Clancy K, Voigt CA. Programming cells: towards an automated ‘Genetic Compiler’. Curr Opin Biotechnol. 2010;21(4):572–81. https://doi.org/10.1016/j.copbio.2010.07.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Meer JR, Belkin S. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol. 2010;8(7):511–22. https://doi.org/10.1038/nrmicro2392.
Article
CAS
PubMed
Google Scholar
Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. Probiotic strains detect and suppress cholera in mice. Sci Transl Med. 2018;10(445):eaao2586. https://doi.org/10.1126/scitranslmed.aao2586.
Article
CAS
PubMed
Google Scholar
Siciliano V, DiAndreth B, Monel B, Beal J, Huh J, Clayton KL, et al. Engineering modular intracellular protein sensor-actuator devices. Nat Commun. 2018;9(1):1881. https://doi.org/10.1038/s41467-018-03984-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC, et al. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci U S A. 2014;111(13):4838–43. https://doi.org/10.1073/pnas.1321321111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ. Synthetic gene networks that count. Science. 2009;324(5931):1199–202. https://doi.org/10.1126/science.1172005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green AA, Kim J, Ma D, Silver PA, Collins JJ, Yin P. Complex cellular logic computation using ribocomputing devices. Nature. 2017;548(7665):117–21. https://doi.org/10.1038/nature23271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitada T, DiAndreth B, Teague B, Weiss R. Programming gene and engineered-cell therapies with synthetic biology. Science. 2018;359(6376):eaad1067. https://doi.org/10.1126/science.aad1067.
Article
Google Scholar
Simpson ML, Sayler GS, Fleming JT, Applegate B. Whole-cell biocomputing. Trends Biotechnol. 2001;19(8):317–23.
Article
CAS
Google Scholar
Yehl K, Lu T. Scaling computation and memory in living cells. Curr Opin Biomed Eng. 2017;4:143–51. https://doi.org/10.1016/j.cobme.2017.10.003.
Article
PubMed
PubMed Central
Google Scholar
Anderson LA, Islam MA, Prather KLJ. Synthetic biology strategies for improving microbial synthesis of “green” biopolymers. J Biol Chem. 2018;293(14):5053–61. https://doi.org/10.1074/jbc.TM117.000368.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret J-P, Beaudoin GAW, et al. Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat Commun. 2014;5:3283. https://doi.org/10.1038/ncomms4283.
Article
CAS
PubMed
Google Scholar
Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA. Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol. 2016;14(3):135–49. https://doi.org/10.1038/nrmicro.2015.24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen J, Keasling JD. Engineering cellular metabolism. Cell. 2016;164(6):1185–97. https://doi.org/10.1016/j.cell.2016.02.004.
Article
CAS
PubMed
Google Scholar
Wagner TE, Becraft JR, Bodner K, Teague B, Zhang X, Woo A, et al. Small-molecule-based regulation of RNA-delivered circuits in mammalian cells. Nat Chem Biol. 2018;14(11):1043–50. https://doi.org/10.1038/s41589-018-0146-9.
Article
CAS
PubMed
Google Scholar
Scheller L, Strittmatter T, Fuchs D, Bojar D, Fussenegger M. Generalized extracellular molecule sensor platform for programming cellular behavior. Nat Chem Biol. 2018;14(7):723–9. https://doi.org/10.1038/s41589-018-0046-z.
Article
CAS
PubMed
Google Scholar
Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell. 2018;173(6):1426–1438.e11. https://doi.org/10.1016/j.cell.2018.03.038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JW, Chan CTY, Slomovic S, Collins JJ. Next-generation biocontainment systems for engineered organisms. Nat Chem Biol. 2018;14(6):530–7. https://doi.org/10.1038/s41589-018-0056-x.
Article
CAS
PubMed
Google Scholar
Jia B, Qi H, Li B-Z, Pan S, Liu D, Liu H, et al. Orthogonal ribosome biofirewall. ACS Synth Biol. 2017;6(11):2108–17. https://doi.org/10.1021/acssynbio.7b00148.
Article
CAS
PubMed
Google Scholar
Martin RW, Majewska NI, Chen CX, Albanetti TE, Jimenez RBC, Schmelzer AE, et al. Development of a CHO-based cell-free platform for synthesis of active monoclonal antibodies. ACS Synth Biol. 2017;6(7):1370–9. https://doi.org/10.1021/acssynbio.7b00001.
Article
CAS
PubMed
Google Scholar
Mikami S, Masutani M, Sonenberg N, Yokoyama S, Imataka H. An efficient mammalian cell-free translation system supplemented with translation factors. Protein Expr Purif. 2006;46(2):348–57. https://doi.org/10.1016/j.pep.2005.09.021.
Article
CAS
PubMed
Google Scholar
Tran K, Gurramkonda C, Cooper MA, Pilli M, Taris JE, Selock N, et al. Cell-free production of a therapeutic protein: Expression, purification, and characterization of recombinant streptokinase using a CHO lysate. Biotechnol Bioeng. 2018;115(1):92–102. https://doi.org/10.1002/bit.26439.
Article
CAS
PubMed
Google Scholar
Burgenson D, Gurramkonda C, Pilli M, Ge X, Andar A, Kostov Y, et al. Rapid recombinant protein expression in cell-free extracts from human blood. Sci Rep. 2018;8(1):9569. https://doi.org/10.1038/s41598-018-27846-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ezure T, Suzuki T, Higashide S, Shintani E, Endo K, Kobayashi S-i, et al. Cell-free protein synthesis system prepared from insect cells by freeze-thawing. Biotechnol Prog. 2006;22(6):1570–7. https://doi.org/10.1021/bp060110v.
Article
CAS
PubMed
Google Scholar
Buntru M, Vogel S, Stoff K, Spiegel H, Schillberg S. A versatile coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates. Biotechnol Bioeng. 2015;112(5):867–78. https://doi.org/10.1002/bit.25502.
Article
CAS
PubMed
Google Scholar
Harbers M. Wheat germ systems for cell-free protein expression. FEBS Lett. 2014;588(17):2762–73. https://doi.org/10.1016/j.febslet.2014.05.061.
Article
CAS
PubMed
Google Scholar
Hodgman CE, Jewett MC. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis. Biotechnol Bioeng. 2013;110(10):2643–54. https://doi.org/10.1002/bit.24942.
Article
CAS
PubMed
Google Scholar
Yang WC, Patel KG, Wong HE, Swartz JR. Simplifying and streamlining Escherichia coli-based cell-free protein synthesis. Biotechnol Prog. 2012;28(2):413–20. https://doi.org/10.1002/btpr.1509.
Article
CAS
PubMed
Google Scholar
Kigawa T, Yabuki T, Matsuda N, Matsuda T, Nakajima R, Tanaka A, et al. Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genomics. 2004;5(1–2):63–8. https://doi.org/10.1023/B:JSFG.0000029204.57846.7d.
Article
CAS
PubMed
Google Scholar
Moore SJ, Lai H-E, Needham H, Polizzi KM, Freemont PS. Streptomyces venezuelaeTX-TL - a next generation cell-free synthetic biology tool. Biotechnol J. 2017;12(4):1600678. https://doi.org/10.1002/biot.201600678.
Article
CAS
Google Scholar
Moore SJ, MacDonald JT, Wienecke S, Ishwarbhai A, Tsipa A, Aw R, et al. Rapid acquisition and model-based analysis of cell-free transcription-translation reactions from nonmodel bacteria. Proc Natl Acad Sci U S A. 2018. https://doi.org/10.1073/pnas.1715806115.
Article
CAS
Google Scholar
Kelwick R, Webb AJ, MacDonald JT, Freemont PS. Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. Metab Eng. 2016;38:370–81. https://doi.org/10.1016/J.YMBEN.2016.09.008.
Article
CAS
PubMed
Google Scholar
Li J, Wang H, Jewett MC. Expanding the palette of Streptomyces -based cell-free protein synthesis systems with enhanced yields. Biochem Eng J. 2018;130:29–33. https://doi.org/10.1016/j.bej.2017.11.013.
Article
CAS
Google Scholar
Li J, Wang H, Kwon Y-C, Jewett MC. Establishing a high yielding streptomyces-based cell-free protein synthesis system. Biotechnol Bioeng. 2017;114(6):1343–53. https://doi.org/10.1002/bit.26253.
Article
CAS
PubMed
Google Scholar
Failmezger J, Scholz S, Blombach B, Siemann-Herzberg M. Cell-free protein synthesis from fast-growing Vibrio natriegens. Front Microbiol. 2018;9:1146. https://doi.org/10.3389/fmicb.2018.01146.
Article
PubMed
PubMed Central
Google Scholar
Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, et al. Cell-free translation reconstituted with purified components. Nat Biotechnol. 2001;19(8):751–5. https://doi.org/10.1038/90802.
Article
CAS
PubMed
Google Scholar
Shin J, Noireaux V. An E.coli cell-free expression toolbox: Application to synthetic gene circuits and artificial cells. ACS Synth Biol. 2012;1(1):29–41. https://doi.org/10.1021/sb200016s.
Article
CAS
PubMed
Google Scholar
Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR. An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol. 2008;4:220. https://doi.org/10.1038/msb.2008.57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Gu L, Aach J, Church GM. Improved cell-free RNA and protein synthesis system. PLoS One. 2014;9(9):e106232. https://doi.org/10.1371/journal.pone.0106232.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon Y-C, Jewett MC. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci Rep. 2015;5:8663. https://doi.org/10.1038/srep08663.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun ZZ, Hayes CA, Shin J, Caschera F, Murray RM, Noireaux V. Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. J Vis Exp. 2013;79:e50762. https://doi.org/10.3791/50762.
Article
CAS
Google Scholar
Caschera F, Noireaux V. Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription–translation system. Biochimie. 2014;99:162–8. https://doi.org/10.1016/j.biochi.2013.11.025.
Article
CAS
PubMed
Google Scholar
Wiegand DJ, Lee HH, Ostrov N, Church GM. Establishing a cell-free Vibrio natriegens expression system. bioRxiv. 2018:331645. https://doi.org/10.1101/331645.
Tuckey C, Asahara H, Zhou Y, Chong S. Protein synthesis using a reconstituted cell-free system. Curr Protoc Mol Biol. 2014;108:16.31.1–22. https://doi.org/10.1002/0471142727.mb1631s108.
Article
Google Scholar
Didovyk A, Tonooka T, Tsimring L, Hasty J. Rapid and scalable preparation of bacterial lysates for cell-free gene expression. ACS Synth Biol. 2017;6(12):2198–208. https://doi.org/10.1021/acssynbio.7b00253.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P, et al. Paper-based synthetic gene networks. Cell. 2014;159(4):940–54. https://doi.org/10.1016/j.cell.2014.10.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan P, Thomas CJ, Sprang SR, Tall GG. Molecular chaperoning function of Ric-8 is to fold nascent heterotrimeric G protein α subunits. Proc Natl Acad Sci U S A. 2013;110(10):3794–9. https://doi.org/10.1073/pnas.1220943110.
Article
PubMed
PubMed Central
Google Scholar
Smith MT, Berkheimer SD, Werner CJ, Bundy BC. Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage. Biotechniques. 2014;56(4):186–93. https://doi.org/10.2144/000114158.
Article
CAS
PubMed
Google Scholar
Pardee K, Slomovic S, Nguyen PQ, Lee JW, Donghia N, Burrill D, et al. Portable, on-demand biomolecular manufacturing. Cell. 2016;167(1):248–254.e12. https://doi.org/10.1016/j.cell.2016.09.013.
Article
CAS
PubMed
Google Scholar
Pardee K, Green AA, Takahashi MK, Connor DHO, Gehrke L, Collins JJ, et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell. 2016;165(5):1255–66. https://doi.org/10.1016/j.cell.2016.04.059.
Article
CAS
PubMed
Google Scholar
Yin G, Garces ED, Yang J, Zhang J, Tran C, Steiner AR, et al. Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system. MAbs. 2012;4(2):217–25. https://doi.org/10.4161/mabs.4.2.19202.
Article
PubMed
PubMed Central
Google Scholar
Bawazer LA, Izumi M, Kolodin D, Neilson JR, Schwenzer B, Morse DE. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles. Proc Natl Acad Sci U S A. 2012;109(26):E1705–14. https://doi.org/10.1073/pnas.1116958109.
Article
PubMed
PubMed Central
Google Scholar
Sun ZZ, Yeung E, Hayes CA, Noireaux V, Murray RM. Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth Biol. 2014;3(6):387–97. https://doi.org/10.1021/sb400131a.
Article
CAS
PubMed
Google Scholar
Takahashi MK, Chappell J, Hayes CA, Sun ZZ, Kim J, Singhal V, et al. Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems. ACS Synth Biol. 2015;4(5):503–15. https://doi.org/10.1021/sb400206c.
Article
CAS
PubMed
Google Scholar
Karzbrun E, Tayar AM, Noireaux V, Bar-Ziv RH. Programmable on-chip DNA compartments as artificial cells. Science. 2014;345(6198):829–32. https://doi.org/10.1126/science.1255550.
Article
CAS
PubMed
Google Scholar
Garamella J, Marshall R, Rustad M, Noireaux V. The all E.coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology. ACS Synth Biol. 2016;5(4):344–55. https://doi.org/10.1021/acssynbio.5b00296.
Article
CAS
PubMed
Google Scholar
Niederholtmeyer H, Sun ZZ, Hori Y, Yeung E, Verpoorte A, Murray RM, et al. Rapid cell-free forward engineering of novel genetic ring oscillators. Elife. 2015;4:e09771. https://doi.org/10.7554/eLife.09771.
Article
PubMed
PubMed Central
Google Scholar
Green AA, Silver PA, Collins JJ, Yin P. Toehold switches: de-novo-designed regulators of gene expression. Cell. 2014;159(4):925–39. https://doi.org/10.1016/j.cell.2014.10.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi MK, Tan X, Dy AJ, Braff D, Akana RT, Furuta Y, et al. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat Commun. 2018;9(1):3347. https://doi.org/10.1038/s41467-018-05864-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duyen TTM, Matsuura H, Ujiie K, Muraoka M, Harada K, Hirata K. Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis. J Biosci Bioeng. 2016;123(1):96–100. https://doi.org/10.1016/j.jbiosc.2016.07.015.
Article
CAS
PubMed
Google Scholar
Wen KY, Cameron L, Chappell J, Jensen K, Bell DJ, Kelwick R, et al. A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa-infected respiratory samples. ACS Synth Biol. 2017;6(12):2293–301. https://doi.org/10.1021/acssynbio.7b00219.
Article
CAS
PubMed
Google Scholar
Salehi ASM, Shakalli Tang MJ, Smith MT, Hunt JM, Law RA, Wood DW, et al. Cell-free protein synthesis approach to biosensing hTRβ-specific endocrine disruptors. Anal Chem. 2017;89(6):3395–401. https://doi.org/10.1021/acs.analchem.6b04034.
Article
CAS
PubMed
Google Scholar
Salehi ASM, Yang SO, Earl CC, Shakalli Tang MJ, Porter Hunt J, Smith MT, et al. Biosensing estrogenic endocrine disruptors in human blood and urine: A RAPID cell-free protein synthesis approach. Toxicol Appl Pharmacol. 2018;345:19–25. https://doi.org/10.1016/j.taap.2018.02.016.
Article
CAS
PubMed
Google Scholar
Calhoun KA, Swartz JR. Energizing cell-free protein synthesis with glucose metabolism. Biotechnol Bioeng. 2005;90(5):606–13. https://doi.org/10.1002/bit.20449.
Article
CAS
PubMed
Google Scholar
Kim T-W, Kim H-C, Oh I-S, Kim D-M. A highly efficient and economical cell-free protein synthesis system using the S12 extract of Escherichia coli. Biotechnol Bioprocess Eng. 2008;13(4):464–9. https://doi.org/10.1007/s12257-008-0139-8.
Article
CAS
Google Scholar
Carlson ED, Gan R, Hodgman CE, Jewett MC. Cell-free protein synthesis: applications come of age. Biotechnol Adv. 2012;30(5):1185–94. https://doi.org/10.1016/j.biotechadv.2011.09.016.
Article
CAS
PubMed
Google Scholar
Dudley QM, Karim AS, Jewett MC. Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol J. 2015;10(1):69–82. https://doi.org/10.1002/biot.201400330.
Article
CAS
PubMed
Google Scholar
Zawada JF, Yin G, Steiner AR, Yang J, Naresh A, Roy SM, et al. Microscale to manufacturing scale-up of cell-free cytokine production--a new approach for shortening protein production development timelines. Biotechnol Bioeng. 2011;108(7):1570–8. https://doi.org/10.1002/bit.23103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breaking free from cells; Synthetic biology. Econ. 2017 (May 6).
Sullivan CJ, Pendleton ED, Sasmor HH, Hicks WL, Farnum JB, Muto M, et al. A cell-free expression and purification process for rapid production of protein biologics. Biotechnol J. 2016;11(2):238–48. https://doi.org/10.1002/biot.201500214.
Article
CAS
PubMed
Google Scholar
Stech M, Brödel AK, Quast RB, Sachse R, Kubick S. Cell-free systems: Functional modules for synthetic and chemical biology. Adv Biochem Eng Biotechnol. 2013;137:67–102. https://doi.org/10.1007/10_2013_185.
Article
CAS
PubMed
Google Scholar
Brödel AK, Wüstenhagen DA, Kubick S. Cell-free protein synthesis systems derived from cultured mammalian cells. Methods Mol Biol. 2015;1261:129–40. https://doi.org/10.1007/978-1-4939-2230-7_7.
Article
CAS
PubMed
Google Scholar
Salehi ASM, Smith MT, Bennett AM, Williams JB, Pitt WG, Bundy BC. Cell-free protein synthesis of a cytotoxic cancer therapeutic: Onconase production and a just-add-water cell-free system. Biotechnol J. 2016;11(2):274–81. https://doi.org/10.1002/biot.201500237.
Article
CAS
PubMed
Google Scholar
Groff D, Armstrong S, Rivers PJ, Zhang J, Yang J, Green E, et al. Engineering toward a bacterial “endoplasmic reticulum” for the rapid expression of immunoglobulin proteins. MAbs. 2014;6(3):671–8. https://doi.org/10.4161/mabs.28172.
Article
PubMed
PubMed Central
Google Scholar
Cai Q, Hanson JA, Steiner AR, Tran C, Masikat MR, Chen R, et al. A simplified and robust protocol for immunoglobulin expression in Escherichia coli cell-free protein synthesis systems. Biotechnol Prog. 2015;31(3):823–31. https://doi.org/10.1002/btpr.2082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanter G, Yang J, Voloshin A, Levy S, Swartz JR, Levy R. Cell-free production of scFv fusion proteins: an efficient approach for personalized lymphoma vaccines. Blood. 2007;109(8):3393–9. https://doi.org/10.1182/blood-2006-07-030593.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stafford RL, Matsumoto ML, Yin G, Cai Q, Fung JJ, Stephenson H, et al. In vitro Fab display: a cell-free system for IgG discovery. Protein Eng Des Sel. 2014;27(4):97–109. https://doi.org/10.1093/protein/gzu002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawasaki T, Gouda MD, Sawasaki T, Takai K, Endo Y. Efficient synthesis of a disulfide-containing protein through a batch cell-free system from wheat germ. Eur J Biochem. 2003;270(23):4780–6.
Article
CAS
Google Scholar
Stech M, Merk H, Schenk JA, Stöcklein WFM, Wüstenhagen DA, Micheel B, et al. Production of functional antibody fragments in a vesicle-based eukaryotic cell-free translation system. J Biotechnol. 2013;164(2):220–31. https://doi.org/10.1016/j.jbiotec.2012.08.020.
Article
CAS
Google Scholar
Xu Y, Lee J, Tran C, Heibeck TH, Wang WD, Yang J, et al. Production of bispecific antibodies in “knobs-into-holes” using a cell-free expression system. MAbs. 2015;7(1):231. https://doi.org/10.4161/19420862.2015.989013.
Article
CAS
PubMed
Google Scholar
Zimmerman ES, Heibeck TH, Gill A, Li X, Murray CJ, Madlansacay MR, et al. Production of site-specific antibody–drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem. 2014;25(2):351–61. https://doi.org/10.1021/bc400490z.
Article
CAS
PubMed
Google Scholar
Stech M, Quast RB, Sachse R, Schulze C, Wüstenhagen DA, Kubick S. A continuous-exchange cell-free protein synthesis system based on extracts from cultured insect cells. PLoS One. 2014;9(5):e96635. https://doi.org/10.1371/journal.pone.0096635.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bulleid NJ, Bassel-Duby RS, Freedman RB, Sambrook JF, Gething MJ. Cell-free synthesis of enzymically active tissue-type plasminogen activator. Protein folding determines the extent of N-linked glycosylation. Biochem J. 1992;286(Pt 1):275–80. https://doi.org/10.1042/BJ2860275.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh I-S, Kim D-M, Kim T-W, Park C-G, Choi C-Y. Providing an oxidizing environment for the cell-free expression of disulfide-containing proteins by exhausting the reducing activity of Escherichia coli S30 extract. Biotechnol Prog. 2006;22(4):1225–8. https://doi.org/10.1021/bp060051l.
Article
CAS
PubMed
Google Scholar
Yin G, Swartz JR. Enhancing multiple disulfide bonded protein folding in a cell-free system. Biotechnol Bioeng. 2004;86(2):188–95. https://doi.org/10.1002/bit.10827.
Article
CAS
PubMed
Google Scholar
Palmenberg AC. In vitro synthesis and assembly of picornaviral capsid intermediate structures. J Virol. 1982;44(3):900–6.
CAS
PubMed
PubMed Central
Google Scholar
Welsh JP, Lu Y, He X-S, Greenberg HB, Swartz JR. Cell-free production of trimeric influenza hemagglutinin head domain proteins as vaccine antigens. Biotechnol Bioeng. 2012;109(12):2962–9. https://doi.org/10.1002/bit.24581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y, Welsh JP, Swartz JR. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc Natl Acad Sci U S A. 2014;111(1):125–130. doi: https://doi.org/10.1073/pnas.1308701110
Article
Google Scholar
Zichel R, Mimran A, Keren A, Barnea A, Steinberger-Levy I, Marcus D, et al. Efficacy of a potential trivalent vaccine based on Hc fragments of botulinum toxins A, B, and E produced in a cell-free expression system. Clin Vaccine Immunol. 2010;17(5):784–92. https://doi.org/10.1128/CVI.00496-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng PP, Jia M, Patel KG, Brody JD, Swartz JR, Levy S, et al. A vaccine directed to B cells and produced by cell-free protein synthesis generates potent antilymphoma immunity. Proc Natl Acad Sci U S A. 2012;109(36):14526–31. https://doi.org/10.1073/pnas.1211018109.
Article
PubMed
PubMed Central
Google Scholar
Bundy BC, Franciszkowicz MJ, Swartz JR. Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol Bioeng. 2008;100(1):28–37. https://doi.org/10.1002/bit.21716.
Article
CAS
PubMed
Google Scholar
Lu Y, Chan W, Ko BY, VanLang CC, Swartz JR. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc Natl Acad Sci U S A. 2015;112(40):12360–5. https://doi.org/10.1073/pnas.1510533112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martemyanov KA, Shirokov VA, Kurnasov OV, Gudkov AT, Spirin AS. Cell-free production of biologically active polypeptides: application to the synthesis of antibacterial peptide cecropin. Protein Expr Purif. 2001;21(3):456–61. https://doi.org/10.1006/prep.2001.1400.
Article
CAS
PubMed
Google Scholar
Sutro Biopharma, Inc. https://www.sutrobio.com/.
The Economist. Cell-free biotech will make for better products: Biotechnology. Econ. 2017.
Adiga R, Al-adhami M, Andar A, Borhani S, Brown S, Burgenson D, et al. Point-of-care production of therapeutic proteins of good-manufacturing-practice quality. Nat Biomed Eng. 2018;2(9):675–86. https://doi.org/10.1038/s41551-018-0259-1.
Article
CAS
PubMed
Google Scholar
Murphy TW, Sheng J, Naler LB, Feng X, Lu C. On-chip manufacturing of synthetic proteins for point-of-care therapeutics. Microsyst Nanoeng. 2019;25(5):13. https://doi.org/10.1038/s41378-019-0051-8.
Lu Y, Welsh JP, Chan W, Swartz JR. Escherichia coli-based cell free production of flagellin and ordered flagellin display on virus-like particles. Biotechnol Bioeng. 2013;110(8):2073–85. https://doi.org/10.1002/bit.24903.
Article
CAS
PubMed
Google Scholar
Goerke AR, Swartz JR. Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng. 2008;99(2):351–67. https://doi.org/10.1002/bit.21567.
Article
CAS
PubMed
Google Scholar
Jiang X, Ookubo Y, Fujii I, Nakano H, Yamane T. Expression of Fab fragment of catalytic antibody 6D9 in an Escherichia coli in vitro coupled transcription/translation system. FEBS Lett. 2002;514(2):290–4. https://doi.org/10.1016/S0014-5793(02)02383-9.
Article
CAS
PubMed
Google Scholar
Laxminarayan R, Duse A, Wattal C, AKMKM Z, HFLFL W, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–98. https://doi.org/10.1016/S1473-3099(13)70318-9.
Article
Google Scholar
Shin J, Jardine P, Noireaux V. Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction. ACS Synth Biol. 2012;1(9):408–13. https://doi.org/10.1021/sb300049p.
Article
CAS
PubMed
Google Scholar
Rustad M, Eastlund A, Jardine P, Noireaux V. Cell-free TXTL synthesis of infectious bacteriophage T4 in a single test tube reaction. Synth Biol. 2018;3(1):1–7. https://doi.org/10.1093/synbio/ysy002.
Article
Google Scholar
Rustad M, Eastlund A, Marshall R, Jardine P, Noireaux V. Synthesis of infectious bacteriophages in an E. coli-based cell-free expression system. J Vis Exp. 2017;126. https://doi.org/10.3791/56144.
Potera C. Phage renaissance: new hope against antibiotic resistance. Environ Health Perspect. 2013;121(2):a48–53. https://doi.org/10.1289/ehp.121-a48.
Article
PubMed
PubMed Central
Google Scholar
Balogh B, Jones JB, Iriarte FB, Momol MT. Phage therapy for plant disease control. Curr Pharm Biotechnol. 2010;11(1):48–57.
Article
CAS
Google Scholar
Schlegel S, Hjelm A, Baumgarten T, Vikström D, de Gier J-W. Bacterial-based membrane protein production. Biochim Biophys Acta Mol Cell Res. 2014;1843(8):1739–49. https://doi.org/10.1016/J.BBAMCR.2013.10.023.
Article
CAS
Google Scholar
Schneider B, Junge F, Shirokov VA, Durst F, Schwarz D, Dötsch V, et al. Membrane protein expression in cell-free systems. Methods Mol Biol. 2010;601:165–86. https://doi.org/10.1007/978-1-60761-344-2_11.
Article
CAS
PubMed
Google Scholar
Perez JG, Stark JC, Jewett MC. Cell-free synthetic biology: Engineering beyond the cell. Cold Spring Harb Perspect Biol. 2016;8(12):a023853. https://doi.org/10.1101/cshperspect.a023853.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaiser L, Graveland-Bikker J, Steuerwald D, Vanberghem M, Herlihy K, Zhang S. Efficient cell-free production of olfactory receptors: Detergent optimization, structure, and ligand binding analyses. Proc Natl Acad Sci U S A. 2008;105(41):15726–31. https://doi.org/10.1073/pnas.0804766105.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Corin K, Baaske P, Wienken CJ, Jerabek-Willemsen M, Duhr S, et al. Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc Natl Acad Sci U S A. 2011;108(22):9049–54. https://doi.org/10.1073/pnas.1018185108.
Article
PubMed
PubMed Central
Google Scholar
Fogeron M-L, Badillo A, Jirasko V, Gouttenoire J, Paul D, Lancien L, et al. Wheat germ cell-free expression: Two detergents with a low critical micelle concentration allow for production of soluble HCV membrane proteins. Protein Expr Purif. 2015;105:39–46. https://doi.org/10.1016/J.PEP.2014.10.003.
Article
CAS
PubMed
Google Scholar
Matthies D, Haberstock S, Joos F, Dötsch V, Vonck J, Bernhard F, et al. Cell-free expression and assembly of ATP synthase. J Mol Biol. 2011;413(3):593–603. https://doi.org/10.1016/j.jmb.2011.08.055.
Article
CAS
PubMed
Google Scholar
Junge F, Haberstock S, Roos C, Stefer S, Proverbio D, Dötsch V, et al. Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins. N Biotechnol. 2011;28(3):262–71. https://doi.org/10.1016/J.NBT.2010.07.002.
Article
CAS
PubMed
Google Scholar
Sachse R, Dondapati SK, Fenz SF, Schmidt T, Kubick S. Membrane protein synthesis in cell-free systems: From bio-mimetic systems to bio-membranes. FEBS Lett. 2014;588(17):2774–81. https://doi.org/10.1016/J.FEBSLET.2014.06.007.
Article
CAS
PubMed
Google Scholar
Panganiban B, Qiao B, Jiang T, DelRe C, Obadia MM, Nguyen TD, et al. Random heteropolymers preserve protein function in foreign environments. Science. 2018;359(6381):1239–43. https://doi.org/10.1126/science.aao0335.
Article
CAS
PubMed
Google Scholar
Yunker PJ, Asahara H, Hung K-C, Landry C, Arriaga LR, Akartuna I, et al. One-pot system for synthesis, assembly, and display of functional single-span membrane proteins on oil-water interfaces. Proc Natl Acad Sci U S A. 2016;113(3):608–13. https://doi.org/10.1073/pnas.1504992113.
Article
CAS
PubMed
Google Scholar
Asahara H, Chong S. In vitro genetic reconstruction of bacterial transcription initiation by coupled synthesis and detection of RNA polymerase holoenzyme. Nucleic Acids Res. 2010;38(13):e141. https://doi.org/10.1093/nar/gkq377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huppa JB, Ploegh HL. In vitro translation and assembly of a complete T cell receptor-CD3 complex. J Exp Med. 1997;186(3):393–403. https://doi.org/10.1084/jem.186.3.393.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsumoto K, Tomikawa C, Toyooka T, Ochi A, Takano Y, Takayanagi N, et al. Production of yeast tRNA (m7G46) methyltransferase (Trm8–Trm82 complex) in a wheat germ cell-free translation system. J Biotechnol. 2008;133(4):453–60. https://doi.org/10.1016/J.JBIOTEC.2007.11.009.
Article
CAS
PubMed
Google Scholar
Casteleijn MG, Urtti A, Sarkhel S. Expression without boundaries: Cell-free protein synthesis in pharmaceutical research. Int J Pharm. 2013;440(1):39–47. https://doi.org/10.1016/j.ijpharm.2012.04.005.
Article
CAS
PubMed
Google Scholar
Kim D-M, Swartz JR. Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of Escherichia coli. Biotechnol Bioeng. 2004;85(2):122–9. https://doi.org/10.1002/bit.10865.
Article
CAS
PubMed
Google Scholar
Hallam TJ, Wold E, Wahl A, Smider VV. Antibody conjugates with unnatural amino acids. Mol Pharm. 2015;12(6):1848–62. https://doi.org/10.1021/acs.molpharmaceut.5b00082.
Article
CAS
PubMed
Google Scholar
O’Donoghue P, Ling J, Wang Y-S, Söll D. Upgrading protein synthesis for synthetic biology. Nat Chem Biol. 2013;9(10):594–8. https://doi.org/10.1038/nchembio.1339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen DP, Garcia Alai MM, Kapadnis PB, Neumann H, Chin JW. Genetically encoding N ϵ -methyl- l -lysine in recombinant histones. J Am Chem Soc. 2009;131(40):14194–5. https://doi.org/10.1021/ja906603s.
Article
CAS
PubMed
Google Scholar
Neumann H, Hancock SM, Buning R, Routh A, Chapman L, Somers J, et al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell. 2009;36(1):153–63. https://doi.org/10.1016/j.molcel.2009.07.027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Virdee S, Kapadnis PB, Elliott T, Lang K, Madrzak J, Nguyen DP, et al. Traceless and site-specific ubiquitination of recombinant proteins. J Am Chem Soc. 2011;133(28):10708–11. https://doi.org/10.1021/ja202799r.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alfonta L, Zhang Z, Uryu S, Loo JA, Schultz PG. Site-specific incorporation of a redox-active amino acid into proteins. J Am Chem Soc. 2003;125(48):14662–3. https://doi.org/10.1021/ja038242x.
Article
CAS
PubMed
Google Scholar
Cornish VW, Benson DR, Altenbach CA, Hideg K, Hubbell WL, Schultz PG. Site-specific incorporation of biophysical probes into proteins. Proc Natl Acad Sci U S A. 1994;91(8):2910–4.
Article
CAS
Google Scholar
Oza JP, Aerni HR, Pirman NL, Barber KW, ter Haar CM, Rogulina S, et al. Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nat Commun. 2015;6(1):8168. https://doi.org/10.1038/ncomms9168.
Article
PubMed
PubMed Central
Google Scholar
Shozen N, Iijima I, Hohsaka T. Site-specific incorporation of PEGylated amino acids into proteins using nonnatural amino acid mutagenesis. Bioorg Med Chem Lett. 2009;19(17):4909–11. https://doi.org/10.1016/j.bmcl.2009.07.105.
Article
CAS
PubMed
Google Scholar
Patel KG, Swartz JR. Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry. Bioconjug Chem. 2011;22(3):376–87. https://doi.org/10.1021/bc100367u.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin RW, Majewska NI, Chen CX, Albanetti TE, Jimenez RBC, Schmelzer AE, et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat Commun. 2018;9(1):1203. https://doi.org/10.1038/s41467-018-03469-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y. Cell-free synthetic biology: Engineering in an open world. Synth Syst Biotechnol. 2017;2(1):23–7. https://doi.org/10.1016/j.synbio.2017.02.003.
Article
PubMed
PubMed Central
Google Scholar
Jaroentomeechai T, Stark JC, Natarajan A, Glasscock CJ, Yates LE, Hsu KJ, et al. Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery. Nat Commun. 2018;9(1):2686. https://doi.org/10.1038/s41467-018-05110-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Ptacin JL, Fischer EC, Aerni HR, Caffaro CE, San Jose K, et al. A semi-synthetic organism that stores and retrieves increased genetic information. Nature. 2017;551(7682):644–7. https://doi.org/10.1038/nature24659.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoshika S, Leal NA, Kim M-J, Kim M-S, Karalkar NB, Kim H-J, et al. Hachimoji DNA and RNA: A genetic system with eight building blocks. Science. 2019;363(6429):884–7. https://doi.org/10.1126/science.aat0971.
Article
CAS
PubMed
Google Scholar
Li H, D’Anjou M. Pharmacological significance of glycosylation in therapeutic proteins. Curr Opin Biotechnol. 2009;20(6):678–84. https://doi.org/10.1016/j.copbio.2009.10.009.
Article
CAS
PubMed
Google Scholar
Guarino C, DeLisa MP. A prokaryote-based cell-free translation system that efficiently synthesizes glycoproteins. Glycobiology. 2012;22(5):596–601. https://doi.org/10.1093/glycob/cwr151.
Article
CAS
PubMed
Google Scholar
Gibbs PEM, Zouzias DC, Freedberg IM. Differential post-translational modification of human type I keratins synthesized in a rabbit reticulocyte cell-free system. Biochim Biophys Acta Gene Struct Expr. 1985;824(3):247–55. https://doi.org/10.1016/0167-4781(85)90055-7.
Article
CAS
Google Scholar
Dan S, Kang B, Duan X, Wang Y-J. A cell-free system toward deciphering the post-translational modification barcodes of Oct4 in different cellular contexts. Biochem Biophys Res Commun. 2015;456(3):714–20. https://doi.org/10.1016/J.BBRC.2014.12.043.
Article
CAS
PubMed
Google Scholar
Kang S-H, Jun S-Y, Kim D-M. Fluorescent labeling of cell-free synthesized proteins by incorporation of fluorophore-conjugated nonnatural amino acids. Anal Biochem. 2007;360(1):1–6. https://doi.org/10.1016/J.AB.2006.10.029.
Article
CAS
PubMed
Google Scholar
Pagel O, Loroch S, Sickmann A, Zahedi RP. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev Proteomics. 2015;12(3):235–53. https://doi.org/10.1586/14789450.2015.1042867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voigt CA, Mayo SL, Arnold FH, Wang ZG. Computational method to reduce the search space for directed protein evolution. Proc Natl Acad Sci U S A. 2001;98(7):3778–83. https://doi.org/10.1073/pnas.051614498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dodevski I, Markou GC, Sarkar CA. Conceptual and methodological advances in cell-free directed evolution. Curr Opin Struct Biol. 2015;33:1–7. https://doi.org/10.1016/j.sbi.2015.04.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts RW, Szostak JW. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A. 1997;94(23):12297–302.
Article
CAS
Google Scholar
Hanes J, Plückthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A. 1997;94(10):4937–42.
Article
CAS
Google Scholar
Sepp A, Tawfik DS, Griffiths AD. Microbead display by in vitro compartmentalisation: selection for binding using flow cytometry. FEBS Lett. 2002;532(3):455–8.
Article
CAS
Google Scholar
Paul S, Stang A, Lennartz K, Tenbusch M, Überla K. Selection of a T7 promoter mutant with enhanced in vitro activity by a novel multi-copy bead display approach for in vitro evolution. Nucleic Acids Res. 2013;41(1):e29–e29. doi: https://doi.org/10.1093/nar/gks940
Article
Google Scholar
Diamante L, Gatti-Lafranconi P, Schaerli Y, Hollfelder F. In vitro affinity screening of protein and peptide binders by megavalent bead surface display. Protein Eng Des Sel. 2013;26(10):713–24. https://doi.org/10.1093/protein/gzt039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujii S, Matsuura T, Sunami T, Kazuta Y, Yomo T. In vitro evolution of α-hemolysin using a liposome display. Proc Natl Acad Sci U S A. 2013;110(42):16796–801. https://doi.org/10.1073/pnas.1314585110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sumida T, Yanagawa H, Doi N. In vitro selection of Fab fragments by mRNA display and gene-linking emulsion PCR. J Nucleic Acids. 2012;2012:1–9. https://doi.org/10.1155/2012/371379.
Article
CAS
Google Scholar
Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomolecules. 2014;4(1):117–39. https://doi.org/10.3390/biom4010117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003;21(7):796–802. https://doi.org/10.1038/nbt833.
Article
CAS
PubMed
Google Scholar
Chang MCY, Eachus RA, Trieu W, Ro D-K, Keasling JD. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol. 2007;3(5):274–7. https://doi.org/10.1038/nchembio875.
Article
CAS
PubMed
Google Scholar
Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, et al. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng. 2006;95(4):684–91. https://doi.org/10.1002/bit.21017.
Article
CAS
PubMed
Google Scholar
Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A. 2012;109(3):E111–8. https://doi.org/10.1073/pnas.1110740109.
Article
PubMed
PubMed Central
Google Scholar
Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD. Complete biosynthesis of opioids in yeast. Science. 2015;349(6252):1095–100. https://doi.org/10.1126/science.aac9373.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakagawa A, Matsumura E, Koyanagi T, Katayama T, Kawano N, Yoshimatsu K, et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat Commun. 2016;7:10390. https://doi.org/10.1038/ncomms10390.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science. 2010;330(6000):70–4. https://doi.org/10.1126/science.1191652.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, et al. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels. 2018;11:185. https://doi.org/10.1186/s13068-018-1181-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keasling JD. Synthetic biology and the development of tools for metabolic engineering. Metab Eng. 2012;14(3):189–95. https://doi.org/10.1016/j.ymben.2012.01.004.
Article
CAS
PubMed
Google Scholar
Demain AL. Small bugs, big business: the economic power of the microbe. Biotechnol Adv. 2000;18(6):499–514.
Article
CAS
Google Scholar
Jiang L, Zhao J, Lian J, Xu Z. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology. Synth Syst Biotechnol. 2018;3(2):90–6. https://doi.org/10.1016/j.synbio.2018.02.003.
Article
PubMed
PubMed Central
Google Scholar
Chapman J, Ismail A, Dinu C. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts. 2018;8(6):238. https://doi.org/10.3390/catal8060238.
Article
CAS
Google Scholar
Chen X, Zhang C, Zou R, Zhou K, Stephanopoulos G, Too HP. Statistical experimental design guided optimization of a one-pot biphasic multienzyme total synthesis of amorpha-4,11-diene. PLoS One. 2013;8(11):e79650. https://doi.org/10.1371/journal.pone.0079650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korman TP, Sahachartsiri B, Li D, Vinokur JM, Eisenberg D, Bowie JU. A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates. Protein Sci. 2014;23(5):576–85. https://doi.org/10.1002/pro.2436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu T, Vora H, Khosla C. Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng. 2010;12(4):378–86. https://doi.org/10.1016/j.ymben.2010.02.003.
Article
CAS
PubMed
Google Scholar
Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR. Enzymatic de novo pyrimidine nucleotide synthesis. J Am Chem Soc. 2011;133(2):297–304. https://doi.org/10.1021/ja1059685.
Article
CAS
PubMed
Google Scholar
Korman TP, Opgenorth PH, Bowie JU. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat Commun. 2017;8:15526. https://doi.org/10.1038/ncomms15526.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheng J, Huang L, Zhu X, Cai J, Xu Z. Reconstitution of the peptidoglycan cytoplasmic precursor biosynthetic pathway in cell-free system and rapid screening of antisense oligonucleotides for Mur enzymes. Appl Microbiol Biotechnol. 2014;98(4):1785–94. https://doi.org/10.1007/s00253-013-5467-8.
Article
CAS
PubMed
Google Scholar
Zhou J, Huang L, Lian J, Sheng J, Cai J, Xu Z. Reconstruction of the UDP-N-acetylglucosamine biosynthetic pathway in cell-free system. Biotechnol Lett. 2010;32(10):1481–6. https://doi.org/10.1007/s10529-010-0315-8.
Article
CAS
PubMed
Google Scholar
Karim AS, Jewett MC. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metab Eng. 2016;36:116–26. https://doi.org/10.1016/j.ymben.2016.03.002.
Article
CAS
PubMed
Google Scholar
Zhu Z, Kin Tam T, Sun F, You C, Percival Zhang Y-H. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat Commun. 2014;5(1):3026. https://doi.org/10.1038/ncomms4026.
Article
CAS
PubMed
Google Scholar
Dobson PJ, Hill HAO, Leigh PA, Mazumdar S, Safranov AY. Adenosine triphosphate synthesis using an electrochemically-driven proton pump. J Chem Soc Chem Commun. 1994;0(7):807. doi: https://doi.org/10.1039/c39940000807
Gutiérrez-Sanz Ó, Natale P, Márquez I, Marques MC, Zacarias S, Pita M, et al. H2-fueled ATP synthesis on an electrode: Mimicking cellular respiration. Angew Chemie Int Ed. 2016;55(21):6216–20. https://doi.org/10.1002/anie.201600752.
Article
CAS
Google Scholar
Zieleniecki JL, Nagarajan Y, Waters S, Rongala J, Thompson V, Hrmova M, et al. Cell-free synthesis of a functional membrane transporter into a tethered bilayer lipid membrane. Langmuir. 2016;32(10):2445–9. https://doi.org/10.1021/acs.langmuir.5b04059.
Article
CAS
PubMed
Google Scholar
Berhanu S, Ueda T, Kuruma Y. Artificial photosynthetic cell producing energy for protein synthesis. Nat Commun. 2019;10(1):1325. https://doi.org/10.1038/s41467-019-09147-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buxboim A, Bar-Dagan M, Frydman V, Zbaida D, Morpurgo M, Bar-Ziv R. A single-step photolithographic interface for cell-free gene expression and active biochips. Small. 2007;3(3):500–10. https://doi.org/10.1002/smll.200600489.
Article
CAS
PubMed
Google Scholar
Bar M, Bar-Ziv RH. Spatially resolved DNA brushes on a chip: gene activation by enzymatic cascade. Nano Lett. 2009;9(12):4462–6. https://doi.org/10.1021/nl902748g.
Article
CAS
PubMed
Google Scholar
Ishikawa K, Sato K, Shima Y, Urabe I, Yomo T. Expression of a cascading genetic network within liposomes. FEBS Lett. 2004;576(3):387–90. https://doi.org/10.1016/j.febslet.2004.09.046.
Article
CAS
PubMed
Google Scholar
Noireaux V, Libchaber A. A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci U S A. 2004;101(51):17669–74. https://doi.org/10.1073/pnas.0408236101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuruma Y, Stano P, Ueda T, Luisi PL. A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. Biochim Biophys Acta Biomembr. 2009;1788(2):567–74. https://doi.org/10.1016/J.BBAMEM.2008.10.017.
Article
CAS
Google Scholar
Wu F, Tan C. The engineering of artificial cellular nanosystems using synthetic biology approaches. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(4):369–83. https://doi.org/10.1002/wnan.1265.
Article
CAS
PubMed
Google Scholar
Elani Y, Law RV, Ces O. Protein synthesis in artificial cells: using compartmentalisation for spatial organisation in vesicle bioreactors. Phys Chem Chem Phys. 2015;17(24):15534–7. https://doi.org/10.1039/C4CP05933F.
Article
CAS
PubMed
Google Scholar
Sakamoto R, Noireaux V, Maeda YT. Anomalous scaling of gene expression in confined cell-free reactions. Sci Rep. 2018;8(1):7364. https://doi.org/10.1038/s41598-018-25532-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noireaux V, Bar-Ziv R, Godefroy J, Salman H, Libchaber A. Toward an artificial cell based on gene expression in vesicles. Phys Biol. 2005;2(3):P1–P8. doi: https://doi.org/10.1088/1478-3975/2/3/P01
Article
CAS
Google Scholar
Ho KKY, Murray VL, Liu AP. Engineering artificial cells by combining HeLa-based cell-free expression and ultrathin double emulsion template. Methods Cell Biol. 2015;128:303–18. https://doi.org/10.1016/BS.MCB.2015.01.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segers K, Masure S. Cell-free expression of G protein-coupled receptors. Curr Protoc Protein Sci. 2015;81:29.14.1–29.14.29. https://doi.org/10.1002/0471140864.ps2914s81.
Article
Google Scholar
Sonnabend A, Spahn V, Stech M, Zemella A, Stein C, Kubick S. Production of G protein-coupled receptors in an insect-based cell-free system. Biotechnol Bioeng. 2017;114(10):2328–38. https://doi.org/10.1002/bit.26346.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16(12):829–42. https://doi.org/10.1038/nrd.2017.178.
Article
CAS
PubMed
Google Scholar
Usmani A, Mishra A, Ahmad M. Nanomedicines: a theranostic approach for hepatocellular carcinoma. Artif Cells Nanomed Biotechnol. 2018;46(4):680–90. https://doi.org/10.1080/21691401.2017.1374282.
Article
CAS
PubMed
Google Scholar
Chang TMM. Semipermeable microcapsules. Science. 1964;146(3643):524–5. https://doi.org/10.1126/SCIENCE.146.3643.524.
Article
CAS
PubMed
Google Scholar
Xu C, Hu S, Chen X. Artificial cells: from basic science to applications. Mater Today (Kidlington). 2016;19(9):516–32. https://doi.org/10.1016/j.mattod.2016.02.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cold Spring Harbor Laboratory Course in Synthetic Biology [Internet] (https://meetings.cshl.edu/courses.aspx?course=C-SYNBIO&year=19).
Huang A, Nguyen PQ, Stark JC, Takahashi MK, Donghia N, Ferrante T, et al. BioBitsTM Explorer: A modular synthetic biology education kit. Sci Adv. 2018;4(8):eaat5105. https://doi.org/10.1126/sciadv.aat5105.
Article
PubMed
PubMed Central
Google Scholar
Stark JC, Huang A, Nguyen PQ, Dubner RS, Hsu KJ, Ferrante TC, et al. BioBitsTM Bright: A fluorescent synthetic biology education kit. Sci Adv. 2018;4(8):eaat5107. https://doi.org/10.1126/sciadv.aat5107.
Article
PubMed
PubMed Central
Google Scholar