Sinkins SP, Gould F. Gene drive systems for insect disease vectors. Nat Rev Genet. 2006;7(6):427–35.
Article
CAS
PubMed
Google Scholar
Burt A. Heritable strategies for controlling insect vectors of disease. Philos Trans R Soc B Biol Sci. 2014;369(1656):20130432.
Article
Google Scholar
Esvelt KM, Smidler AL, Catteruccia F, Church GM. Concerning RNA-guided gene drives for the alteration of wild populations. Elife. 2014;3:e03401.
Champer J, Buchman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet. 2016;17(3):146–59.
Article
CAS
PubMed
Google Scholar
Gantz VM, Bier E. The dawn of active genetics. Bioessays. 2016;38(1):50–63.
Article
PubMed
Google Scholar
Alphey L. Can CRISPR-Cas9 gene drives curb malaria? Nat Biotechnol. 2016;34(2):149–50.
Article
CAS
PubMed
Google Scholar
Adelman ZN, Tu ZJ. Control of mosquito-borne infectious diseases: sex and gene drive. Trends Parasitol. 2016;32(3):219–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leftwich PT, Bolton M, Chapman T. Evolutionary biology and genetic techniques for insect control. Evol Appl. 2016;9(1):212–30.
Article
CAS
PubMed
Google Scholar
Craig GB, Hickey WA, van de Hey RC. An inherited male-producing factor in Aedes aegypti. Science. 1960;132:1887–9.
Article
PubMed
Google Scholar
Hickey WA, Craig GB. Genetic distortion of sex ratio in a mosquito, Aedes aegypti. Genetics. 1966;53:1177–96.
CAS
PubMed
PubMed Central
Google Scholar
Curtis CF. Possible use of translocations to fix desirable genes in insect pest populations. Nature. 1968;218:368–9.
Article
CAS
PubMed
Google Scholar
Hamilton WD. Extraordinary sex ratios. Science. 1967;156:477–88.
Article
CAS
PubMed
Google Scholar
Burt A, Trivers R. Genes in conflict. Cambridge: Belknap Press; 2006.
Book
Google Scholar
Stoddard BL. Homing endonuclease structure and function. Q Rev Biophys. 2005;38(1):49–95.
Article
CAS
PubMed
Google Scholar
Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci. 2003;270(1518):921–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.
Article
CAS
PubMed
Google Scholar
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.
Article
PubMed
Google Scholar
Simoni A, Siniscalchi C, Chan YS, Huen DS, Russell S, Windbichler N, et al. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster. Nucleic Acids Res. 2014;42(11):7461–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fauci AS, Morens DM. Zika Virus in the Americas - yet another Arbovirus threat. New Engl J Med. 2016;374(7):601–4.
Article
PubMed
Google Scholar
Deredec A, Burt A, Godfray HCJ. The population genetics of using homing endonuclease genes in vector and pest management. Genetics. 2008;179(4):2013–26.
Article
PubMed
PubMed Central
Google Scholar
Goddard MR, Burt A. Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci U S A. 1999;96(24):13880–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H, Ulge UY, et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature. 2011;473(7346):212–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR-Cas9 gene drive system-targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34(1):78–83.
Article
CAS
PubMed
Google Scholar
Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A. 2015;112(49):E6736–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burt A, Koufopanou V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr Opin Genet Dev. 2004;14(6):609–15.
Article
CAS
PubMed
Google Scholar
Koufopanou V, Goddard MR, Burt A. Adaptation for horizontal transfer in a homing endonuclease. Mol Biol Evol. 2002;19(3):239–46.
Article
CAS
PubMed
Google Scholar
Unckless RL, Messer PW, Connallon T, Clark AG. Modeling the manipulation of natural populations by the mutagenic chain reaction. Genetics. 2015;201(2):425–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Unckless RL, Clark AG, Messer PW. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics. 2017;205(2):827–41.
Article
PubMed
Google Scholar
Noble C, Olejarz J, Esvelt K, Church G, Nowak M. Evolutionary dynamics of CRISPR gene drives. Sci. Advances. 2017;3(4):e1601964.
Deredec A, Godfray HCJ, Burt A. Requirements for effective malaria control with homing endonuclease genes. Proc Natl Acad Sci U S A. 2011;108(43):E874–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marshall JM, Buchman A, Sánchez HM, Akbari OS. Overcoming evolved resistance to population-suppressing homing-based gene drives. Sci Rep-Uk. 2016;in press.
Molineaux L, Gramiccia G. The Garki Project. Geneva: World Health Organisation; 1980.
Google Scholar
Tuljapurkar S. Population dynamics in variable environments. Berlin: Springer-Verlag; 1990.
Book
Google Scholar
Stephens PA, Sutherland WJ, Freckleton RP. What is the Allee effect? Oikos. 1999;87(1):185–90.
Article
Google Scholar
Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED. Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol. 2002;39(1):162–72.
Article
PubMed
Google Scholar
White MT, Griffin JT, Churcher TS, Ferguson NM, Basanez MG, Ghani AC. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasites Vectors. 2011;4:153.
Article
PubMed
PubMed Central
Google Scholar
Muriu SM, Coulson T, Mbogo CM, Godfray HCJ. Larval density dependence in Anopheles gambiae s.s., the major African vector of malaria. J Anim Ecol. 2013;82(1):166–74.
Article
PubMed
Google Scholar
May RM. Stability and complexity in model ecosystems. Princeton: Princeton University Press; 1974.
Google Scholar
Alphey N, Bonsall MB. Interplay of population genetics and dynamics in the genetic control of mosquitoes. J R Soc Interface. 2014;11(93):20131071.
Article
PubMed
PubMed Central
Google Scholar
Anderson RM, May RM. Infectious diseases of humans. Oxford: Oxford University Press; 1991.
Google Scholar
Macdonald G. The epidemiology and control of malaria. Oxford: Oxford University Press; 1957.
Google Scholar
Smith DL, McKenzie FE. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malaria J. 2004;3:Art. No. 13.
Article
Google Scholar
Cook PE, McMeniman CJ, O'Neill SL. Modifying insect population age structure to control vector-borne disease. Adv Exp Med Biol. 2008;627:126–40.
Article
CAS
PubMed
Google Scholar
Hancock PA, Thomas MB, Godfray HCJ. An age-structured model to evaluate the potential of novel malaria-control interventions: a case study of fungal biopesticide sprays. Proc Biol Sci. 2009;276(1654):71–80.
Article
CAS
PubMed
Google Scholar
Koella JC, Lynch PA, Thomas MB, Read AF. Towards evolution-proof malaria control with insecticides. Evol Appl. 2009;2(4):469–80.
Article
PubMed
PubMed Central
Google Scholar
Lyimo EO, Koella JC. Relationship between body size of adult Anopheles gambiae s.1. and infection with the malaria parasite Plasmodium falciparum. Parasitology. 1992;104:233–7.
Article
PubMed
Google Scholar
Weterings E, Chen DJ. The endless tale of non-homologous end-joining. Cell Res. 2008;18(1):114–24.
Article
CAS
PubMed
Google Scholar
Yajima H, Fujisawa H, Nakajima NI, Hirakawa H, Jeggo PA, Okayasu R, et al. The complexity of DNA double strand breaks is a critical factor enhancing end-resection. DNA Repair. 2013;12(11):936–46.
Article
CAS
PubMed
Google Scholar
Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, et al. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science. 2015;347(6217):1258522.
Article
PubMed
Google Scholar
Beaghton A, Hammond A, Nolan T, Crisanti A, Godfray HCJ, Burt A. Requirements for driving anti-pathogen effector genes into populations of disease vectors by homing. Genetics. 2017;205:1587–96.
Article
PubMed
PubMed Central
Google Scholar
Huang YX, Magori K, Lloyd AL, Gould F. Introducing desirable transgenes into insect populations using Y-linked meiotic drive--a theoretical assessment. Evolution. 2007;61(4):717–26.
Article
PubMed
Google Scholar
Wu B, Luo LQ, Gao XJJ. Cas9-triggered chain ablation of cas9 as a gene drive brake. Nat Biotechnol. 2016;34(2):137–8.
Article
PubMed
PubMed Central
Google Scholar
North A, Burt A, Godfray HCJ. Modelling the spatial spread of a homing endonuclease gene in a mosquito population. J Appl Ecol. 2013;50(5):1216–25.
CAS
PubMed
PubMed Central
Google Scholar
Galizi R, Doyle LA, Menichelli M, Bernardini F, Deredec A, Burt A, et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat Commun. 2014;5:3977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galizi R, Hammond A, Kyrou K, Taxiarchi C, Bernardini F, O'Loughlin SM, et al. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci Rep. 2016;6:31139.
Windbichler N, Papathanos PA, Catteruccia F, Ranson H, Burt A, Crisanti A. Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucleic Acids Res. 2007;35(17):5922–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ovaskainen O, de Knegt HJ, del Mar Delgado M. Quantitative ecology and evolutionary biology. Oxford: Oxford University Press; 2016.
Book
Google Scholar
Fisher RA. The wave of advance of advantageous genes. Ann Hum Genet. 1937;7:355–69.
Google Scholar
Beaghton A, Beaghton PJ, Burt A. Gene drive through a landscape: Reaction-diffusion models of population suppression and elimination by a sex ratio distorter. Theor Popul Biol. 2016;108:51–69.
Article
PubMed
Google Scholar
Barton NH. The dynamics of hybrid zones. Heredity. 1979;43:341–59.
Article
Google Scholar
Eckhoff PA, Wenger EA, Godfray HCJ, Burt A. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc Natl Acad Sci U S A. 2017;114(2):E255–64.
Article
CAS
PubMed
Google Scholar
Esvelt K. Gene editing can drive science to openness. Nature. 2016;534(7606):153.
Article
CAS
PubMed
Google Scholar