His W. Unsere Korperform und das Physiologische Problem Ihrer Entstehung. Leipzig, Germany: F.C.W. Vogel; 1874.
Google Scholar
Pelham Jr RJ, Wang Y. High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol Biol Cell. 1999;10:935–45.
CAS
PubMed Central
PubMed
Google Scholar
Gjorevski N, Nelson CM. Mapping of mechanical strains and stresses around quiescent engineered three-dimensional epithelial tissues. Biophys J. 2012;103:152–62.
CAS
PubMed Central
PubMed
Google Scholar
Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A. 2003;100:1484–9.
CAS
PubMed Central
PubMed
Google Scholar
Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, McLean MA, Sligar SG, Chen CS, Ha T, et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature. 2010;466:263–6.
CAS
PubMed Central
PubMed
Google Scholar
Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL, Nelson WJ, Dunn AR. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc Natl Acad Sci U S A. 2012;109:12568–73.
CAS
PubMed Central
PubMed
Google Scholar
Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol. 2013;23:1024–30.
CAS
PubMed Central
PubMed
Google Scholar
Thompson D. On Growth and Form. 1942.
Google Scholar
Martinac B, Saimi Y, Kung C. Ion channels in microbes. Physiol Rev. 2008;88:1449–90.
CAS
PubMed Central
PubMed
Google Scholar
Arnadottir J, Chalfie M. Eukaryotic mechanosensitive channels. Annu Rev Biophys. 2010;39:111–37.
CAS
PubMed
Google Scholar
Kloda A, Martinac B. Mechanosensitive channels in archaea. Cell Biochem Biophys. 2001;34:349–81.
CAS
PubMed
Google Scholar
du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P, Ladoux B. Force mapping in epithelial cell migration. Proc Natl Acad Sci U S A. 2005;102:2390–5.
PubMed Central
PubMed
Google Scholar
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.
CAS
PubMed
Google Scholar
Vogel V, Sheetz MP. Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr Opin Cell Biol. 2009;21:38–46.
CAS
PubMed Central
PubMed
Google Scholar
Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell MJ. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol. 1997;137:231–45.
CAS
PubMed Central
PubMed
Google Scholar
Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, Sheetz MP. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell. 2006;127:1015–26.
CAS
PubMed Central
PubMed
Google Scholar
del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. Stretching single talin rod molecules activates vinculin binding. Science. 2009;323:638–41.
PubMed
Google Scholar
Mitrossilis D, Fouchard J, Pereira D, Postic F, Richert A, Saint-Jean M, Asnacios A. Real-time single-cell response to stiffness. Proc Natl Acad Sci U S A. 2010;107:16518–23.
CAS
PubMed Central
PubMed
Google Scholar
Masters TA, Pontes B, Viasnoff V, Li Y, Gauthier NC. Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proc Natl Acad Sci U S A. 2013;110:11875–80.
CAS
PubMed Central
PubMed
Google Scholar
Desprat N, Supatto W, Pouille PA, Beaurepaire E, Farge E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev Cell. 2008;15:470–7.
CAS
PubMed
Google Scholar
Roca-Cusachs P, del Rio A, Puklin-Faucher E, Gauthier NC, Biais N, Sheetz MP. Integrin-dependent force transmission to the extracellular matrix by alpha-actinin triggers adhesion maturation. Proc Natl Acad Sci U S A. 2013;110:E1361–70.
CAS
PubMed Central
PubMed
Google Scholar
Luckey TD. Introduction to intestinal microecology. Am J Clin Nutr. 1972;25:1292–4.
CAS
PubMed
Google Scholar
Human Microbiome Project C. A framework for human microbiome research. Nature. 2012;486:215–21.
Google Scholar
Biais N, Higashi DL, Brujic J, So M, Sheetz MP. Force-dependent polymorphism in type IV pili reveals hidden epitopes. Proc Natl Acad Sci U S A. 2010;107:11358–63.
CAS
PubMed Central
PubMed
Google Scholar
Howie HL, Glogauer M, So M. The N. gonorrhoeae type IV pilus stimulates mechanosensitive pathways and cytoprotection through a pilT-dependent mechanism. PLoS Biol. 2005;3:e100.
PubMed Central
PubMed
Google Scholar
Lee SW, Higashi DL, Snyder A, Merz AJ, Potter L, So M. PilT is required for PI(3,4,5)P3-mediated crosstalk between Neisseria gonorrhoeae and epithelial cells. Cell Microbiol. 2005;7:1271–84.
CAS
PubMed
Google Scholar
Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature. 2008;453:51–5.
PubMed
Google Scholar
Ruprecht V, Wieser S, Callan-Jones A, Smutny M, Morita H, Sako K, Barone V, Ritsch-Marte M, Sixt M, Voituriez R, et al. Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell. 2015;160:673–85.
CAS
PubMed Central
PubMed
Google Scholar
Liu YJ, Le Berre M, Lautenschlaeger F, Maiuri P, Callan-Jones A, Heuze M, Takaki T, Voituriez R, Piel M. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell. 2015;160:659–72.
CAS
PubMed
Google Scholar
Lammermann T, Sixt M. Mechanical modes of 'amoeboid' cell migration. Curr Opin Cell Biol. 2009;21:636–44.
PubMed
Google Scholar
Hawkins RJ, Piel M, Faure-Andre G, Lennon-Dumenil AM, Joanny JF, Prost J, Voituriez R. Pushing off the walls: a mechanism of cell motility in confinement. Phys Rev Lett. 2009;102:058103.
CAS
PubMed
Google Scholar
Tozluoglu M, Tournier AL, Jenkins RP, Hooper S, Bates PA, Sahai E. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat Cell Biol. 2013;15:751–62.
CAS
PubMed
Google Scholar
Hawkins RJ, Poincloux R, Benichou O, Piel M, Chavrier P, Voituriez R. Spontaneous contractility-mediated cortical flow generates cell migration in three-dimensional environments. Biophys J. 2011;101:1041–5.
CAS
PubMed Central
PubMed
Google Scholar
Bergert M, Erzberger A, Desai RA, Aspalter IM, Oates AC, Charras G, Salbreux G, Paluch EK. Force transmission during adhesion-independent migration. Nat Cell Biol. 2015;17:524–9.
CAS
PubMed
Google Scholar
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Molecular Biology of the Cell, 4th edn: Taylor and Francis Group; 2002.
Pelham Jr RJ, Wang Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A. 1997;94:13661–5.
CAS
PubMed Central
PubMed
Google Scholar
Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol. 2001;3:466–72.
CAS
PubMed
Google Scholar
Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol. 2001;153:1175–86.
CAS
PubMed Central
PubMed
Google Scholar
Lo CM, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate. Biophys J. 2000;79:144–52.
CAS
PubMed Central
PubMed
Google Scholar
Huxley AF, Niedergerke R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954;173:971–3.
CAS
PubMed
Google Scholar
Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318.
CAS
PubMed
Google Scholar
Choquet D, Felsenfeld DP, Sheetz MP. Extracellular matrix rigidity causes strengthening of integrin- cytoskeleton linkages. Cell. 1997;88:39–48.
CAS
PubMed
Google Scholar
Kong F, Garcia AJ, Mould AP, Humphries MJ, Zhu C. Demonstration of catch bonds between an integrin and its ligand. J Cell Biol. 2009;185:1275–84.
CAS
PubMed Central
PubMed
Google Scholar
Schoen I, Pruitt BL, Vogel V. The Yin-Yang of Rigidity Sensing: How Forces and Mechanical Properties Regulate the Cellular Response to Materials. Annu Rev Mater Res. 2013;43:589–618.
CAS
Google Scholar
Baumgart E. Stiffness--an unknown world of mechanical science? Injury. 2000;31.
Gardel ML, Kasza KE, Brangwynne CP, Liu J, Weitz DA. Chapter 19: Mechanical response of cytoskeletal networks. Methods Cell Biol. 2008;89:487–519.
CAS
PubMed Central
PubMed
Google Scholar
Box G, Draper NR: Empirical model-building and response surfaces: John Wiley & Sons; 1987.
Guillot C, Lecuit T. Mechanics of Epithelial Tissue Homeostasis and Morphogenesis. Science. 2013;340:1185–9.
CAS
PubMed
Google Scholar
Vogel V. Mechanotransduction involving multimodular proteins: Converting force into biochemical signals. Annu Rev Bioph Biom. 2006;35:459–88.
CAS
Google Scholar
Chen JC CA, Jacobs CR: Cellular and Molecular Mechanotransduction in Bone. In: Osteoporosis: Fourth Edition. Edited by Marcus R FD, Demptser DW, Luckey M, Cauley JA: Elsevier; 2013: 453–475.
Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Bio. 2006;7:265–75.
CAS
Google Scholar
Brown AEX, Discher DE. Conformational Changes and Signaling in Cell and Matrix Physics. Curr Biol. 2009;19:R781–9.
CAS
PubMed Central
PubMed
Google Scholar
Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM. Nanoscale architecture of integrin-based cell adhesions. Nature. 2010;468:580–U262.
CAS
PubMed Central
PubMed
Google Scholar
Dumbauld DW, Lee TT, Singh A, Scrimgeour J, Gersbach CA, Zamir EA, Fu JP, Chen CS, Curtis JE, Craig SW, et al. How vinculin regulates force transmission. Proc Natl Acad Sci U S A. 2013;110:9788–93.
CAS
PubMed Central
PubMed
Google Scholar
Nelson WJ, Dickinson DJ, Weis WI. Roles of Cadherins and Catenins in Cell Cell Adhesion and Epithelial Cell Polarity. Prog Mol Biol Transl. 2013;116:3–23.
CAS
Google Scholar
Baneyx G, Baugh L, Vogel V. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc Natl Acad Sci U S A. 2002;99:5139–43.
CAS
PubMed Central
PubMed
Google Scholar
Zhong CL, Chrzanowska-Wodnicka M, Brown J, Shaub A, Belkin AM, Burridge K. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biology. 1998;141:539–51.
CAS
Google Scholar
Rudnicki MS, Cirka HA, Aghvami M, Sander EA, Wen Q, Billiar KL. Nonlinear Strain Stiffening Is Not Sufficient to Explain How Far Cells Can Feel on Fibrous Protein Gels. Biophys J. 2013;105:11–20.
CAS
PubMed Central
PubMed
Google Scholar
Neuman KC, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods. 2008;5:491–505.
CAS
PubMed Central
PubMed
Google Scholar
Van Vliet KJ, Bao G, Suresh S. The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater. 2003;51:5881–905.
Google Scholar
Taylor RE, Mukundan V, Pruitt BL. Tools for Studying Biomechanical Interactions in Cells. In: Mechanobiology of Cell-Cell and Cell-Matrix Interactions. 2011. p. 233–65.
Google Scholar
Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–43.
CAS
PubMed
Google Scholar
Rehfeldt F, Engler AJ, Eckhardt A, Ahmed F, Discher DE. Cell responses to the mechanochemical microenvironment - Implications for regenerative medicine and drug delivery. Adv Drug Deliver Rev. 2007;59:1329–39.
CAS
Google Scholar
Kaliman S, Jayachandran C, Rehfeldt F, Smith A-S. Novel Growth Regime of MDCK II Model Tissues on Soft Substrates. Biophys J. 2014;106:L25–8.
CAS
PubMed Central
PubMed
Google Scholar
Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, Pajerowski JD, Spinler KR, Shin J-W, Tewari M, et al. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation. Science. 2013;341:6149.
Google Scholar
Pellegrin S, Mellor H. Actin stress fibres. J Cell Sci. 2007;120:3491–9.
CAS
PubMed
Google Scholar
Rehfeldt F, Brown AEX, Raab M, Cai SS, Zajac AL, Zemel A, Discher DE. Hyaluronic acid matrices show matrix stiffness in 2D and 3D dictates cytoskeletal order and myosin-II phosphorylation within stem cells. Integr Biol-UK. 2012;4:422–30.
CAS
Google Scholar
Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A. 1997;94:849–54.
CAS
PubMed Central
PubMed
Google Scholar
Herrmann H, Aebi U. Intermediate filaments: Molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu Rev Biochem. 2004;73:749–89.
CAS
PubMed
Google Scholar
Zemel A, Rehfeldt F, Brown AEX, Discher DE, Safran SA. Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat Phys. 2010;6:468–73.
CAS
PubMed Central
PubMed
Google Scholar
Zemel A, Rehfeldt F, Brown AEX, Discher DE, Safran SA. Cell shape, spreading symmetry, and the polarization of stress-fibers in cells. J Phys-Condens Mat. 2010;22:19.
Google Scholar
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 2006;126:677–89.
CAS
PubMed
Google Scholar
Yoshikawa HY, Kawano T, Matsuda T, Kidoaki S, Tanaka M. Morphology and Adhesion Strength of Myoblast Cells on Photocurable Gelatin under Native and Non-native Micromechanical Environments. J Phys Chem B. 2013;117:4081–8.
CAS
PubMed
Google Scholar
Scherge M, Gorb SN. Biological micro- and nanotribology: nature's solutions. Berlin, New York: Springer; 2001.
Google Scholar
Ladoux B, Nicolas A. Physically based principles of cell adhesion mechanosensitivity in tissues. Rep Prog Phys. 2012;75:116601.
PubMed
Google Scholar
Kendall K, Kendall M, Rehfeldt F. Adhesion of cells, viruses and nanoparticles. Dordrecht Heidelberg London New York: Springer; 2011.
Google Scholar
Loskill P, Puthoff J, Wilkinson M, Mecke K, Jacobs K, Autumn K. Macroscale adhesion of gecko setae reflects nanoscale differences in subsurface composition. J R Soc Interface. 2013;10:20120587.
PubMed Central
PubMed
Google Scholar
Israelachvili J. Intermolecular and surface forces. London: Academic Press; 1992.
Google Scholar
Leckband D, Israelachvili J. Intermolecular forces in biology. Quart Rev Biophys. 2001;34:105–267.
CAS
Google Scholar
Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B, McGuiggan P, Autumn K, Israelachvili J. Adhesion and friction in gecko toe attachment and detachment. Proc Natl Acad Sci U S A. 2006;103:19320–5.
CAS
PubMed Central
PubMed
Google Scholar
Izadi H, Stewart KME, Penlidis A. Role of contact electrification and electrostatic interactions in gecko adhesion. J R Soc Interface. 2014;11:20140371.
PubMed
Google Scholar
McGonigle DF, Jackson CW, Davidson JL. Triboelectrification of houseflies (Musca domestica L.) walking on synthetic dielectric surfaces. J Electrostatics. 2002;54:167–77.
Google Scholar
Ghazi-Bayat A, Hasenfuss I. On the origin of the adhesive fluid of the tarsal adhesive pads in Pentatomidae (Heteroptera). Zool Anz. 1980;204:13–8.
Google Scholar
Federle W, Riehle M, Curtis ASG, Full RJ. An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol. 2002;42:1100–6.
PubMed
Google Scholar
Edwards JS, Tarkanian M. The adhesive pads of Heteroptera: a re-examination. Proc R Entom Soc London A. 1970;45:1–5.
Google Scholar
Emerson SB, Diehl D. Toe pad morphology and mechanisms of sticking in frogs. Biol J Linn Soc. 1980;13:199–216.
Google Scholar
Peattie AM, Dirks J-H, Henriques S, Federle W. Arachnids secrete a fluid over their adhesive pads. PLoS One. 2011;6, e20485.
CAS
PubMed Central
PubMed
Google Scholar
Labonte D, Federle W: Scaling and biomechanics of surface attachment in climbing animals. Phil Trans R Soc B 2015;20140027.
Guertin DA, Sabatini DM. Cell size control. In: eLS. Chichester: John Wiley & Sons Ltd; 2006.
Google Scholar
Crisp DJ, Walker G, Young GA, Yule AB. Adhesion and Substrate Choice in Mussels and Barnacles. J Colloid Interf Sci. 1985;104:40–50.
Google Scholar
Aldred N, Clare AS. The adhesive strategies of cyprids and development of barnacle-resistant marine coatings. Biofouling. 2008;24:351–63.
CAS
PubMed
Google Scholar
Smith AM. Negative-Pressure Generated by Octopus Suckers - a Study of the Tensile-Strength of Water in Nature. J Exp Biol. 1991;157:257–71.
Google Scholar
Sackmann E, Smith A-S. Physics of cell adhesion: some lessons from cell-mimetic systems. Soft Matt. 2014;10:1644–59.
CAS
Google Scholar
Bell GI, Dembo M, Bongrand P. Cell adhesion, Competition between nonspecific repulsion and specific bonding. Biophys J. 1984;45:1051–64.
CAS
PubMed Central
PubMed
Google Scholar
Gingell D, Todd I. Red blood cell adhesion, II. Interferometric examination of the interaction with hydrocarbon oil and glass. J Cell Sci. 1980;41:135–49.
CAS
PubMed
Google Scholar
Sugimoto Y. Effect on the adhesion and locomotion of mouse fibroblasts by their interacting with differently charged substrates: A quantitative study by ultrastructural method. Exp Cell Res. 1981;135:39–45.
CAS
PubMed
Google Scholar
Whitney HM, Federle W. Biomechanics of plant-insect interactions. Curr Opin Plant Biol. 2013;16:105–11.
PubMed
Google Scholar
Stork NE. The Adherence of Beetle Tarsal Setae to Glass. J Nat Hist. 1983;17:583–97.
Google Scholar
Bongrand P: Adhesion of cells. In: Handbook of Biological Physics. Edited by Lipowsky R, Sackmann E, vol. 1: Elsevier Science B.V.; 1995: Chapter 16, 755–803.
Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci U S A. 2003;100:10603–6.
CAS
PubMed Central
PubMed
Google Scholar
Hui C-Y, Glassmaker NJ, Tang T, Jagota A. Design of biomimetic fibrillar interfaces: 2, Mechanics of enhanced adhesion. J R Soc Interface. 2004;1:35–48.
PubMed Central
PubMed
Google Scholar
Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485–92.
CAS
PubMed Central
PubMed
Google Scholar
Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol. 2001;3:466–72.
CAS
PubMed
Google Scholar
Hui C-Y, Glassmaker NJ, Jagota A. How compliance compensates for surface roughness in fibrillar adhesion. J Adhesion. 2005;81:699–721.
CAS
Google Scholar
Autumn K, Majidi C, Groff RE, Dittmore A, Fearing R. Effective elastic modulus of isolated gecko setal arrays. J Exp Biol. 2006;209:3558–68.
CAS
PubMed
Google Scholar
Labonte D, Federle W. Functionally different pads on the same foot allow control of attachment: stick insects have load-sensitive "heel" pads for friction and shear-sensitive "toe" pads for adhesion. PLoS One. 2013;8, e81943.
PubMed Central
PubMed
Google Scholar
Granger DN, Schmid-Schönbein GW: Physiology and pathophysiology of leukocyte adhesion. Oxford Oxford University Press; 1995.
Dufrêne Y (ed.): Life at the nanoscale: atomic force microscopy of live cells: Pan Stanford Publishing Pte. Ltd.; 2011.
Smith AM. Alternation between Attachment Mechanisms by Limpets in the Field. J Exp Mar Biol Ecol. 1992;160:205–20.
Google Scholar
Autumn K, Hsieh ST, Dudek DM, Chen J, Chitaphan C, Full RJ. Dynamics of geckos running vertically. J Exp Biol. 2006;209:260–72.
CAS
PubMed
Google Scholar
Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M. Frictional adhesion: a new angle on gecko attachment. J Exp Biol. 2006;209:3569–79.
CAS
PubMed
Google Scholar
Bullock J, Drechsler P, Federle W. Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J Exp Biol. 2008;211:3333–43.
PubMed
Google Scholar
Autumn K, Hansen W. Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J Comp Physiol A. 2006;192:1205–12.
Google Scholar
Federle W, Brainerd EL, McMahon TA, Hölldobler B. Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Natl Acad Sci U S A. 2001;98:6215–20.
CAS
PubMed Central
PubMed
Google Scholar
Dirks J-H, Li M, Kabla A, Federle W. In vivo dynamics of the internal fibrous structure in smooth adhesive pads of insects. Acta Biomater. 2012;8:2730–6.
PubMed
Google Scholar
Endlein T, Federle W. Rapid preflexes in smooth adhesive pads of insects prevent sudden detachment. P Roy Soc B-Biol Sci. 2013;280:1757.
Google Scholar
Ezratty EJ, Bertaux C, Marcantonio EE, Gundersen GG. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J Cell Biol. 2009;187:733–47.
CAS
PubMed Central
PubMed
Google Scholar
Choquet D, Felsenfeld DP, Sheetz MP. Extracellular matrix rigidity causes strengthening of Integrin–cytoskeleton linkages. Cell. 1997;88:39–48.
CAS
PubMed
Google Scholar
Stehbens SJ, Paszek M, Pemble H, Ettinger A, Gierke S, Wittmann T. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover. Nat Cell Biol. 2014;16:558–70.
Google Scholar
Wang N, Butler J, Ingber D. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993;260:1124–7.
CAS
PubMed
Google Scholar
Endlein T, Federle W. Rapid preflexes in smooth adhesive pads of insects prevent sudden detachment. Proc R Soc B. 2013;280:20122868.
PubMed Central
PubMed
Google Scholar
Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an Mdia1-dependent and Rock-independent mechanism. J Cell Biol. 2001;153:1175–86.
CAS
PubMed Central
PubMed
Google Scholar
Kaverina I, Krylyshkina O, Beningo K, Anderson K, Wang YL, Small JV. Tensile stress stimulates microtubule outgrowth in living cells. J Cell Sci. 2002;115:2283–91.
CAS
PubMed
Google Scholar
Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ. Adhesive force of a single gecko foot-hair. Nature. 2000;405:681–5.
CAS
PubMed
Google Scholar
Autumn K. Properties, principles, and parameters of the gecko adhesive system. In: Smith AM, Callow JA, editors. Biological Adhesives. Chapter 12th ed. Berlin, Heidelberg: Springer-Verlag; 2006. p. 225–56.
Google Scholar
Federle W, Baumgartner W, Hölldobler B. Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent. J Exp Biol. 2004;207:67–74.
PubMed
Google Scholar
Sun Y, Guo S, Walker G, Kavanagh C, Swain G. Surface elastic modulus of barnacle adhesive and release characteristics from silicone surfaces. Biofouling. 2004;20:279–89.
CAS
PubMed
Google Scholar
Gallant ND, Michael KE, García AJ. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol Biol Cell. 2005;16:4329–40.
CAS
PubMed Central
PubMed
Google Scholar
Takamizawa K, Shoda K, Matsuda T. Pull-out mechanical measurement of tissue-substrate adhesive strength: endothelial cell monolayer sheet formed on a thermoresponsive gelatin layer. J Biomater Sci Polym Ed. 2002;13:81–94.
CAS
PubMed
Google Scholar
Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M. Frictional adhesion: a new angle on gecko attachment. J Exp Biol. 2006;209:3569–79.
CAS
PubMed
Google Scholar
Federle W. Why are so many adhesive pads hairy? J Exp Biol. 2006;209:2611–21.
PubMed
Google Scholar