Jeffery WR. Cavefish as a model system in evolutionary developmental biology. Dev Biol. 2001;231(1):1–12.
Article
CAS
PubMed
Google Scholar
Soares D, Niemiller ML. Sensory adaptations of fishes to subterranean environments. Bioscience. 2013;63(4):274–83.
Article
Google Scholar
Jeffery WR. Regressive evolution in Astyanax cavefish. Ann Rev Gene. 2009;43:25–47.
Article
CAS
Google Scholar
Romero A. Cave biology, life in darkness. New York: Cambridge University Press; 2009.
Book
Google Scholar
Rohner N, Jarosz DF, Kowalko JE, Yoshizawa M, Jeffery WR, Borowsky RL, et al. Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science. 2013;342(6164):1372–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R, Chalopin D, et al. The cavefish genome reveals candidate genes for eye loss. Nat Commun. 2014;5:5307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shu S, Jiang W, Whitten T, Yang J, Chen X. Drought and China’s cave species. Science. 2013;340:272.
Article
CAS
PubMed
Google Scholar
Wang D, Chen Y. The origin and adaptive evolution of the genus Sinocyclocheilus. Acta Hydrobiol Sinica. 2000;24(6):630–4.
Google Scholar
Che J, Zhou WW, Hu JS, Yan F, Papenfuss TJ, Wake DB, et al. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc Natl Acad Sci U S A. 2010;107(31):13765.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison T, Copeland P, Kidd W, Yin A. Raising Tibet. Science. 1992;255(5052):1663–70.
Article
CAS
PubMed
Google Scholar
Zhisheng A, Kutzbach JE, Prell WL, Porter SC. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature. 2001;411(6833):62–6.
Article
CAS
PubMed
Google Scholar
Clark M, Schoenbohm L, Royden L, Whipple K, Burchfiel B, Zhang X, et al. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics. 2004;23(1):1006–29.
Article
Google Scholar
He DK, Chen YF. Biogeography and molecular phylogeny of the genus Schizothorax (Teleostei: Cyprinidae) in China inferred from cytochrome b sequences. J Biogeogr. 2006;33(8):1448–60.
Article
Google Scholar
Xiao H, Chen S, Liu Z, Zhang R, Li W, Zan R, et al. Molecular phylogeny of Sinocyclocheilus (Cypriniformes: Cyprinidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol. 2005;36(1):67–77.
Article
CAS
PubMed
Google Scholar
Zhao Y, Zhang C. Endemic fishes of Sinocyclocheilus (Cypriniformes: Cyprinidae) in China-species diversity, cave adaptation, systematics and zoogeography. Beijing: Science Press; 2009.
Google Scholar
Pasco-Viel E, Yang L, Veran M, Balter V, Mayden RL, Laudet V, et al. Stability versus diversity of the dentition during evolutionary radiation in cyprinine fish. Proc Biol Sci. 2014;281(1780):20132688.
Article
PubMed
PubMed Central
Google Scholar
Shi Y, Li J, Li B, Yao T, Wang S, Li S, et al. Uplift of the Qinghai-Xizang (Tibetan) plateau and east Asia environmental change during late Cenozoic. Acta Geogr Sin. 1999;54(1):10–20.
Google Scholar
Li J, Fang X. Uplift of the Tibetan Plateau and environmental changes. Chinese Sci Bull. 1999;44(23):2117–24.
Article
Google Scholar
Zhu H, Chen Y, Pu P, Wang S, Zhuang D. Environments and sedimentation of fault lakes, Yunnan province. Beijing: Science Press; 1989.
Google Scholar
Qi D, Guo S, Zhao X, Yang J, TANG W. Genetic diversity and historical population structure of Schizopygopsis pylzovi (Teleostei: Cyprinidae) in the Qinghai-Tibetan Plateau. Freshwater Biol. 2007;52(6):1090–104.
Article
CAS
Google Scholar
Zhao K, Duan Z, Peng Z, Gan X, Zhang R, He S, et al. Phylogeography of the endemic Gymnocypris chilianensis (Cyprinidae): sequential westward colonization followed by allopatric evolution in response to cyclical Pleistocene glaciations on the Tibetan Plateau. Mol Phylogenet Evol. 2011;59(2):303–10.
Article
PubMed
Google Scholar
Langecker TG, Neumann B, Hausberg C, Parzefall J. Evolution of the optical releasers for aggressive behavior in cave-dwelling Astyanax fasciatus (Teleostei, Characidae). Behav Processes. 1995;34(2):161–7.
Article
CAS
PubMed
Google Scholar
Tobler M, Coleman SW, Perkins BD, Rosenthal GG. Reduced opsin gene expression in a cave-dwelling fish. Biol Lett. 2010;6(1):98–101.
Article
PubMed
PubMed Central
Google Scholar
Strickler AG, Jeffery WR. Differentially expressed genes identified by cross-species microarray in the blind cavefish Astyanax. Integr Zool. 2009;4(1):99–109.
Article
PubMed
PubMed Central
Google Scholar
Meng F, Zhao Y, Postlethwait JH, Zhang C. Differentially-expressed genes identified in cavefish endemic to China. Curr Zool. 2013;59(2):170–4.
PubMed
PubMed Central
Google Scholar
Meng F, Braasch I, Phillips JB, Lin X, Titus T, Zhang C, et al. Evolution of the eye transcriptome under constant darkness in Sinocyclocheilus cavefish. Mol Bio Evol. 2013;30(7):1527–43.
Article
CAS
Google Scholar
Strickler AG, Byerly MS, Jeffery WR. Lens gene expression analysis reveals downregulation of the anti-apoptotic chaperone αA-crystallin during cavefish eye degeneration. Dev Genes Evol. 2007;217(11–12):771–82.
Article
CAS
PubMed
Google Scholar
Strickler AG, Yamamoto Y, Jeffery WR. The lens controls cell survival in the retina: evidence from the blind cavefish Astyanax. Dev Biol. 2007;311(2):512–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thanos S, Bohm MR, Meyer Zu Horste M, Prokosch-Willing V, Hennig M, Bauer D, et al. Role of crystallins in ocular neuroprotection and axonal regeneration. Prog Retin Eye Res. 2014;42C:145–61.
Article
Google Scholar
Hooven TA, Yamamoto Y, Jeffery WR. Blind cavefish and heat shock protein chaperones: a novel role for hsp90alpha in lens apoptosis. Int J Dev Biol. 2004;48(8–9):731–8.
Article
CAS
PubMed
Google Scholar
Protas ME, Hersey C, Kochanek D, Zhou Y, Wilkens H, Jeffery WR, et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet. 2005;38(1):107–11.
Article
PubMed
Google Scholar
Bilandžija H, Ma L, Parkhurst A, Jeffery WR. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One. 2013;8(11):e80823.
Article
PubMed
PubMed Central
Google Scholar
King RA, Mentink MM, Oetting WS. Non-random distribution of missense mutations within the human tyrosinase gene in type I (tyrosinase-related) oculocutaneous albinism. Mol Biol Med. 1991;8(1):19–29.
CAS
PubMed
Google Scholar
Hutton SM, Spritz RA. Comprehensive analysis of oculocutaneous albinism among non-Hispanic caucasians shows that OCA1 is the most prevalent OCA type. J Invest Dermatol. 2008;128(10):2442–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krauss J, Astrinides P, Frohnhöfer HG, Walderich B, Nüsslein-Volhard C. Transparent, a gene affecting stripe formation in Zebrafish, encodes the mitochondrial protein Mpv17 that is required for iridophore survival. Biol Open. 2013;2:703–10.
Article
PubMed
PubMed Central
Google Scholar
Frohnhöfer HG, Krauss J, Maischein HM, Nüsslein-Volhard C. Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish. Development. 2013;140(14):2997–3007.
Article
PubMed
PubMed Central
Google Scholar
Kondo S, Kuwahara Y, Kondo M, Naruse K, Mitani H, Wakamatsu Y, et al. The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor. Curr Biol. 2001;11(15):1202–6.
Article
CAS
PubMed
Google Scholar
Pulkkinen L, Gerecke D, Christiano A, Wagman D, Burgeson R, Uitto J. Cloning of the beta 3 chain gene (LAMB3) of human laminin 5, a candidate gene in junctional epidermolysis bullosa. Genomics. 1995;25(1):192–8.
Article
CAS
PubMed
Google Scholar
Mecklenbeck S, Hammami-Hauasli N, Höpfner B, Schumann H, Kramer A, Küster W, et al. Clustering of COL7A1 mutations in exon 73: implications for mutation analysis in dystrophic epidermolysis bullosa. J Invest Dermatol. 1999;112(3):398–400.
Article
CAS
PubMed
Google Scholar
Muller M, Smolders JW, Meyer zum Gottesberge AM, Reuter A, Zwacka RM, Weiher H, et al. Loss of auditory function in transgenic Mpv17-deficient mice. Hear Res. 1997;114(1–2):259–63.
Article
CAS
PubMed
Google Scholar
Dreyer B, Tranebjaerg L, Rosenberg T, Weston MD, Kimberling WJ, Nilssen O. Identification of novel USH2A mutations: implications for the structure of USH2A protein. Eur J Hum Genet. 2000;8(7):500–6.
Article
CAS
PubMed
Google Scholar
Baux D, Larrieu L, Blanchet C, Hamel C, Ben Salah S, Vielle A, et al. Molecular and in silico analyses of the full-length isoform of usherin identify new pathogenic alleles in Usher type II patients. Hum Mutat. 2007;28(8):781–9.
Article
CAS
PubMed
Google Scholar
Garcia-Garcia G, Aparisi MJ, Jaijo T, Rodrigo R, Leon AM, Avila-Fernandez A, et al. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations. Orphanet J Rare Dis. 2011;6:65.
Article
PubMed
PubMed Central
Google Scholar
Van WE, Pennings R, te Brinke H, Claassen A, Yntema H, Hoefsloot L, et al. Identification of 51 novel exons of the Usher syndrome type 2A (USH2A) gene that encode multiple conserved functional domains and that are mutated in patients with Usher syndrome type II. Am J Hum Genet. 2004;74(4):738–44.
Article
Google Scholar
Bhattacharya G, Kalluri R, Orten D, Kimberling W, Cosgrove D. A domain-specific usherin/collagen IV interaction may be required for stable integration into the basement membrane superstructure. J Cell Sci. 2004;15(117):233–42.
Article
Google Scholar
Niemiller ML, Higgs DM, Soares D. Evidence for hearing loss in amblyopsid cavefishes. Bio Lett. 2013;9(3):20130104.
Article
Google Scholar
Yoshizawa M, Gorički Š, Soares D, Jeffery WR. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol. 2010;20(18):1631–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
You X, Bian C, Zan Q, Xu X, Liu X, Chen J, et al. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nat Commun. 2014;5(5594):1–8.
CAS
Google Scholar
Cavallari N, Frigato E, Vallone D, Frohlich N, Lopez-Olmeda JF, Foa A, et al. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Bio. 2011;9(9):e1001142.
Article
CAS
Google Scholar
Duboue ER, Keene AC, Borowsky RL. Evolutionary convergence on sleep loss in cavefish populations. Curr Biol. 2011;21(8):671–6.
Article
CAS
PubMed
Google Scholar
Lowrey PL, Takahashi JS. Genetics of circadian rhythms in mammalian model organisms. Adv Genet. 2011;74:175–230.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riesch R, Tobler M, Plath M, Schlupp I. Offspring number in a livebearing fish (Poecilia mexicana, Poeciliidae): reduced fecundity and reduced plasticity in a population of cave mollies. Environ Biol Fish. 2009;84(1):89–94.
Article
Google Scholar
Pan X, Yang J, Chen X, Li Z. Broodstocks management, fecundity and the relationship between egg size and embryo survival ability of Sinocyclocheilus grahami. Zoological Res. 2011;32(2):196–203.
Google Scholar
Adham IM, Eck TJ, Mierau K, Müller N, Sallam MA, Paprotta I, et al. Reduction of spermatogenesis but not fertility in Creb3l4-deficient mice. Mol Cell Biol. 2005;25(17):7657–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto Y, Byerly MS, Jackman WR, Jeffery WR. Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Dev Biol. 2009;330(1):200–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1(1):18.
Article
PubMed
PubMed Central
Google Scholar
Li R, Fan W, Tian G, Zhu H, He L, Cai J, et al. The sequence and de novo assembly of the giant panda genome. Nature. 2010;463(7279):311–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, et al. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–7.
Article
CAS
PubMed
Google Scholar
Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009;Chapter 4:Unit 4.10. doi:10.1002/0471250953.bi0410s25.
PubMed
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110(1–4):462–7.
Article
CAS
PubMed
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elsik CG, Mackey AJ, Reese JT, Milshina NV, Roos DS, Weinstock GM. Creating a honey bee consensus gene set. Genome Biol. 2007;8(1):R13.
Article
PubMed
PubMed Central
Google Scholar
Cho YS, Hu L, Hou H, Lee H, Xu J, Kwon S, et al. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat Commun. 2013;4:2433.
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31(1):46–53.
Article
CAS
PubMed
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21.
Article
CAS
PubMed
Google Scholar
Guindon S, Delsuc F, Dufayard JF, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol. 2009;537:113–37.
Article
CAS
PubMed
Google Scholar
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–5.
Article
CAS
PubMed
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
Article
CAS
PubMed
Google Scholar
Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13(5):555–6.
CAS
PubMed
Google Scholar
Wikstrom N, Savolainen V, Chase MW. Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci. 2001;268(1482):2211–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang ZQ. A new Permian gnetalean cone as fossil evidence for supporting current molecular phylogeny. Ann Bot. 2004;94(2):281–8.
Article
PubMed
PubMed Central
Google Scholar
Benton MJ, Donoghue PC. Paleontological evidence to date the tree of life. Mol Bio Evol. 2007;24(1):26–53.
Article
CAS
Google Scholar
Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475(7357):493–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graur D, Li WH. Fundamentals of molecular evolution. Sunderland: Sinauer Associates; 2000.
Google Scholar
Philipp JK. Gnuplot in action: understanding data with graphs. New York: Manning Publications; 2009.
Google Scholar
De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22(10):1269–71.
Article
PubMed
Google Scholar
Hahn MW, De Bie T, Stajich JE, Nguyen C, Cristianini N. Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Res. 2005;15(8):1153–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Demuth JP, De Bie T, Stajich JE, Cristianini N, Hahn MW. The evolution of mammalian gene families. PLoS One. 2006;1:e85.
Article
PubMed
PubMed Central
Google Scholar
Sun YB, Zhou WP, Liu HQ, Irwin DM, Shen YY, Zhang YP. Genome-wide scans for candidate genes involved in the aquatic adaptation of dolphins. Genome Biol Evol. 2013;5(1):130–9.
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Nielsen R, Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol. 2005;22(12):2472–9.
Article
CAS
PubMed
Google Scholar
da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
CAS
Google Scholar