pathways in a coevolved insect-bacterial symbiosis. Appl Environ Microbiol. 2013, 79: 6117-6123. 10.1128/AEM.01543-13.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schneider F, Kramer R, Burkovski A: Identification and characterization of the main β-alanine uptake system in Escherichia coli . Appl Microbiol Biotechnol. 2004, 65: 576-582. 10.1007/s00253-004-1636-0.
Article
CAS
PubMed
Google Scholar
Charles H, Balmand S, Lamelas A, Cottret L, Pérez-Brocal V, Burdin B, Latorre A, Febvay G, Colella S, Calevro F, Rahbé Y: A genomic reappraisal of symbiotic function in the aphid/Buchnera symbiosis: reduced transporter sets and variable membrane organisations. PloS One. 2011, 6: e29096-10.1371/journal.pone.0029096.
Article
CAS
PubMed Central
PubMed
Google Scholar
Merkamm M, Chassagnole C, Lindley ND, Guyonvarch A: Ketopantoate reductase activity is only encoded by ilvC in Corynebacterium glutamicum . J Biotechnol. 2003, 104: 253-260. 10.1016/S0168-1656(03)00145-7.
Article
CAS
PubMed
Google Scholar
Kelkar YD, Ochman H: Genome reduction promotes increase in protein functional complexity in bacteria. Genetics. 2013, 193: 303-307. 10.1534/genetics.112.145656.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dunbar HE, Wilson ACC, Ferguson NR, Moran NA: Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol. 2007, 5: 1006-1015. 10.1371/journal.pbio.0050096.
Article
CAS
Google Scholar
Price DRG, Duncan RP, Shigenobu S, Wilson ACC: Genome expansion and differential expression of amino acid transporters at the aphid/Buchnera symbiotic interface. Mol Biol Evol. 2011, 28: 3113-3126. 10.1093/molbev/msr140.
Article
CAS
PubMed
Google Scholar
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM: Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007, 35: W71-W74. 10.1093/nar/gkm306.
Article
PubMed Central
PubMed
Google Scholar
Cronan JE: β-alanine synthesis in Escherichia coli . J Bacteriol. 1980, 141: 1291-1297.
CAS
PubMed Central
PubMed
Google Scholar
Bukhari AI, Taylor AL: Genetic analysis of diaminopimelic acid- and lysine-requiring mutants of Escherichia coli . J Bacteriol. 1971, 105: 844-854.
CAS
PubMed Central
PubMed
Google Scholar
Tauch A, Kirchner O, Wehmeier L, Kalinowski J, Puhler A: Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli . FEMS Microbiol Lett. 1994, 123: 343-347. 10.1111/j.1574-6968.1994.tb07246.x.
Article
CAS
PubMed
Google Scholar
Elbing K, Brent R: Media preparation and bacteriological tools. Curr Protoc Mol Biol 2002, Chapter 1:Unit 1.1. doi:10.1002/0471142727.mb0101s59.