Maynard Smith J, Szathmary E. The major transitions in evolution. Oxford: University Press; 1995.
Google Scholar
Hölldobler B, Wilson EO. The ants. Cambridge: Belknap Press; 1990.
Cameron RC, Duncan EJ, Dearden PK. Biased gene expression in early honeybee larval development. BMC Genomics. 2013;14:903.
Article
PubMed
PubMed Central
CAS
Google Scholar
Evans JD, Wheeler DE. Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. Proc Natl Acad Sci U S A. 1999;96:5575–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feldmeyer B, Elsner D, Foitzik S. Gene expression patterns associated with caste and reproductive status in ants: worker-specific genes are more derived than queen-specific ones. Mol Ecol. 2014;23:151–61.
Article
PubMed
CAS
Google Scholar
Grozinger CM, Fan Y, Hoover SE, Winston ML. Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera). Mol Ecol. 2007;16:4837–48.
Article
PubMed
CAS
Google Scholar
Barchuk AR, Cristino AS, Kucharski R, Costa LF, Simoes ZL, Maleszka R. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera. BMC Dev Biol. 2007;7:70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ometto L, Shoemaker D, Ross KG, Keller L. Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species. Mol Biol Evol. 2010;28:1381–92.
Article
PubMed
CAS
Google Scholar
Graff J, Jemielity S, Parker JD, Parker KM, Keller L. Differential gene expression between adult queens and workers in the ant Lasius niger. Mol Ecol. 2007;16:675–83.
Article
PubMed
CAS
Google Scholar
Corona M, Libbrecht R, Wheeler DE. Molecular mechanisms of phenotypic plasticity in social insects. Current Opinion in Insect Science. 2016;13:55–60.
Article
PubMed
Google Scholar
Toth A, Rehan S. Molecular evolution in insect societies: an eco-evo-devo synthesis. Annu Rev Entomol. 2017;62:419–42.
Article
PubMed
CAS
Google Scholar
Kapheim KM. Genomic sources of phenotypic novelty in the evolution of eusociality in insects. Current Opinion in Insect Science. 2016;13:24–32.
Article
PubMed
Google Scholar
Libbrecht R, Oxley PR, Kronauer DJC, Keller L. Ant genomics sheds light on the molecular regulation of social organization. Genome Biol. 2013;14:212.
Article
PubMed
PubMed Central
CAS
Google Scholar
Toth AL, Robinson GE. Evo-devo and the evolution of social behavior. Trends Genet. 2007;23:334–41.
Article
PubMed
CAS
Google Scholar
West-Eberhard MJ. Flexible strategy and social evolution. In: Itô Y, Brown JL, Kikkawa J, editors. Animal societies: theories and facts. Japan: Scientific Societies Press; 1987. p. 35–51.
Google Scholar
Amdam GV, Csondes A, Fondrk MK, Page RE Jr. Complex social behaviour derived from maternal reproductive traits. Nature. 2006;439:76–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Corona M, Libbrecht R, Wurm Y, Riba-Grognuz O, Studer RA, Keller L. Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLoS Genet. 2013;9:e1003730.
Article
PubMed
PubMed Central
CAS
Google Scholar
Linksvayer TA, Wade MJ. The evolutionary origin and elaboration of sociality in the aculeate Hymenoptera: maternal effects, sib-social effects, and heterochrony. Q Rev Biol. 2005;80:317–36.
Article
PubMed
Google Scholar
Johnson BR, Tsutsui ND. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee. BMC Genomics. 2011;12:164.
Article
PubMed
PubMed Central
Google Scholar
Keller L, Jemielity S. Social insects as a model to study the molecular basis of ageing. Exp Gerontol. 2006;41:553–6.
Article
PubMed
CAS
Google Scholar
Schwander T, Lo N, Beekman M, Oldroyd B, Keller L. Nature versus nurture in social insect caste differentiation. Trends Ecol Evol. 2010;25:275–82.
Article
PubMed
Google Scholar
Kronauer DJC, Libbrecht R. Back to the roots: the importance of using simple insect societies to understand the molecular basis of complex social life. Current Opinion in Insect Science. 2018;28:33–9.
Article
Google Scholar
Okada Y, Watanabe Y, Tin MM, Tsuji K, Mikheyev AS. Social dominance alters nutrition-related gene expression immediately: transcriptomic evidence from a monomorphic queenless ant. Mol Ecol. 2017;26:2922–38.
Article
PubMed
CAS
Google Scholar
Gospocic J, Shields EJ, Glastad KM, Lin Y, Penick CA, Yan H, et al. The neuropeptide corazonin controls social behavior and caste identity in ants. Cell. 2017;170:748–59.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hunt JH. Trait mapping and salience in the evolution of eusocial vespid wasps. Evolution. 1999;53:225–37.
Article
PubMed
Google Scholar
West-Eberhard MJ. Wasp societies as microcosms for the study of development and evolution. In: Turillazzi S, West-Eberhard MJ, editors. Natural history and evolution of paper wasps. Oxford: University Press; 1996. p. 290–317.
Google Scholar
Hunt JH. A conceptual model for the origin of worker behaviour and adaptation of eusociality. J Evol Biol. 2012;25:1–19.
Article
PubMed
Google Scholar
Roubaud É. The natural history of the solitary wasps of the genus Synagris. Smithsonian Institution Annual Report. 1910;1911:507–25.
Google Scholar
Spradbery JP. The biology of Stenogaster concinna van der vecht with comments on the phylogeny of stenogastrinae (Hymenoptera: Vespidae). Aust J Entomol. 1975;14:309–18.
Article
Google Scholar
Borowiec ML. Generic revision of the ant subfamily Dorylinae (Hymenoptera, Formicidae). Zookeys. 2016;608:1–280.
Article
Google Scholar
Oxley PR, Ji L, Fetter-Pruneda I, McKenzie SK, Li C, Hu H, et al. The genome of the clonal raider ant Cerapachys biroi. Curr Biol. 2014;24:451–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ravary F, Jaisson P. The reproductive cycle of thelytokous colonies of Cerapachys biroi Forel (Formicidae, Cerapachyinae). Insect Soc. 2002;49:114–9.
Article
Google Scholar
Ravary F, Jaisson P. Absence of individual sterility in thelytokous colonies of the ant Cerapachys biroi Forel (Formicidae, Cerapachyinae). Insect Soc. 2004;51:67–73.
Article
Google Scholar
Ravary F, Jahyny B, Jaisson P. Brood stimulation controls the phasic reproductive cycle of the parthenogenetic ant Cerapachys biroi. Insect Soc. 2006;53:20–6.
Article
Google Scholar
Teseo S, Kronauer DJ, Jaisson P, Chaline N. Enforcement of reproductive synchrony via policing in a clonal ant. Curr Biol. 2013;23:328–32.
Article
PubMed
CAS
Google Scholar
Ulrich Y, Burns D, Libbrecht R, Kronauer DJC. Ant larvae regulate worker foraging behavior and ovarian activity in a dose-dependent manner. Behav Ecol Sociobiol. 2016;70:1011–8.
Article
PubMed
Google Scholar
Libbrecht R, Oxley PR, Keller L, Kronauer DJC. Robust DNA methylation in the clonal raider ant brain. Curr Biol. 2016;26:391–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Coffey N, Hinde J, Holian E. Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data. Computational Statistics & Data Analysis. 2014;71:14–29.
Article
Google Scholar
Garnier S, Kronauer DJC. The adaptive significance of phasic colony cycles in army ants. J Theor Biol. 2017;428:43–7.
Article
PubMed
Google Scholar
Rosenheim JA, Heimpel GE, Mangel M. Egg maturation, egg resorption and the costliness of transient egg limitation in insects. Proc R Soc Lond B Biol Sci. 2000;267:1565–73.
Article
CAS
Google Scholar
Nevin JA, Grace RC. Behavioral momentum and the law of effect. Behav Brain Sci. 2000;23:73–90.
Article
PubMed
CAS
Google Scholar
Nevin JA. Response strength in multiple schedules. J Exp Anal Behav. 1974;21:389–408.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adolph E. General and specific characteristics of physiological adaptations. Am J Physiol. 1955;184:18–28.
Google Scholar
Fregley MJ. Adaptations: some general characteristics. In: Fregley MJ, Blatteis CM, editors. Handbook of Physiology. Oxford: University Press; 1996. p. 3–15.
Google Scholar
Van Haaster P, Van der Heijden PR. Excitation, adaption, and deadaptation of the cAMP-mediated cGMP response in Dictyostelium discoideum. J Cell Biol. 1983;96:347–53.
Article
PubMed Central
Google Scholar
Sumner S, Pereboom JJM, Jordan WC. Differential gene expression and phenotypic plasticity in behavioural castes of the primitively eusocial wasp, Polistes canadensis. Proc R Soc Lond B Biol Sci. 2006;273:19–26.
Article
CAS
Google Scholar
Nichol H, Law JH, Winzerling JJ. Iron metabolism in insects. Annu Rev Entomol. 2002;47:535–59.
Article
PubMed
CAS
Google Scholar
Tissenbaum HA, Ruvkun G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics. 1998;148:703–18.
PubMed
PubMed Central
CAS
Google Scholar
Giannakou ME, Partridge L. Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci. 2007;32:180–8.
Article
PubMed
CAS
Google Scholar
Libbrecht R, Corona M, Wende F, Azevedo DO, Serrao JE, Keller L. Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proc Natl Acad Sci U S A. 2013;110:11050–5.
Article
PubMed
PubMed Central
Google Scholar
Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science. 2003;299:1346–51.
Article
PubMed
CAS
Google Scholar
Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci U S A. 2006;103:962–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y, Hughes KA, et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci U S A. 2007;104:7128–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ament SA, Corona M, Pollock HS, Robinson GE. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc Natl Acad Sci U S A. 2008;105:4226–31.
Article
PubMed
PubMed Central
Google Scholar
Daugherty TH, Toth AL, Robinson GE. Nutrition and division of labor: effects on foraging and brain gene expression in the paper wasp Polistes metricus. Mol Ecol. 2011;20:5337–47.
Article
PubMed
CAS
Google Scholar
Nilsen KA, Ihle KE, Frederick K, Fondrk MK, Smedal B, Hartfelder K, et al. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology. J Exp Biol. 2011;214:1488–97.
Article
PubMed
PubMed Central
Google Scholar
Chandra V, Fetter-Pruneda I, Oxley PR, Ritger AL, McKenzie SK, Libbrecht R, et al. Social regulation of insulin signaling and the evolution of eusociality in ants. Science. 2018;361:398–402.
Article
PubMed
CAS
Google Scholar
Veenstra JA. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front Physiol. 2014;5:454.
Article
PubMed
PubMed Central
Google Scholar
Wilkinson TN, Speed TP, Tregear GW, Bathgate RA. Evolution of the relaxin-like peptide family. BMC Evol Biol. 2005;5:14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Badisco L, Claeys I, Van Loy T, Van Hiel M, Franssens V, Simonet G, et al. Neuroparsins, a family of conserved arthropod neuropeptides. Gen Comp Endocrinol. 2007;153:64–71.
Article
PubMed
CAS
Google Scholar
Okada Y, Miyazaki S, Miyakawa H, Ishikawa A, Tsuji K, Miura T. Ovarian development and insulin-signaling pathways during reproductive differentiation in the queenless ponerine ant Diacamma sp. J Insect Physiol. 2010;56:288–95.
Article
PubMed
CAS
Google Scholar
Morandin C, Havukainen H, Kulmuni J, Dhaygude K, Trontti K, Helanterä H. Not only for egg yolk—functional and evolutionary insights from expression, selection, and structural analyses of Formica ant vitellogenins. Mol Biol Evol. 2014;31:2181–93.
Article
PubMed
CAS
Google Scholar
Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt BG, et al. The genome of the fire ant Solenopsis invicta. Proc Natl Acad Sci U S A. 2011;108:5679–84.
Article
PubMed
PubMed Central
Google Scholar
Patalano S, Vlasova A, Wyatt C, Ewels P, Camara F, Ferreira PG, et al. Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proc Natl Acad Sci U S A. 2015;112:13970–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, et al. Molecular traces of alternative social organization in a termite genome. Nat Commun. 2014;5:3636.
Article
PubMed
CAS
Google Scholar
Amsalem E, Malka O, Grozinger C, Hefetz A. Exploring the role of juvenile hormone and vitellogenin in reproduction and social behavior in bumble bees. BMC Evol Biol. 2014;14:45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kohlmeier P, Feldmeyer B, Foitzik S. Vitellogenin-like A–associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLoS Biol. 2018;16:e2005747.
Article
PubMed
PubMed Central
Google Scholar
Raikhel AS, Dhadialla T. Accumulation of yolk proteins in insect oocytes. Annu Rev Entomol. 1992;37:217–51.
Article
PubMed
CAS
Google Scholar
Münch D, Ihle KE, Salmela H, Amdam GV. Vitellogenin in the honey bee brain: atypical localization of a reproductive protein that promotes longevity. Exp Gerontol. 2015;71:103–8.
Article
PubMed
CAS
Google Scholar
Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D, Magoc T, et al. Genomic signatures of evolutionary transitions from solitary to group living. Science. 2015;348:1139–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Simola DF, Wissler L, Donahue G, Waterhouse RM, Helmkampf M, Roux J, et al. Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. Genome Res. 2013;23:1235–47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hansen IA, Sieglaff DH, Munro JB, Shiao S-H, Cruz J, Lee IW, et al. Forkhead transcription factors regulate mosquito reproduction. Insect Biochem Mol Biol. 2007;37:985–97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dong X, Zhai Y, Zhang J, Sun Z, Chen J, Chen J, et al. Forkhead transcription factor is required for ovarian mature in the brown planthopper, Nilaparvata lugens (Stål). BMC Mol Biol. 2011;12:53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mach V, Takiya S, Ohno K, Handa H, Imai T, Suzuki Y. Silk gland factor-1 involved in the regulation of Bombyx sericin-1 gene contains fork head motif. J Biol Chem. 1995;270:9340–6.
Article
PubMed
CAS
Google Scholar
Plettner E, Otis GW, Wimalaratne PDC, Winston ML, Slessor KN, Pankiw T, et al. Species- and caste-determined mandibular gland signals in honeybees (Apis). J Chem Ecol. 1997;23:363–77.
Article
CAS
Google Scholar
Kronauer DJ, Pierce NE, Keller L. Asexual reproduction in introduced and native populations of the ant Cerapachys biroi. Mol Ecol. 2012;21:5221–35.
Article
PubMed
Google Scholar
Dade HA. Anatomy and dissection of the honeybee. London: Bee Research Association; 1994.
Google Scholar
Pichiule P, LaManna JC. Angiopoietin-2 and rat brain capillary remodeling during adaptation and deadaptation to prolonged mild hypoxia. J Appl Physiol. 2002;93:1131–9.
Article
PubMed
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological. 1995;57:289–300.
Google Scholar