Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50:839–66.
Article
Google Scholar
Davy SK, Allemand D, Weis VM. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev. 2012;76(2):229–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ainsworth TD, Heron SF, Ortiz JC, Mumby PJ, Grech A, Ogawa D, Eakin MC, Leggat W. Climate change disables coral bleaching protection on the Great Barrier Reef. Science. 2016;352(6283):338–42.
Article
CAS
PubMed
Google Scholar
Logan CA, Dunne JP, Eakin CM, Donner SD. Incorporating adaptive responses into future projections of coral bleaching. Glob Chang Biol. 2014;20(1):125–39.
Article
PubMed
Google Scholar
Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD, Schoepf V, McGinley M, Baumann J, Matsui Y. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Chang Biol. 2014;20(12):3823–33.
Article
PubMed
Google Scholar
Lesser MP. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol. 2006;68:253–78.
Article
CAS
PubMed
Google Scholar
Gates RD, Baghdasarian G, Muscatine L. Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull. 1992;182:324–32.
Article
Google Scholar
Lesser MP. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs. 1997;16:187–92.
Article
Google Scholar
Lesser MP. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr. 1996;41(2):271–83.
Article
CAS
Google Scholar
Silverstein RN, Cunning R, Baker AC. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Chang Biol. 2015;21(1):236–49.
Article
PubMed
Google Scholar
Baker AC, Starger CJ, McClanahan TR, Glynn PW. Coral reefs: corals’ adaptive response to climate change. Nature. 2004;430(7001):741.
Article
CAS
PubMed
Google Scholar
Tonk L, Bongaerts P, Sampayo EM, Hoegh-Guldberg O. SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef. BMC Ecol. 2013;13(1):1–9.
Article
Google Scholar
Mieog JC, Olsen JL, Berkelmans R, Bleuler-Martinez SA, Willis BL, van Oppen MJH. The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS One. 2009;4(7):e6364.
Article
PubMed
PubMed Central
Google Scholar
Stat M, Carter D, Hoegh-Guldberg O. The evolutionary history of Symbiodinium and scleractinian hosts—Symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol System. 2006;8(1):23–43.
Article
Google Scholar
Abrego D, Ulstrup KE, Willis BL, van Oppen MJH. Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc Biol Sci. 2008;275(1648):2273–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berkelmans R, van Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc Biol Sci. 2006;273(1599):2305–12.
Article
PubMed
PubMed Central
Google Scholar
Baird AH, Bhagooli R, Ralph PJ, Takahashi S. Coral bleaching: the role of the host. Trends Ecol Evol. 2009;24(1):16–20.
Article
PubMed
Google Scholar
Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R. Coral bleaching: the winners and the losers. Ecol Lett. 2001;4(2):122–31.
Article
Google Scholar
Cunning R, Yost DM, Guarinello ML, Putnam HM, Gates RD. Variability of symbiodinium communities in waters, sediments, and corals of thermally distinct reef pools in American Samoa. PLoS One. 2016;10(12):e0145099.
Article
Google Scholar
Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser. 2002;243:1–10.
Article
Google Scholar
Lesser MP. Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N, editors. Coral Reefs: An Ecosystem in Transition. New York: Springer; 2011. p. 405–19.
Chapter
Google Scholar
Weis VM. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol. 2008;211(Pt 19):3059–66.
Article
CAS
PubMed
Google Scholar
Richier S, Merle P-L, Furla P, Pigozzi D, Sola F, Allemand D. Characterization of superoxide dismutases in anoxia and hyperoxia tolerant symbiotic cnidarians. Biochim Biophys Acta. 2003;1621:84–91.
Article
CAS
PubMed
Google Scholar
Sunda W, Kieber DJ, Kiene RP, Huntsman S. An antioxidant function for DMS and DMSP in marine algae. Nature. 2002;418:317–20.
Article
CAS
PubMed
Google Scholar
Broadbent AD, Jones GB, Jones RJ. DMSP in corals and benthic algae from the Great Barrier Reef. Estuar Coast Shelf Sci. 2002;55(4):547–55.
Article
CAS
Google Scholar
Raina J-B, Tapiolas DM, Foret S, Lutz A, Abrego D, Ceh J, Seneca FO, Clode PL, Bourne DG, Willis BL, et al. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature. 2013;502(7473):677–80.
Article
CAS
PubMed
Google Scholar
Curson ARJ, Liu J, Bermejo Martínez A, Green RT, Chan Y, Carrión O, Williams BT, Zhang S, Yang G, Bulman Page PC, et al. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nat Microbiol. 2017;2:17009.
Article
CAS
PubMed
Google Scholar
Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, Matz MV. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol Ecol. 2013;22(16):4335–48.
Article
CAS
PubMed
Google Scholar
Madin JS, Baird AH, Dornelas M, Connolly SR. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol Lett. 2014;17(8):1008–15.
Article
PubMed
PubMed Central
Google Scholar
Leggat W, Seneca F, Wasmund K, Ukani L, Yellowlees D, Ainsworth TD. Differential responses of the coral host and their algal symbiont to thermal stress. PLoS One. 2011;6(10):e26687.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunn SR, Pernice M, Green K, Hoegh-Guldberg O, Dove SG. Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: are the batteries of the reef going to run out? PLoS One. 2012;7(7):e39024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hawkins TD, Krueger T, Becker S, Fisher P, Davy SK. Differential nitric oxide synthesis and host apoptotic events correlate with bleaching susceptibility in reef corals. Coral Reefs. 2014;33(1):141–53.
Article
Google Scholar
Ainsworth TD, Hoegh-Guldberg O, Heron SF, Skirving WJ, Leggat W. Early cellular changes are indicators of pre-bleaching thermal stress in the coral host. J Exp Mar Biol Ecol. 2008;364(2):63–71.
Article
Google Scholar
Schreiber U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Govindjee PG, editor. Chlorophyll a Fluorescence. Netherlands: Springer; 2004. p. 279–319.
Chapter
Google Scholar
Ralph PJ, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot. 2005;82:222–37.
Article
CAS
Google Scholar
Quigley KM, Davies SW, Kenkel CD, Willis BL, Matz MV, Bay LK. Deep-sequencing method for quantifying background abundances of Symbiodinium types: exploring the rare Symbiodinium biosphere in reef-building corals. PLoS One. 2014;9(4):e94297.
Article
PubMed
PubMed Central
Google Scholar
Thomas L, Kendrick GA, Kennington WJ, Richards ZT, Stat M. Exploring Symbiodinium diversity and host specificity in Acropora corals from geographical extremes of Western Australia with 454 amplicon pyrosequencing. Mol Ecol. 2014;23(12):3113–26.
Article
CAS
PubMed
Google Scholar
Pochon X, Pawlowski P, Zaninetti L, Rowan R. High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol. 2001;139:1069–78.
Article
Google Scholar
Deschaseaux ESM, Deseo MA, Shepherd KM, Jones GB, Harrison PL. Air blasting as the optimal approach for the extraction of antioxidants in coral tissue. J Exp Mar Biol Ecol. 2013;448:146–8.
Article
CAS
Google Scholar
Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res. 2006;89:27–41.
Article
CAS
PubMed
Google Scholar
Tapiolas DM, Motti CA, Holloway P, Boyle SG. High levels of acrylate in the Great Barrier Reef coral Acropora millepora. Coral Reefs. 2010;29(3):621–5.
Article
Google Scholar
Veal CJ, Holmes G, Nunez M, Hoegh-Guldberg O, Osborn J. A comparative study of methods for surface area and three dimensional shape measurement of coral skeletons. Limnol Oceanogr. 2010;8:241–53.
Article
Google Scholar
Stimson J, Kinzie RA. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol. 1991;153:63–74.
Article
Google Scholar
Tapiolas DM, Raina JB, Lutz A, Willis BL, Motti CA. Direct measurement of dimethylsulfoniopropionate (DMSP) in reef-building corals using quantitative nuclear magnetic resonance (qNMR) spectroscopy. J Exp Mar Biol Ecol. 2013;443:85–9.
Article
CAS
Google Scholar
Akoka S, Trierweiler M. Improvement of the ERETIC method by digital synthesis of the signal and addition of a broadband antenna inside the NMR probe. Instrum Sci Technol. 2002;30(1):21–9.
Article
Google Scholar
O'Neil MJ. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 14th ed. New Jersey: Whitehouse Station; 2006. p. 1055.
Google Scholar
Clarke KR, Gorley RN. PRIMER v6: user manual/tutorial. Plymouth: PRIMER-E Ltd.; 2006.
Google Scholar
Anderson MJ, Gorley RN, Clarke KR. PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth: PRIMER-E Ltd.; 2008.
Google Scholar
Underwood AJ. Experiments in Ecology: Their Logical Design and Interpretation using Analysis of Variance. Cambridge: Cambridge University Press; 1997. p. 504.
Google Scholar
R Foundation for Statistical Computing. A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2008.
Google Scholar
Warner ME, Fitt WK, Schmidt GW. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci. 1999;96:8007–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher P, LaJuenesse TC, Pantos O, et al. Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol. 2009;373(2):102–10.
Article
Google Scholar
Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U. Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ. 1998;21(12):1219–30.
Article
CAS
Google Scholar
Deschaseaux ESM, Jones GB, Deseo MA, Shepherd KM, Kiene RP, Swan HB, Harrison PL, Eyre BD. Effects of environmental factors on dimethylated sulfur compounds and their potential role in the antioxidant system of the coral holobiont. Limnol Oceanogr. 2014;59(3):758–68.
Article
CAS
Google Scholar
Krueger T, Hawkins TD, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK. Differential coral bleaching – Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp Biochem Physiol A Mol Integr Physiol. 2015;190:15–25.
Article
CAS
PubMed
Google Scholar
Baghdasarian G, Muscatine L. Preferential expulsion of dividing algal cells as a mechanism for regulating algal-cnidarian symbiosis. Biol Bull. 2000;199(3):278–86.
Article
CAS
PubMed
Google Scholar
Cunning R, Baker AC. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Chang. 2013;3(3):259–62.
Article
Google Scholar
Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci U S A. 2008;105:10444–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fabina NS, Putnam HM, Franklin EC, Stat M, Gates RD, Ferse SCA. Transmission mode predicts specificity and interaction patterns in coral-Symbiodinium networks. PLoS One. 2012;7(9):e44970.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nitschke MR, Davy SK, Cribb TH, Ward S. The effect of elevated temperature and substrate on free-living Symbiodinium cultures. Coral Reefs. 2015;34:161–71.
Article
Google Scholar
Krueger T, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK. Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J Phycol. 2014;50(6):1035–47.
Article
CAS
PubMed
Google Scholar
Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM. Oxidative stress and seasonal coral bleaching. Free Radic Biol Med. 2002;33(4):533–43.
Article
CAS
PubMed
Google Scholar
Yakovleva I, Bhagooli R, Takemura A, Hidaka M. Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine. Comp Biochem Physiol B Biochem Mol Biol. 2004;139(4):721–30.
Article
CAS
PubMed
Google Scholar
Higuchi T, Fujimura H, Arakaki T, Oomori T. Activities of antioxidant enzymes (SOD and CAT) in the coral Galaxea fascicularis against increased hydrogen peroxide concentrations in seawater. In: Proceedings of the 11th International Coral Reef Symposium: 7-11 July 2008; Ft. Lauderdale, Florida: International Society for Reef Studies (ISRS). Session number 19; Vol. 2. p. 931–5.
Gierz SL, Forêt S, Leggat W. Transcriptomic analysis of thermally stressed symbiodinium reveals differential expression of stress and metabolism genes. Front Plant Sci. 2017;8:271.
Article
PubMed
PubMed Central
Google Scholar
Levy O, Achituv Y, Yacobi YZ, Stambler N, Dubinsky Z. The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD and CAT) in the coral Favia favus. J Exp Mar Biol Ecol. 2006;328(1):35–46.
Article
CAS
Google Scholar