Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–94.
Article
CAS
PubMed
Google Scholar
Pennisi E. Armed and dangerous. Science. 2010;327:804–5.
Article
CAS
PubMed
Google Scholar
Liu W, Liu J, Triplett L, Leach JE, Wang GL. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol. 2014;52:213–41. doi:10.1146/annurev-phyto-102313-045926.
Article
CAS
PubMed
Google Scholar
Igarashi S, Utiamada CM, Igarashi LC, Kazuma AH, Lopes RS. Pyriculariaemtrigo. 1. Ocorrência de Pyricularia sp. no estado do Paraná. Fitopatol Bras. 1986;11:351–2.
Google Scholar
Goulart A, Paiva F, Mesquita N. Perdasentrigo (Triticum aestivum) causadas por Pyricularia oryzae. Fitopatol Bras. 1992;17:115–7.
Google Scholar
Goulart ACP, Sousa PG, Urashima AS. Damages in wheat caused by infection of Pyricularia grisea. Summa Phytopathol. 2007;33:358–63. doi:10.1590/S010054052007000400007.
Article
Google Scholar
Kohli MM, Mehta YR, Guzman E, De Viedma L, Cubilla LE. Pyricularia blast — a threat to wheat cultivation. Czech J Genet Plant Breed. 2011;47:S130–4.
Google Scholar
Klaubauf S, Tharreau D, Fournier E, et al. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud Mycol. 2014;79:85–120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ou SH. Rice diseases. Kew, UK: Commonwealth Mycological Institute, CAB; 1985.
Google Scholar
Kato H, Yamamoto M, Yamaguchi-Ozaki T, et al. Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. J Gen Plant Pathol. 2000;66:30–47.
Article
CAS
Google Scholar
Urashima AS, Igarashi S, Kato H. Host range, mating type and fertility of Pyricularia grisea from wheat in Brazil. Plant Disease. 1993;77:1211–6.
Article
Google Scholar
Tosa Y, Tamba H, Tanaka K, et al. Genetic analysis of host species specificity of Magnaporthe oryzae isolates from rice and wheat. Phytopathology. 2006;96:480–4.
Article
CAS
PubMed
Google Scholar
Prabhu AS, Filippi MC, Castro N. Pathogenic variation among isolates of Pyricularia oryzae infecting rice, wheat and grasses in Brazil. Trop Pest Manage. 1992;38:367–71. doi:10.1080/09670879209371729.
Article
Google Scholar
Urashima AS, Hashimoto Y, Le Don D, Kusaba M, Tosa Y, Nakayashiki H, Mayama S. Molecular analysis of the wheat blast population in Brazil with a homolog of retrotransposon MGR583. Jpn J Phytopathol. 1999;65:429–36. doi:10.3186/jjphytopath.65.429.
Article
CAS
Google Scholar
Farman ML. Pyricularia grisea isolates causing gray leaf spot on perennial ryegrass (Lolium perenne) in the United States: relationship to P. grisea isolates from other host plants. Phytopathology. 2002;92:245–54. doi:10.1094/PHYTO.2002.92.3.245.
Article
PubMed
Google Scholar
Faivre-Rampant O, Thomas J, Allegre M, Morel J-B, Tharreau D, Notteghem J-L, Lebrun M-H, Schaffrath U, Piffanelli P. Characterisation of the model system rice-Magnaporthe for the study of non-host resistance in cereals. New Phytol. 2008;180:899–910.
Article
CAS
PubMed
Google Scholar
Tufan HA, McGrann GR, Magusin A, Morel JB, Miché L, Boyd LA. Wheat blast: histopathology and transcriptome reprogramming in response to adapted and non-adapted Magnaporthe isolates. New Phytol. 2009;184:473–84.
Article
PubMed
Google Scholar
Maciel JLN, Ceresini PC, Castroagudin VL, Zala M, Kema GHJ, McDonald BA. Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology. 2014;104:95–107. doi:10.1094/PHYTO-11-12-0294-R.
Article
PubMed
Google Scholar
Chiapello H, Mallet L, Guérin C, Aguileta G, Amselem J, Kroj T, et al. Deciphering genome content and evolutionary relationships of isolates from the fungus Magnaporthe oryzae attacking different host plants. Genome Biol Evol. 2015;7:2896–912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida K, Saunders DG, Mitsuoka C, Natsume S, Kosugi S, Saitoh H, Inoue Y, Chuma I, Tosa Y, Cano LM, Kamoun S, Terauchi R. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics. 2016;18:370.
Article
Google Scholar
Igarashi S. Update on wheat blast (Pyricularia oryzae) in Brazil. In: Saunders D, editor. Proceedings of the International Conference – Wheat for the Nontraditional Warm Areas. Mexico DF, Mexico: CIMMYT; 1990. p. 480–3.
Google Scholar
Urashima AS. Blast. In: Bockus WW, Bowden RL, Hunger RM, Morrill WL, Murray TD, Smiley RW, editors. Compendium of wheat diseases and pests. Saint Paul, MN: American Phytopathological Society; 2010. p. 22–3.
Google Scholar
Malaker PK, Barma NC, Tewari TP, Collis WJ, Duveiller E, Singh PK, Joshi AK, Singh RP, Braun HJ, Peterson GL, Pedley KF, Farman ML, Valent B. First report of wheat blast caused by Magnaporthe oryzae pathotype Triticum in Bangladesh. Plant Disease. 2016; http://dx.doi.org/10.1094/PDIS-05-16-0666-PDN.
Callaway E, Devastating wheat fungus appears in Asia for first time. Nature 2016; 532:421-2. doi:10.1038/532421a.
Hossain A, da Silva JA T. Wheat production in Bangladesh: its future in the light of global warming. AoB Plants. 2013;5:pls042. doi:10.1093/aobpla/pls042.
Article
PubMed
Google Scholar
Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez R, de Vallavieilla-Pope C, Thomas J, Kamoun S, Bayles R, Uauy C, Saunders DGO. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol. 2015;16:23. doi:10.1186/s13059-015-0590-8.
Article
PubMed
PubMed Central
Google Scholar
Derevnina L, Michelmore RW. Wheat rusts never sleep but neither do sequencers: will pathogenomics transform the way plant diseases are managed? Genome Biol. 2015;16:44. doi:10.1186/s13059-015-0615-3.
Article
PubMed
PubMed Central
Google Scholar
Cruz CD, Kiyuna J, Bockus WW, Todd TC, Stack JP, Valent B. Magnaporthe oryzae conidia on basal wheat leaves as a potential source of wheat blast inoculum. Plant Pathol. 2015;64:1491–8.
Article
CAS
Google Scholar
Castroagudin VL, Moreira SI, Pereira DAS, Moreira SS, Brunner PC, Maciel JLN, Crous PW, McDonald B, Alves E, Ceresini PC. Wheat blast disease caused by Pyricularia graminis-tritici sp. nov. Persoonia. 2016;37:199–216. doi:10.3767/003158516×692149.
Google Scholar
Urashima AS, Lavorent NA, Goulart CP, Mehta YR. Resistance spectra of wheat cultivars and virulence diversity of Magnaporthe grisea isolates in Brazil. Fitopatologia Brasileira. 2004;29:511–8.
Article
Google Scholar
Urashima AS, Martins D, Bueno CRNC, Favaro DB, Arruda MA, Mehta YR. Triticale and barley: new hosts of Magnaporthe grisea in São Paulo, Brazil — relationship with blast of rice and wheat. In: Kawasaki S, editor. Rice blast. Berlin: Springer; 2004. p. 251–60.
Google Scholar
International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. doi:10.1126/science.1251788.
Article
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. doi:10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 2005;434:980–6.
Article
CAS
PubMed
Google Scholar
Anh VL, Anh NT, Tagle AG, Vy TT, Inoue Y, Takumi S, Chuma I, Tosa Y. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology. 2015;105:1568–72.
Article
PubMed
Google Scholar
Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubcovsky J, Jordan KW, Akhunov E, Chumley F, Baldelomar FD, Valent B. The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Sci. 2016;56:1–11. doi:10.2135/cropsci2015.07.0410.
Article
Google Scholar
Ha X, Koopmann B, von Tiedemann A. Wheat blast and Fusarium head blight display contrasting interaction patterns on ears of wheat genotypes differing in resistance. Phytopathology. 2016;106:270–81.
Article
PubMed
Google Scholar
Pagani AP, Dianese AC, Café Filho AC. Management of wheat blast with synthetic fungicides, partial resistance and silicate and phosphite minerals. Phys Chem Chem Phys. 2014;42:609–17. doi:10.1007/s12600-014-0401-x.
CAS
Google Scholar
Castroagudín VL, Ceresini PC, Oliveira SC, et al. Resistance to QoI fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. Phytopathology. 2015;104:284–94.
Article
Google Scholar
Ho WC, Ko WH. A simple method for obtaining single-spore isolates of fungi. Bot Bull Acad Sin. 1997;38:41–4.
Google Scholar
Partridge-Metz S, Chandra A. Culture media influence on vegetative growth and in vitro conidia production of Magnaporthe oryzae. J Cell Plant Sci. 2011;2:9–11.
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. doi:10.1186/gb-2013-14-4-r36.
Article
PubMed
PubMed Central
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotech. 2011;29:644–52.
Article
CAS
Google Scholar
Dobinson KF, Harris RE, Hamer JE. Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol Plant-Microbe Interact. 1993;6:114–26.
Article
CAS
PubMed
Google Scholar
Kang S, Sweigard JA, Valent B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact. 1995;8:939–48.
Article
CAS
PubMed
Google Scholar
Tosa Y, Uddin W, Viji G, Kang S, Mayama S. Comparative genetic analysis of Magnaporthe oryzae isolates causing gray leaf spot of perennial ryegrass turf in the United States and Japan. Plant Dis. 2007;91:517–24.
Article
CAS
Google Scholar
Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics. 2011;12:124. doi:10.1186/1471-2105-12-124.
Article
PubMed
PubMed Central
Google Scholar
Ranwez V, Harispe S, Delsuc F, Douzery EJ. MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons. PLoS One. 2011;6, e22594. doi:10.1371/journal.pone.0022594.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. doi:10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8. doi:10.1038/ng.806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.
Article
CAS
PubMed
Google Scholar