Palma-Guerrero J, Ma X, Torriani SFF, Zala M, Francisco CS, Hartmann FE, et al. Comparative transcriptome analyses in Zymoseptoria tritici reveal significant differences in gene expression among strains during plant infection. Mol Plant-Microbe Interact. 2017;30:231–44.
Article
PubMed
CAS
Google Scholar
Romero DA, Hasan AH, Lin Y, Kime L, Ruiz-Larrabeiti O, Urem M, et al. A comparison of key aspects of gene regulation in Streptomyces coelicolor and Escherichia coli using nucleotide-resolution transcription maps produced in parallel by global and differential RNA sequencing: RNA-seq comparison of S coelicolor and E coli. Mol Microbiol. 2014;94:963–87.
Article
PubMed Central
CAS
Google Scholar
Whitehead A, Crawford DL. Variation in tissue-specific gene expression among natural populations. Genome Biol. 2005;6:R13.
Article
PubMed
PubMed Central
Google Scholar
Bhullar NK, Zhang Z, Wicker T, Keller B. Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biol. 2010;10:88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Spiess B, Postina P, Reinwald M, Cornely OA, Hamprecht A, Hoenigl M, et al. Incidence of Cyp51 A key mutations in Aspergillus fumigatus -a study on primary clinical samples of immunocompromised patients in the period of 1995-2013. PLoS One. 2014;9:e103113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet. 2007;8:206–16.
Article
PubMed
CAS
Google Scholar
Ali S, Laurie JD, Linning R, Cervantes-Chávez JA, Gaudet D, Bakkeren G. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution. PLoS Pathog. 2014;10:e1004223.
Article
PubMed
PubMed Central
CAS
Google Scholar
Druka A, Potokina E, Luo Z, Bonar N, Druka I, Zhang L, et al. Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in barley. Theor Appl Genet. 2008;117:261–72.
Article
PubMed
CAS
Google Scholar
Belting HG, Shashikant CS, Ruddle FH. Modification of expression and cis-regulation of Hoxc8 in the evolution of diverged axial morphology. Proc Natl Acad Sci U S A. 1998;95:2355–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ludwig MZ, Kreitman M. Evolutionary dynamics of the enhancer region of even-skipped in Drosophila. Mol Biol Evol. 1995;12:1002–11.
PubMed
CAS
Google Scholar
Rockman MV, Wray GA. Abundant raw material for cis-regulatory evolution in humans. Mol Biol Evol. 2002;19:1991–2004.
Article
PubMed
CAS
Google Scholar
Streelman JT, Kocher TD. Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiol Genomics. 2002;9:1–4.
Article
PubMed
CAS
Google Scholar
Trefilov A, Berard J, Krawczak M, Schmidtke J. Natal dispersal in rhesus macaques is related to serotonin transporter gene promoter variation. Behav Genet. 2000;30:295–301.
Article
PubMed
CAS
Google Scholar
Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet. 1995;10:224–8.
Article
PubMed
CAS
Google Scholar
Wang C, Yang Q, Wang W, Li Y, Guo Y, Zhang D, et al. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytol. 2017;215:1503–15.
Article
PubMed
CAS
Google Scholar
Girard L, Freeling M. Regulatory changes as a consequence of transposon insertion. Dev Genet. 1999;25:291–6.
Article
PubMed
CAS
Google Scholar
Kang S, Lebrun MH, Farrall L, Valent B. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant-Microbe Interact. 2001;14:671–4.
Article
PubMed
CAS
Google Scholar
Omrane S, Audéon C, Ignace A, Duplaix C, Aouini L, Kema G, et al. Plasticity of the MFS1 promoter leads to multidrug resistance in the wheat pathogen Zymoseptoria tritici. mSphere. 2017;2:e00393–17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun. 2015;6:8326.
Article
PubMed
CAS
Google Scholar
Yu A, Lepère G, Jay F, Wang J, Bapaume L, Wang Y, et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci U S A. 2013;110:2389–94.
Article
PubMed
PubMed Central
Google Scholar
Seidl MF, Cook DE, Thomma BPHJ. Chromatin biology impacts adaptive evolution of filamentous plant pathogens. PLoS Pathog. 2016;12:e1005920–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Seidl MF, Thomma BPHJ. Transposable elements direct the coevolution between plants and microbes. Trends Genet. 2017;33:842–51.
Article
PubMed
CAS
Google Scholar
Dong S, Raffaele S, Kamoun S. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev. 2015;35:57–65.
Article
PubMed
CAS
Google Scholar
Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Publ Group. 2012;10:417–30.
CAS
Google Scholar
Croll D, McDonald BA. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Mol Ecol. 2016;26:2027–40.
Article
PubMed
CAS
Google Scholar
Giraud T, Gladieux P, Gavrilets S. Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol Evol. 2010;25:387–95.
Article
PubMed
PubMed Central
Google Scholar
Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ. Adaptive evolution in invasive species. Trends Plant Sci. 2008;13:288–94.
Article
PubMed
CAS
Google Scholar
Chumley FG. Genetic analysis of melanin-deficient, non-pathogenic mutants of Magnaporthe grisea. Mol Plant-Microbe Interact. 1990;3:135.
Article
CAS
Google Scholar
Jahn B, Koch A, Schmidt A, Wanner G, Gehringer H, Bhakdi S, et al. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect Immun. 1997;65:5110–7.
PubMed
PubMed Central
CAS
Google Scholar
Liu GY, Nizet V. Color me bad: microbial pigments as virulence factors. Trends Microbiol. 2009;17:406–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singaravelan N, Grishkan I, Beharav A, Wakamatsu K, Ito S, Nevo E. Adaptive melanin response of the soil fungus Aspergillus niger to UV radiation stress at “Evolution Canyon”, Mount Carmel, Israel. PLoS One. 2008;3:e2993–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bell AA, Wheeler MH. Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol. 1986;24:411–51.
Article
CAS
Google Scholar
Lendenmann MH, Croll D, Stewart EL, McDonald BA. Quantitative trait locus mapping of melanization in the plant pathogenic fungus Zymoseptoria tritici. G3 Bethesda Md. 2014;4:2519–33.
Article
Google Scholar
Pal AK, Gajjar DU, Vasavada AR. DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Med Mycol. 2014;52:10–8.
Lendenmann MH, Croll D, Palma-Guerrero J, Stewart EL, McDonald BA. QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici. Heredity. 2016;116:384–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hartmann FE, Sanchez-Vallet A, McDonald BA, Croll D. A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. ISME J. 2017;11:1189–204.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stewart EL, Croll D, Lendenmann MH, Sanchez-Vallet A, Hartmann FE, Palma-Guerrero J, et al. Quantitative trait locus mapping reveals complex genetic architecture of quantitative virulence in the wheat pathogen Zymoseptoria tritici. Mol Plant Pathol. 2017;19:201–16.
Grandaubert J, Bhattacharyya A, Stukenbrock EH. RNA-seq-based gene annotation and comparative genomics of four fungal grass pathogens in the genus Zymoseptoria identify novel orphan genes and species-specific invasions of transposable elements. G3 Bethesda Md. 2015;5:1323–33.
Article
CAS
Google Scholar
Plissonneau C, Stürchler A, Croll D. The evolution of orphan regions in genomes of a fungal pathogen of wheat. MBio. 2016;7(5):e01231–16.
Schotanus K, Soyer JL, Connolly LR, Grandaubert J, Happel P, Smith KM, et al. Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenetics Chromatin. 2015;8:41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lendenmann MH, Croll D, McDonald BA. QTL mapping of fungicide sensitivity reveals novel genes and pleiotropy with melanization in the pathogen Zymoseptoria tritici. Fungal Genet Biol. 2015;80:53–67.
Article
PubMed
CAS
Google Scholar
Tsuji G, Kenmochi Y, Takano Y, Sweigard J, Farrall L, Furusawa I, et al. Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol Microbiol. 2000;38:940–54.
Article
PubMed
CAS
Google Scholar
Nosanchuk JD, Casadevall A. The contribution of melanin to microbial pathogenesis. Cell Microbiol. 2003;5:203–23.
Article
PubMed
CAS
Google Scholar
Goodwin SB, Ben M’Barek S, Dhillon B, AHJ W, Crane CF, Hane JK, et al. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 2011;7:e1002070.
Article
PubMed
PubMed Central
CAS
Google Scholar
Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127:1309–21.
Article
PubMed
CAS
Google Scholar
Indjeian VB, Kingman GA, Jones FC, Guenther CA, Grimwood J, Schmutz J, et al. Evolving new skeletal traits by cis-regulatory changes in bone morphogenetic proteins. Cell. 2016;164:45–56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gompel N, Prud’homme B, Wittkopp PJ, Kassner VA, Carroll SB. Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature. 2005;433:481–7.
Article
PubMed
CAS
Google Scholar
Prud’homme B, Gompel N, Carroll SB. Emerging principles of regulatory evolution. Proc Natl Acad Sci. 2007;104:8605–12.
Article
PubMed
CAS
PubMed Central
Google Scholar
Brem RB. Genetic dissection of transcriptional regulation in budding yeast. Science. 2002;296:752–5.
Article
PubMed
CAS
Google Scholar
Chang J, Zhou Y, Hu X, Lam L, Henry C, Green EM, et al. The molecular mechanism of a cis-regulatory adaptation in yeast. PLoS Genet. 2013;9:e1003813.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsong AE, Miller MG, Raisner RM, Johnson AD. Evolution of a combinatorial transcriptional circuit. Cell. 2003;115:389–99.
Article
PubMed
CAS
Google Scholar
Ihmels J. Rewiring of the yeast transcriptional network through the evolution of motif usage. Science. 2005;309:938–40.
Article
PubMed
CAS
Google Scholar
Salinas F, de Boer CG, Abarca V, García V, Cuevas M, Araos S, et al. Natural variation in non-coding regions underlying phenotypic diversity in budding yeast. Sci Rep. 2016;6:21849.
Smith EN, Kruglyak L. Gene–environment interaction in yeast gene expression. PLoS Biol. 2008;6:e83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mohd-Assaad N, McDonald BA, Croll D. Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations. Mol Ecol. 2016;25:6124–42.
Article
PubMed
CAS
Google Scholar
Antoniazza S, Burri R, Fumagalli L, Goudet J, Roulin A. Local adaptation maintains clinal variation in melanin-based coloration of European barn owls (Tyto alba). Evolution. 2010;64:1944–54.
PubMed
Google Scholar
Tang H, Barsh GS. Skin color variation in Africa. Science. 2017;358:867–8.
Article
PubMed
CAS
Google Scholar
Kawamura C, Moriwaki J, Kimura N, Fujita Y, Fuji S, Hirano T, et al. The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea. Mol Plant-Microbe Interact. 1997;10:446–53.
Article
PubMed
CAS
Google Scholar
Zhdanova NM, Zakharchenko VO, Vasilevs’ka AY, Skol’nij OT, Nakonechna LT, Artishkova LV. Peculiarities of soil mycobiota composition in Chernobyl NPP. Ukrayinskij Bot Zhurnal. 1994;51:134–44.
Google Scholar
Wang Y, Casadevall A. Susceptibility of melanized and non-melanized Cryptococcus neoformans to nitrogen and oxygen derived oxidants. Infect Immun. 1994;62:3004–7.
PubMed
PubMed Central
CAS
Google Scholar
van Duin D, Casadevall A, Nosanchuk JD. Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin. Antimicrob Agents Chemother. 2002;46:3394–400.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nosanchuk JD, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother. 2006;50:3519–28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chujo T, Scott B. Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte-plant symbiosis. Mol Microbiol. 2014;92:413–34.
Article
PubMed
CAS
Google Scholar
Connolly LR, Smith KM, Freitag M. The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLoS Genet. 2013;9:e1003916.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eichten SR, Ellis NA, Makarevitch I, Yeh C-T, Gent JI, Guo L, et al. Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet. 2012;8:e1003127.
Article
PubMed
PubMed Central
CAS
Google Scholar
Galazka JM, Freitag M. Variability of chromosome structure in pathogenic fungi of “ends and odds”. Curr Opin Microbiol. 2014;20:19–26.
Article
PubMed
CAS
Google Scholar
Lewis ZA, Honda S, Khlafallah TK, Jeffress JK, Freitag M, Mohn F, et al. Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res. 2009;19:427–37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 2009;19:1419–28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Le TN, Miyazaki Y, Takuno S, Saze H. Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana. Nucleic Acids Res. 2015;43:3911–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee YCG, Karpen GH. Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution. elife. 2017;6:e25762
Song X, Cao X. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice. Curr Opin Plant Biol. 2017;36:111–8.
Article
PubMed
CAS
Google Scholar
Bucher E, Reinders J, Mirouze M. Epigenetic control of transposon transcription and mobility in Arabidopsis. Curr Opin Plant Biol. 2012;15:503–10.
Article
PubMed
CAS
Google Scholar
Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, et al. Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet. 2015;11:e1004915.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wessler SR. Plant retrotransposons: turned on by stress. Curr Biol. 1996;6:959–61.
Article
PubMed
CAS
Google Scholar
Soyer JL, Rouxel T, Fudal I. Chromatin-based control of effector gene expression in plant-associated fungi. Curr Opin Plant Biol. 2015;26:51–6.
Article
PubMed
CAS
Google Scholar
Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GCM, Wittenberg AHJ, et al. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res. 2016;26(8):1091–100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soyer JL, El Ghalid M, Glaser N, Ollivier B, Linglin J, Grandaubert J, et al. Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. PLoS Genet. 2014;10:e1004227–19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garin G, Fournier C, Andrieu B, Houlès V, Robert C, Pradal C. A modelling framework to simulate foliar fungal epidemics using functional–structural plant models. Ann Bot. 2014;114:795–812.
Article
PubMed
PubMed Central
Google Scholar
Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464:367–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhan J, Pettway RE, McDonald BA. The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genet Biol. 2003;38:286–97.
Article
PubMed
CAS
Google Scholar
Zhan J, Linde CC, Jurgens T, Merz U, Steinebrunner F, McDonald BA. Variation for neutral markers is correlated with variation for quantitative traits in the plant pathogenic fungus Mycosphaerella graminicola. Mol Ecol. 2005;14:2683–93.
Article
PubMed
CAS
Google Scholar
Linde CC, Zhan J, McDonald BA. Population structure of Mycosphaerella graminicola: from lesions to continents. Phytopathology. 2002;92:946–55.
Article
PubMed
CAS
Google Scholar
Meile L, Brunner PC, Plissonneau C, Hartmann FE, BA MD, Sánchez-Vallet A. A fungal avirulence factor encoded in a highly plastic genomic region triggers partial resistance to septoria tritici blotch. New Phytol. 2018. https://doi.org/10.1111/nph.15180.
Arends D, Prins P, Jansen RC, Broman KW. R/qtl: high-throughput multiple QTL mapping. Bioinformatics. 2010;26:2990–2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Motteram J, Lovegrove A, Pirie E, Marsh J, Devonshire J, van de Meene A, et al. Aberrant protein N-glycosylation impacts upon infection-related growth transitions of the haploid plant-pathogenic fungus Mycosphaerella graminicola. Mol Microbiol. 2011;81:415–33.
Article
PubMed
CAS
Google Scholar
Lazo GR, Stein PA, Ludwig RA. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnol Nat Publ Co. 1991;9:963–7.
Article
CAS
Google Scholar
Kilaru S, Schuster M, Latz M, Das Gupta S, Steinberg N, Fones H, et al. A gene locus for targeted ectopic gene integration in Zymoseptoria tritici. Fungal Genet Biol. 2015;79:118–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zwiers LH, De Waard MA. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet. 2001;39:388–93.
Article
PubMed
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.
Article
PubMed
CAS
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
PubMed
CAS
Google Scholar
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Plissonneau C, Hartmann FE, Croll D. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol. 2018;16:5.
Article
PubMed
PubMed Central
Google Scholar
Guy L, Roat Kultima J, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinformatics. 2010;26:2334–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Torriani SFF, Stukenbrock EH, Brunner PC, McDonald BA, Croll D. Evidence for extensive recent intron transposition in closely related fungi. Curr Biol. 2011;21:2017–22.
Article
PubMed
CAS
Google Scholar
Croll D, Zala M, McDonald BA. Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen. PLoS Genet. 2013;9:e1003567.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hartmann FE, Croll D. Distinct trajectories of massive recent gene gains and losses in populations of a microbial eukaryotic pathogen. Mol Biol Evol. 2017;34:2808–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–82.
Article
PubMed
CAS
Google Scholar
Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30(22):3276–8.
Rech P. SIAS: sequence identities and similarities. 2008. Available from: http://imed.med.ucm.es/Tools/sias.html. Accessed 26 June 2018.
RStudio. Boston, MA; 2012. Available from: http://www.rstudio.org/. Accessed 26 June 2018.
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. Available from: http://www.R-project.org/. Accessed 26 June 2018.