Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.
CAS
PubMed
PubMed Central
Google Scholar
Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13:260–70.
CAS
PubMed
PubMed Central
Google Scholar
Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–79.
CAS
PubMed
Google Scholar
Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–9.
CAS
PubMed
PubMed Central
Google Scholar
Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, Mongodin EF, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010;4:962–74.
PubMed
Google Scholar
Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244–53.
CAS
PubMed
PubMed Central
Google Scholar
Preus HR, Marvik OJ, Selvig KA, Bennike P. Ancient bacterial DNA (aDNA) in dental calculus from archaeological human remains. J Archaeol Sci. 2011;38:1827–31.
Google Scholar
Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N, Grossmann J, et al. Pathogens and host immunity in the ancient human oral cavity. Nat Genet. 2014;46:336–44.
CAS
PubMed
PubMed Central
Google Scholar
Ozga AT, Nieves-Colón MA, Honap TP, Sankaranarayanan K, Hofman CA, Milner GR, et al. Successful enrichment and recovery of whole mitochondrial genomes from ancient human dental calculus. Am J Phys Anthropol. 2016;160:220–8.
PubMed
PubMed Central
Google Scholar
Warinner C, Herbig A, Mann A, Fellows Yates JA, Weiß CL, Burbano HA, et al. A robust framework for microbial archaeology. Annu Rev Genomics Hum Genet. 2017;18:321–56.
CAS
PubMed
PubMed Central
Google Scholar
Tito RY, Macmil S, Wiley G, Najar F, Cleeland L, Qu C, et al. Phylotyping and functional analysis of two ancient human microbiomes. PLoS One. 2008;3:e3703.
PubMed
PubMed Central
Google Scholar
Cano RJ, Tiefenbrunner F, Ubaldi M, Del Cueto C, Luciani S, Cox T, et al. Sequence analysis of bacterial DNA in the colon and stomach of the Tyrolean Iceman. Am J Phys Anthropol. 2000;112:297–309. digitalcommons.calpoly.edu.
CAS
PubMed
Google Scholar
Nasidze I, Li J, Quinque D, Tang K, Stoneking M. Global diversity in the human salivary microbiome. Genome Res. 2009;19:636–43.
CAS
PubMed
PubMed Central
Google Scholar
Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature. 2011;478:506–10.
Maixner F, Krause-Kyora B, Turaev D, Herbig A, Hoopmann MR, Hallows JL, et al. The 5300-year-old Helicobacter pylori genome of the iceman. Science. 2016;351:162–5.
Khairat R, Ball M, Chang C-CH, Bianucci R, Nerlich AG, Trautmann M, et al. First insights into the metagenome of Egyptian mummies using next-generation sequencing. J Appl Genet. 2013;54:309–25.
CAS
PubMed
Google Scholar
Gilbert MTP, Barnes I, Collins MJ, Smith C, Eklund J, Goudsmit J, et al. Long-term survival of ancient DNA in Egypt: response to Zink and Nerlich (2003). Am J Phys Anthropol. 2005. p. 110–4; discussion 115–8.
Pääbo S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci U S A. 1989;86:1939–43.
PubMed
PubMed Central
Google Scholar
Lalremruata A, Ball M, Bianucci R, Welte B, Nerlich AG, Kun JFJ, et al. Molecular identification of falciparum malaria and human tuberculosis co-infections in mummies from the Fayum depression (Lower Egypt). PLoS One. 2013;8:e60307.
CAS
PubMed
PubMed Central
Google Scholar
Schuenemann VJ, Peltzer A, Welte B, van Pelt WP, Molak M, Wang C-C, et al. Ancient Egyptian mummy genomes suggest an increase of sub-Saharan African ancestry in post-Roman periods. Nat Commun. 2017;8:15694.
CAS
PubMed
PubMed Central
Google Scholar
Loreille O, Ratnayake S, Bazinet AL, Stockwell TB, Sommer DD, Rohland N, et al. Biological Sexing of a 4000-Year-Old Egyptian Mummy Head to Assess the Potential of Nuclear DNA Recovery from the Most Damaged and Limited Forensic Specimens. Genes. 2018;9. Available from: https://doi.org/10.3390/genes9030135.
Rubensohn O, Knatz F. Bericht über die Ausgrabungen bei Abusir el Mäläq im Jahre 1903. Z Aegypt Sprach Altertumskd. 1905;41–42:1–21.
Riggs C. The beautiful burial in Roman Egypt: art, identity, and funerary religion. OUP Oxford; 2006.
Google Scholar
Welte B. Zeitzeugen Aus Dem Wüstensand. Die Altägyptischen Mumienschädel Aus Abusir El-Meleq. VML Verlag Marie Leidorf; 2016.
Nicholson TM, Gradl M, Welte B, Metzger M, Pusch CM, Albert K. Enlightening the past: analytical proof for the use of Pistacia exudates in ancient Egyptian embalming resins. J Sep Sci. 2011;34:3364–71.
CAS
PubMed
Google Scholar
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41:D36–42.
CAS
PubMed
Google Scholar
Herbig A, Maixner F, Bos KI, Zink A, Krause J, Huson DH. MALT: Fast alignment and analysis of metagenomic DNA sequence data applied to the Tyrolean Iceman [Internet]. bioRxiv. 2016 [cited 2019 Apr 29]. p. 050559. Available from: https://www.biorxiv.org/content/10.1101/050559v1.
Hyde ER, Haarmann DP, Petrosino JF, Lynne AM, Bucheli SR. Initial insights into bacterial succession during human decomposition. Int J Legal Med. 2015;129:661–71.
PubMed
Google Scholar
Key FM, Posth C, Krause J, Herbig A, Bos KI. Mining metagenomic data sets for ancient DNA: recommended protocols for authentication. Trends Genet. 2017;33:508–20.
CAS
PubMed
Google Scholar
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011;8:761–3.
CAS
PubMed
PubMed Central
Google Scholar
Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486:215–21.
Google Scholar
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.
Google Scholar
Huson DH, Schuster SC. User manual for MEGAN V2beta9. 2008; Available from: http://ab.inf.uni-tuebingen.de/data/software/megan6/download/manual.pdf.
Google Scholar
Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN Community Edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:e1004957.
PubMed
PubMed Central
Google Scholar
Briggs AW, Stenzel U, Johnson PLF, Green RE, Kelso J, Prüfer K, et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci U S A. 2007;104:14616–21.
CAS
PubMed
PubMed Central
Google Scholar
Schaffer JN, Pearson MM. Proteus mirabilis and urinary tract infections. Microbiol Spectr. 2015;3:4494–9.
Mordi RM, Momoh MI. Incidence of Proteus species in wound infections and their sensitivity pattern in the University of Benin Teaching Hospital. Afr J Biotechnol. 2009;8(5):725–30.
CAS
Google Scholar
Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev. 1990;3:46–65.
CAS
PubMed
PubMed Central
Google Scholar
Harbeck M. Anleitung zur standardisierten Skelettdokumentation der Staatssammlung für Anthropologie und Paläoanatomie München. 2018 [cited 2018 Mar 6]; Available from: http://www.academia.edu/15984894/Anleitung_zur_standardisierten_Skelettdokumentation_der_Staatssammlung_für_Anthropologie_und_Paläoanatomie_München.
Grupe G, Harbeck M, McGlynn GC. Prähistorische Anthropologie. Springer; 2015.
Ferembach D, Schwidetzky I, Stloukal M. Recommendations for age and sex diagnoses of skeletons. Bulletins Et Memoires De La Societe D Anthropologie De Paris. 1979;6(1):7–45.
AlQahtani SJ, Hector MP, Liversidge HM. Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol. 2010;142:481–90.
CAS
PubMed
Google Scholar
Meindl RS, Lovejoy CO. Ectocranial suture closure: A revised method for the determination of skeletal age at death based on the lateral-anterior sutures. American journal of physical. Wiley Online Library; 1985; Available from: http://onlinelibrary.wiley.com/doi/10.1002/ajpa.1330680106/full.
Herrmann B, Grupe G, Hummel S, Piepenbrink H, Schutkowski H. Prähistorische Anthropologie: Leitfaden der Feld- und Labormethoden. Springer-Verlag; 2013.
Buikstra JE, Ubelaker DH. Standards for data collection from human skeletal remains: Proceedings of a seminar at the Field Museum of Natural History (Arkansas Archaeology Research Series 44). Fayetteville Arkansas Archaeological Survey. pengen-nonton.com; 1994;.
Google Scholar
Adler C-P. Knochenkrankheiten: Diagnostik makroskopischer, histologischer und radiologischer Strukturveränderungen des Skeletts: Springer-Verlag; 2013.
Aufderheide AC, Rodríguez-Martín C, Langsjoen O. The Cambridge encyclopedia of human paleopathology. Cambridge University Press Cambridge; 1998.
Ortner DJ. Identification of pathological conditions in human skeletal remains: Academic Press; 2003.
Stuart-Macadam P. Porotic hyperostosis: a new perspective. Am J Phys Anthropol. 1992;87:39–47.
CAS
PubMed
Google Scholar
Walker PL, Bathurst RR, Richman R. The causes of porotic hyperostosis and cribra orbitalia: A reappraisal of the iron-deficiency-anemia hypothesis. American Journal of [Internet]. Wiley Online Library; 2009; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ajpa.21031.
Haas CJ, Zink A, Pálfi G, Szeimies U, Nerlich AG. Detection of leprosy in ancient human skeletal remains by molecular identification of Mycobacterium leprae. Am J Clin Pathol. 2000;114:428–36. academic.oup.com.
Schuenemann VJ, Singh P, Mendum TA, Krause-Kyora B, Jäger G, Bos KI, et al. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science. 2013;341:179–83.
Mendum TA, Schuenemann VJ, Roffey S, Taylor GM, Wu H, Singh P, et al. Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic. BMC Genomics. 2014;15:270.
Schuenemann VJ, Avanzi C, Krause-Kyora B, Seitz A, Herbig A, Inskip S, et al. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathog. 2018;14:e1006997.
Singh P, Benjak A, Carat S, Kai M, Busso P, Avanzi C, et al. Genome-wide re-sequencing of multidrug-resistant Mycobacterium leprae Airaku-3. Clin Microbiol Infect Elsevier. 2014;20:O619–22.
Truman RW, Singh P, Sharma R, Busso P, Rougemont J, Paniz-Mondolfi A, et al. Probable zoonotic leprosy in the southern United States. N Engl J Med. 2011;364:1626–33.
CAS
PubMed
PubMed Central
Google Scholar
Singh P, Benjak A, Schuenemann VJ, Herbig A, Avanzi C, Busso P, et al. Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis. Proc Natl Acad Sci U S A. 2015;112:4459–64.
Avanzi C, Busso P, Benjak A, Loiseau C, Fomba A, Doumbia G, et al. Transmission of drug-resistant leprosy in Guinea-Conakry detected using molecular epidemiological approaches. Clin Infect Dis. 2016;63:1482–4.
PubMed
Google Scholar
Honap TP, Pfister L-A, Housman G, Mills S, Tarara RP, Suzuki K, et al. Mycobacterium leprae genomes from naturally infected nonhuman primates. PLoS Negl Trop Dis. 2018;12:e0006190.
Benjak A, Avanzi C, Singh P, Loiseau C, Girma S, Busso P, et al. Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nat Commun. 2018;9:352. nature.com.
Sharma R, Singh P, Loughry WJ, Lockhart JM, Inman WB, Duthie MS, et al. Zoonotic leprosy in the southeastern United States. Emerg Infect Dis. 2015;21:2127–34.
CAS
PubMed
PubMed Central
Google Scholar
Monot M, Honoré N, Garnier T, Zidane N, Sherafi D, Paniz-Mondolfi A, et al. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet. 2009;41:1282–9.
Krause-Kyora B, Susat J, Key FM, Kühnert D, Bosse E, Immel A, et al. Neolithic and medieval virus genomes reveal complex evolution of hepatitis B. Elife. 2018;7. Available from: https://doi.org/10.7554/eLife.36666.
Mühlemann B, Jones TC, Damgaard P de B, Allentoft ME, Shevnina I, Logvin A, et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature. 2018;557:418–423.
Kahila Bar-Gal G, Kim MJ, Klein A, Shin DH, Oh CS, Kim JW, et al. Tracing hepatitis B virus to the 16th century in a Korean mummy. 2012; Available from: https://www.ncbi.nlm.nih.gov/pubmed/22610996.
Patterson Ross Z, Klunk J, Fornaciari G, Giuffra V, Duchêne S, Duggan AT, et al. The paradox of HBV evolution as revealed from a 16th century mummy. PLoS Pathog. 2018;14:e1006750.
PubMed
PubMed Central
Google Scholar
Simmonds P, Midgley S. Recombination in the genesis and evolution of hepatitis B virus genotypes. J Virol. 2005;79:15467–76.
CAS
PubMed
PubMed Central
Google Scholar
Arora N, Schuenemann VJ, Jäger G, Peltzer A, Seitz A, Herbig A, et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol. 2016;2:16245.
Souza BF de CD, Drexler JF, Lima RS de, Rosário M de OHV do, Netto EM. Theories about evolutionary origins of human hepatitis B virus in primates and humans. Braz J Infect Dis 2014;18:535–543.
Rasche A, Souza BF de CD, Drexler JF. Bat hepadnaviruses and the origins of primate hepatitis B viruses. Curr Opin Virol 2016;16:86–94.
Renaud G, Slon V, Duggan AT, Kelso J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 2015;16:224.
PubMed
PubMed Central
Google Scholar
Weissensteiner H, Pacher D, Kloss-Brandstätter A, Forer L, Specht G, Bandelt H-J, et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res; 2016;44:W58–63 academic.oup.com.
Van Oven M. PhyloTree Build 17: growing the human mitochondrial DNA tree. Forensic Science International: Genetics Supplement Series. Elsevier. 2015;5:e392–4.
Google Scholar
Haak W, Forster P, Bramanti B, Matsumura S, Brandt G, Tänzer M, et al. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science. 2005;310:1016–8.
CAS
PubMed
Google Scholar
Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Breen J, et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature. 2017;544:357–61.
CAS
PubMed
Google Scholar
Rôças IN, Siqueira JF, Santos KRN, Coelho AMA, de Janeiro R. “Red complex” (Bacteroides forsythus, Porphyromonas gingivalis, and Treponema denticola ) in endodontic infections: a molecular approach. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology Endodontology. 2001;91:468–71.
Göker M, Held B, Lucas S, Nolan M, Yasawong M, Del Rio TG, et al. Complete genome sequence of Olsenella uli type strain (VPI D76D-27C T). Stand Genomic Sci. 2010;3:–76.
Palmer RJ Jr. Composition and development of oral bacterial communities. Periodontol. 2014;64:20–39.
Google Scholar
Wells CL, Wilkins TD. Clostridia: Sporeforming anaerobic bacilli. In: Baron S, editor. Medical Microbiology. Galveston (TX): University of Texas Medical Branch at Galveston; 2011. p. 1012–45.
Google Scholar
Javan GT, Finley SJ, Smith T, Miller J, Wilkinson JE. Cadaver Thanatomicrobiome signatures: the ubiquitous nature of Clostridium species in human decomposition. Front Microbiol. 2017;8:2096.
PubMed
PubMed Central
Google Scholar
Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev. 2000;64:548–72.
CAS
PubMed
PubMed Central
Google Scholar
Filippidou S, Junier T, Wunderlin T, Lo C-C, Li P-E, Chain PS, et al. Under-detection of endospore-forming Firmicutes in metagenomic data. Comput Struct Biotechnol J 2015;13:299–306.
Adserias-Garriga J, Quijada NM, Hernandez M, Rodríguez Lázaro D, Steadman D, Garcia-Gil LJ. Dynamics of the oral microbiota as a tool to estimate time since death. Mol Oral Microbiol. 2017;32:511–6.
CAS
PubMed
Google Scholar
Can I, Javan GT, Pozhitkov AE, Noble PA. Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. J Microbiol Methods. 2014;106:1–7.
CAS
PubMed
Google Scholar
Pechal JL, Crippen TL, Benbow ME, Tarone AM, Dowd S, Tomberlin JK. The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. Int J Legal Med. 2014;128:193–205.
PubMed
Google Scholar
Metcalf JL. Estimating the postmortem interval using microbes: knowledge gaps and a path to technology adoption. Forensic Sci Int Genet. 2019;38:211–8.
CAS
PubMed
Google Scholar
Velsko IM, Fellows Yates JA, Aron F, Hagan RW, Frantz LAF, Loe L, et al. Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage. Microbiome. 2019;7:102.
PubMed
PubMed Central
Google Scholar
Tito RY, Knights D, Metcalf J, Obregon-Tito AJ, Cleeland L, Najar F, et al. Insights from characterizing extinct human gut microbiomes. PLoS One. 2012;7:e51146.
CAS
PubMed
PubMed Central
Google Scholar
Mobley HL, Belas R. Swarming and pathogenicity of Proteus mirabilis in the urinary tract. Trends Microbiol. 1995;3:280–4.
Rózalski A, Sidorczyk Z, Kotełko K. Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev. 1997;61:65–89.
PubMed
PubMed Central
Google Scholar
Höss M, Jaruga P, Zastawny TH, Dizdaroglu M, Pääbo S. DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res. academic.oup.com; 1996;24:1304–7.
Donoghue HD, Marcsik A, Matheson C, Vernon K, Nuorala E, Molto JE, et al. Co–infection of Mycobacterium tuberculosis and Mycobacterium leprae in human archaeological samples: a possible explanation for the historical decline of leprosy. Proceedings of the Royal Society B: Biological Sciences. Royal Society. 2005;272:389–94.
Roberts CA, Lewis ME, Manchester K. The past and present of leprosy : archaeological, historical, palaeopathological and clinical approaches : 3rd International Congress on the Evolution and palaeoepidemiology of the infectious diseases, ICEPID, 26-31 July 1999, University of Bradford ; proceedings. Oxford: Archaeopress; 2002. p. 179–92.
Robbins G, Tripathy VM, Misra VN, Mohanty RK, Shinde VS, Gray KM, et al. Ancient skeletal evidence for leprosy in India (2000 B.C.). PLoS One. 2009;4:e5669.
Dharmendra. Leprosy in ancient Indian medicine. Int J Lepr. 1947;15:424–30.
Mariotti V, Dutour O, Belcastro MG, Facchini F, Brasili P. Probable early presence of leprosy in Europe in a Celtic skeleton of the 4th-3rd century BC (Casalecchio di Reno, Bologna, Italy). Int J Osteoarchaeol. 2005;15:311–25.
Google Scholar
Köhler K, Marcsik A, Zádori P, Biro G, Szeniczey T, Fábián S, et al. Possible cases of leprosy from the Late Copper Age (3780-3650 cal BC) in Hungary. PLoS One. 2017;12:e0185966.
PubMed
PubMed Central
Google Scholar
Paraskevis D, Magiorkinis G, Magiorkinis E, Ho SYW, Belshaw R, Allain J-P, et al. Dating the origin and dispersal of hepatitis B virus infection in humans and primates. Hepatology Wiley Online Library. 2013;57:908–16.
Google Scholar
Andernach IE, Hunewald OE, Muller CP. Bayesian inference of the evolution of HBV/E. PLoS One. 2013;8:e81690.
PubMed
PubMed Central
Google Scholar
Zehender G, Ebranati E, Gabanelli E, Shkjezi R, Lai A, Sorrentino C, et al. Spatial and temporal dynamics of hepatitis B virus D genotype in Europe and the Mediterranean Basin. PLoS One. 2012;7:e37198.
CAS
PubMed
PubMed Central
Google Scholar
Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A. National Acad Sciences. 2013;110:15758–63.
CAS
Google Scholar
Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc. cshprotocols.cshlp.org; 2010;2010:db.prot5448.
Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 2012;40:e3.
CAS
PubMed
Google Scholar
Cooper A, Poinar HN. Ancient DNA: do it right or not at all. Science. 2000. p. 1139.
Briggs AW, Stenzel U, Meyer M, Krause J, Kircher M, Pääbo S. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 2010;38:e87.
PubMed
Google Scholar
Vågene ÅJ, Herbig A, Campana MG, Robles García NM, Warinner C, Sabin S, et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat Ecol Evol. 2018;2:520–8.
Neukamm J, Peltzer A. Integrative-Transcriptomics/DamageProfiler v0.3.12 [Internet]. 2018. Available from: https://zenodo.org/record/1288880.
Köberl M, Müller H, Ramadan EM, Berg G. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One. 2011;6:e24452.
PubMed
PubMed Central
Google Scholar
Peltzer A, Jäger G, Herbig A, Seitz A, Kniep C, Krause J, et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 2016;17:60.
PubMed
PubMed Central
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. Online [Mar 2016]. 2010;.
Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. 2016;9:88.
PubMed
PubMed Central
Google Scholar
Van der Auwera GA, Carneiro MO. From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Current protocols in [Internet]. Wiley Online Library; 2013; Available from: http://onlinelibrary.wiley.com/doi/10.1002/0471250953.bi1110s43/full.
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.
CAS
PubMed
PubMed Central
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. Taylor & Francis; 2012;6:80–92.
Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.
PubMed
Google Scholar
Seitz A. MUSIAL - MUlti sample varIant AnaLysis [internet]. GitHub: GitHub repository; 2018. Available from: https://github.com/Integrative-Transcriptomics/MUSIAL.
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol; 2018;35:1547–9 academic.oup.com.
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol; 2010;59:307–21 academic.oup.com.
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:e1003537.
PubMed
PubMed Central
Google Scholar
Bouckaert RR, Drummond AJ. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol Biol. 2017;17:42.
PubMed
PubMed Central
Google Scholar
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian Phylogenetics using tracer 1.7. Syst Biol. 2018;67:901–4.
CAS
PubMed
PubMed Central
Google Scholar
Ramsden C, Melo FL, Figueiredo LM, Holmes EC, Zanotto PMA, VGDN Consortium. High rates of molecular evolution in hantaviruses. Mol Biol Evol. 2008;25:1488–92.
CAS
PubMed
Google Scholar
Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016;2:vew007.
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
CAS
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303. genome.cshlp.org.
CAS
PubMed
PubMed Central
Google Scholar
Huson DH. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics. 1998;14:68–73.
CAS
PubMed
Google Scholar
Bryant D, Moulton V. Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol; 2004;21:255–65. academic.oup.com.
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
CAS
PubMed
PubMed Central
Google Scholar
Martin D, Rybicki E. RDP: detection of recombination amongst aligned sequences. Bioinformatics. 2000;16:562–3.
CAS
PubMed
Google Scholar
Padidam M, Sawyer S, Fauquet CM. Possible emergence of new geminiviruses by frequent recombination. Virology. 1999;265:218–25.
CAS
PubMed
Google Scholar
Posada D, Crandall KA. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A. 2001;98:13757–62.
CAS
PubMed
PubMed Central
Google Scholar
Smith JM. Analyzing the mosaic structure of genes. J Mol Evol 1992;34:126–9.
Martin DP, Posada D, Crandall KA, Williamson C. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retrovir. 2005;21:98–102.
CAS
PubMed
Google Scholar
Gibbs MJ, Armstrong JS, Gibbs AJ. Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics. 2000;16:573–82.
CAS
PubMed
Google Scholar
Lam HM, Ratmann O, Boni MF. Improved algorithmic complexity for the 3SEQ recombination detection algorithm. Mol Biol Evol. 2018;35:247–51.
CAS
PubMed
Google Scholar
Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:vev003.
PubMed
PubMed Central
Google Scholar
Neukamm J, Pfrengle S, Molak M, Seitz A, Francken M, Eppenberger P, et al. 2000-year-old pathogen genomes reconstructed from metagenomic analysis of Egyptian mummified individuals. ENA study. [cited 2020 Jul 28]. Available from: https://www.ebi.ac.uk/ena/data/view/PRJEB33848.