Craig NL, Craigie R, Gellert M, Mobile LAM, DNA II. Washington. DC: American Society for Microbiology Press; 2002.
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Gen. 2007;8:973–82.
Article
CAS
Google Scholar
Bureau TE, Wessler SR. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell. 1992;4:1283–94.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fattash I, Rooke R, Wong A, Hui C, Luu T, Bhardwaj P, et al. Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome. 2013;56:475–86.
Article
CAS
PubMed
Google Scholar
Feschotte C, Zhang X, Wessler SR. Miniature inverted-repeat transposable elements (MITEs) and their relationship with established DNA transposons. In: Craig N, Craigie R, Gellert M, Lambowitz A, editors. Mobile DNA II. Washington, DC: American Society of Microbiology Press; 2002. p. 1147–58.
Google Scholar
Wessler SR, Bureau TE, White SE. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev. 1995;5:814–21.
Article
CAS
PubMed
Google Scholar
Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature. 2009;461:1130–4.
Article
CAS
PubMed
Google Scholar
Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, et al. Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: New functional implications for MITEs. Genome Res. 2009;19:42–56.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wei L, Gu L, Song X, Cui X, Lu Z, Zhou M, et al. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc Natl Acad Sci. 2014;111:3877–82.
Article
CAS
PubMed Central
PubMed
Google Scholar
Delihas N. Small mobile sequences in bacteria display diverse structure/function motifs. Mol Microbiol. 2008;67:475–81.
Article
CAS
PubMed Central
PubMed
Google Scholar
Levin HL, Moran JV. Dynamic interactions between transposable elements and their hosts. Nat Rev Gen. 2011;12:615–27.
Article
CAS
Google Scholar
Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol. 2014;65:505–30.
Article
CAS
PubMed
Google Scholar
Miller DW, Miller LK. A virus mutant with an insertion of a copia-like transposable element. Nature. 1982;299:562–4.
Article
CAS
PubMed
Google Scholar
Fraser MJ, Smith GE, Summers MD. Acquisition of host cell DNA sequences by Baculoviruses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses. J Virol. 1983;47:287–300.
CAS
PubMed Central
PubMed
Google Scholar
Jehle JA, Fritsch E, Nickel A, Huber J, Backhaus H. TC14.7: A novel lepidopteran transposon found in Cydia pomonella granulosis virus. Virology. 1995;207:369–79.
Article
CAS
PubMed
Google Scholar
Piskurek O, Okada N. Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. Proc Natl Acad Sci. 2007;104:12046–51.
Article
CAS
PubMed Central
PubMed
Google Scholar
Filée J, Siguier P, Chandler M. I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses. Trends Genet. 2007;23:10–5.
Article
PubMed
Google Scholar
Marquez CP, Pritham EJ. Phantom, a new subclass of Mutator DNA transposons found in insect viruses and widely distributed in animals. Genetics. 2010;185:1507–17.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dupuy C, Periquet G, Serbielle C, Bézier A, Louis F, Drezen JM. Transfer of a chromosomal Maverick to endogenous bracovirus in a parasitoid wasp. Genetica. 2011;139:489–96.
Article
CAS
PubMed
Google Scholar
Piégu B, Guizard S, Spears T, Cruaud C, Couloux A, Bideshi DK, et al. Complete genome sequence of invertebrate iridescent virus 22 isolated from a blackfly larva. J Gen Virol. 2013;94:2112–6.
Article
PubMed Central
PubMed
Google Scholar
Gilbert C, Chateigner A, Ernenwein L, Barbe V, Bézier A, Herniou EA, et al. Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons. Nat Commun. 2014;5:3348.
PubMed Central
PubMed
Google Scholar
Thomas J, Schaack S, Pritham EJ. Pervasive horizontal transfer of rolling-circle transposons among animals. Gen Biol Evol. 2010;2:656–64.
Article
Google Scholar
Xu A-j. Sun X-y, Petherbridge L, Zhao Y-g, Nair V, Cui Z-z. Functional evaluation of the role of reticuloendotheliosis virus long terminal repeat (LTR) integrated into the genome of a field strain of Marek’s disease virus. Virology. 2010;397:270–6.
Article
PubMed
Google Scholar
Colson P, De Lamballerie X, Yutin N, Asgari S, Bigot Y, Bideshi DK, et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol. 2013;158:2517–21.
Article
PubMed Central
PubMed
Google Scholar
Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, et al. The 1.2-megabase genome sequence of Mimivirus. Science. 2004;306:1344–50.
Article
CAS
PubMed
Google Scholar
Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci. 2014;111:4274–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Desnues C, La Scola B, Yutin N, Fournous G, Robert C, Azza S, et al. Provirophages and transpovirons as the diverse mobilome of giant viruses. Proc Natl Acad Sci. 2012;109:18078–83.
Article
CAS
PubMed Central
PubMed
Google Scholar
Santini S, Jeudy S, Bartoli J, Poirot O, Lescot M, Abergel C, et al. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci. 2013;110:10800–5.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ogata H, Raoult D, Claverie J-M. A new example of viral intein in Mimivirus. Virol J. 2005;2:8.
Article
PubMed Central
PubMed
Google Scholar
Filée J, Chandler M. Gene exchange and the origin of giant viruses. Intervirology. 2010;53:354–61.
Article
PubMed
Google Scholar
Filée J, Chandler M. Convergent mechanisms of genome evolution of large and giant DNA viruses. Res Microbiol. 2008;159:325–31.
Article
PubMed
Google Scholar
Fitzgerald LA, Graves MV, Li X, Feldblyum T, Nierman WC, Van Etten JL. Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64A. Virology. 2007;358:472–84.
Article
CAS
PubMed Central
PubMed
Google Scholar
Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science. 2013;341:281–6.
Article
CAS
PubMed
Google Scholar
Janicki M, Rooke R, Yang G. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chrom Res. 2011;19:787–808.
Article
CAS
PubMed
Google Scholar
NCBI’s conserved domain database. http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi.
Feschotte C, Mouches C. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol. 2000;17:730–7.
Article
CAS
PubMed
Google Scholar
Dufresne M, Hua-Van A, El Wahab HA, M’Barek SB, Vasnier C, Teysset L, et al. Transposition of a fungal miniature inverted-repeat transposable element through the action of a Tc1-like transposase. Genetics. 2007;175:441–52.
Article
CAS
PubMed Central
PubMed
Google Scholar
Miskey C, Papp B, Mátés L, Sinzelle L, Keller H, Izsvák Z, et al. The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends. Mol Cell Biol. 2007;27:4589–600.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yang G, Nagel DH, Feschotte C, Hancock CN, Wessler SR. Tuned for transposition: molecular determinants underlying the hyperactivity of a Stowaway MITE. Science. 2009;325:1391–4.
Article
CAS
PubMed
Google Scholar
Feschotte C, Swamy L, Wessler SR. Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics. 2003;163:747–58.
CAS
PubMed Central
PubMed
Google Scholar
Feschotte C, Osterlund MT, Peeler R, Wessler SR. DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs. Nucleic Acids Res. 2005;33:2153–65.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yuan Y-W, Wessler SR. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci. 2011;108:7884–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hickman AB, Chandler M, Dyda F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol. 2010;45:50–69.
Article
PubMed Central
PubMed
Google Scholar
Feschotte C. Merlin, a new superfamily of DNA transposons identified in diverse animal genomes and related to bacterial IS1016 sequences. Mol Biol Evol. 2004;21:1769–80.
Article
CAS
PubMed
Google Scholar
Shao H, Tu Z. Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics. 2001;159:1103–15.
CAS
PubMed Central
PubMed
Google Scholar
Yutin N, Wolf YI, Koonin EV. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology. 2014;466:38–52.
Article
PubMed
Google Scholar
The PSIPRED Protein Sequence Analysis Workbench. http://bioinf.cs.ucl.ac.uk/psipred/.
Claverie J-M, Abergel C. The concept of virus in the post-megavirus era. In: Witzany G, editor. Viruses: Essential Agents of Life. Dordrecht: Springer Netherlands; 2012. p. 187–202.
Chapter
Google Scholar
La Scola B, Audric S, Robert C, Jungang L, de Lamballerie X, Drancourt M, et al. A giant virus in amoebae. Science. 2003;299:2033.
Article
PubMed
Google Scholar
Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G, Espinosa L, et al. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci. 2009;106:21848–53.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fischer MG, Condit RC. Editorial introduction to “Giant Viruses” special issue of Virology. Virology. 2014;466–467:1–2.
Article
PubMed
Google Scholar
Chelikani V, Ranjan T, Kondabagil K. Revisiting the genome packaging in viruses with lessons from the “Giants”. Virology. 2014;466:15–26.
Article
PubMed
Google Scholar
Legendre M, Arslan D, Abergel C, Claverie J-M. Genomics of Megavirus and the elusive fourth domain of life. Communicative Integr Biol. 2012;5:102–6.
Article
CAS
Google Scholar
Forterre P, Krupovic M, Prangishvili D. Cellular domains and viral lineages. Trends Microbiol. 2014;22:554–8.
Article
CAS
PubMed
Google Scholar
Boyer M, Madoui M-A, Gimenez G, La Scola B, Raoult D. Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS ONE. 2010;5, e15530.
Article
CAS
PubMed Central
PubMed
Google Scholar
Williams TA, Embley TM, Heinz E. Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses. PLoS ONE. 2011;6, e21080.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nasir A, Kim KM, Caetano-Anollés G. Viral evolution: primordial cellular origins and late adaptation to parasitism. Mobile Genetic Elements. 2012;2:247–52.
Article
PubMed Central
PubMed
Google Scholar
Krupovic M, Koonin EV. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat Rev Microbiol. 2015;13:105–15.
Article
CAS
PubMed
Google Scholar
Moniruzzaman M, LeCleir GR, Brown CM, Gobler CJ, Bidle KD, Wilson WH, et al. Genome of brown tide virus (AaV), the little giant of the Megaviridae, elucidates NCLDV genome expansion and host–virus coevolution. Virology. 2014;466:60–70.
Article
PubMed
Google Scholar
Forterre P. Giant viruses: conflicts in revisiting the virus concept. Intervirology. 2010;53:362–78.
Article
PubMed
Google Scholar
Filee J. Route of NCLDV evolution: the genomic accordion. Curr Opin Virol. 2013;3:595–9.
Article
CAS
PubMed
Google Scholar
Yutin N, Koonin EV. Pandoraviruses are highly derived phycodnaviruses. Biol Direct. 2013;8:25.
Article
PubMed Central
PubMed
Google Scholar
Koonin EV, Krupovic M, Yutin N. Evolution of double‐stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Ann N Y Acad Sci. 2015;1341:10–24.
Article
CAS
PubMed Central
PubMed
Google Scholar
Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Gen. 2008;9:605–18.
Article
CAS
Google Scholar
Moran Y, Fredman D, Szczesny P, Grynberg M, Technau U. Recurrent horizontal transfer of bacterial toxin genes to eukaryotes. Mol Biol Evol. 2012;29:2223–30.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gilbert C, Cordaux R. Horizontal transfer and evolution of prokaryote transposable elements in eukaryotes. Gen Biol Evol. 2013;5:822–32.
Article
Google Scholar
Silva JC, Bastida F, Bidwell SL, Johnson PJ, Carlton JM. A potentially functional mariner transposable element in the protist Trichomonas vaginalis. Mol Biol Evol. 2005;22:126–34.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pritham EJ, Feschotte C, Wessler SR. Unexpected diversity and differential success of DNA transposons in four species of Entamoeba protozoans. Mol Biol Evol. 2005;22:1751–63.
Article
CAS
PubMed
Google Scholar
Feschotte C, Wessler SR. Mariner-like transposases are widespread and diverse in flowering plants. Proc Natl Acad Sci. 2002;99:280–5.
Article
CAS
PubMed Central
PubMed
Google Scholar
Daboussi M-J, Capy P. Transposable elements in filamentous fungi. Annu Rev Microbiol. 2003;57:275–99.
Article
CAS
PubMed
Google Scholar
Plasterk RH, Izsvák Z, Ivics Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 1999;15:326–32.
Article
CAS
PubMed
Google Scholar
Robertson HM. Evolution of DNA transposons in eukaryotes. In: Mobile II DNA, editor. Edited by Craig NL, Craigie R, Gellert M, Lambowitz AM. Washington, DC: ASM Press; 2002. p. 1093–110.
Google Scholar
Filée J, Siguier P, Chandler M. Insertion sequence diversity in Archaea. Microbiol Mol Biol Rev. 2007;71:121–57.
Article
PubMed Central
PubMed
Google Scholar
Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014;38:865–91.
Article
CAS
PubMed
Google Scholar
Bertelli C, Greub G. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms. Front Cell Infect Microbiol. 2012;2:110.
Article
PubMed Central
PubMed
Google Scholar
Thomas V, Greub G. Amoeba/amoebal symbiont genetic transfers: lessons from giant virus neighbours. Intervirology. 2010;53:254–67.
Article
PubMed
Google Scholar
Moliner C, Fournier P-E, Raoult D. Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol Rev. 2010;34:281–94.
Article
CAS
PubMed
Google Scholar
Claverie J-M, Ogata H, Audic S, Abergel C, Suhre K, Fournier P-E. Mimivirus and the emerging concept of “giant” virus. Virus Res. 2006;117:133–44.
Article
CAS
PubMed
Google Scholar
Colson P, de Lamballerie X, Fournous G, Raoult D. Reclassification of giant viruses composing a fourth domain of life in the new order Megavirales. Intervirology. 2012;55:321–32.
Article
PubMed
Google Scholar
Koonin EV. Virology: Gulliver among the Lilliputians. Curr Biol. 2005;15:R167–9.
Article
CAS
PubMed
Google Scholar
Claverie J-M, Abergel C. Chapter two – open questions about giant viruses. Adv Virus Res. 2013;85:25–56.
Article
CAS
PubMed
Google Scholar
GenBank database. http://www.ncbi.nlm.nih.gov/genbank/.
Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21:i351–8.
Article
CAS
PubMed
Google Scholar
Homepage of the program RepeatMasker. http://www.repeatmasker.org/.
Source code for the program Cross_Match. http://www.phrap.org.
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic Acids Symposium Series; 1999. p. 95–8.
Google Scholar
The mfold web server. http://mfold.rna.albany.edu/?q=mfold.
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–15.
Article
CAS
PubMed Central
PubMed
Google Scholar
Homepage for MITE Analysis Kit (MAK). http://labs.csb.utoronto.ca/yang/MAK/.
Transposable element protein database. http://www.repeatmasker.org/RepeatProteinMask.html#database.
Notredame C, Higgins D, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302:205–17.
Article
CAS
PubMed
Google Scholar
Kemena C, Notredame C. Upcoming challenges for multiple sequence alignment methods in the high-throughput era. Bioinformatics. 2009;25:2455–65.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
Article
PubMed Central
PubMed
Google Scholar
McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16:404–5.
Article
CAS
PubMed
Google Scholar