Blahna MT, Jones MR, Quinton LJ, Matsuura KY, Mizgerd JP. Terminal uridyltransferase enzyme Zcchc11 promotes cell proliferation independent of its uridyltransferase activity. J Biol Chem. 2011;286(49):42381–9.
CAS
PubMed
PubMed Central
Google Scholar
Hagan JP, Piskounova E, Gregory RI. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol. 2009;16(10):1021–5.
CAS
PubMed
PubMed Central
Google Scholar
Jones MR, Quinton LJ, Blahna MT, Neilson JR, Fu S, Ivanov AR, Wolf DA, Mizgerd JP. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol. 2009;11(9):1157–63.
CAS
PubMed
PubMed Central
Google Scholar
Le Pen J, Jiang H, Di Domenico T, Kneuss E, Kosalka J, Leung C, Morgan M, Much C, Rudolph KLM, Enright AJ, et al. Terminal uridylyltransferases target RNA viruses as part of the innate immune system. Nat Struct Mol Biol. 2018;25(9):778–86.
PubMed
PubMed Central
Google Scholar
Warkocki Z, Krawczyk PS, Adamska D, Bijata K, Garcia-Perez JL, Dziembowski A. Uridylation by TUT4/7 restricts retrotransposition of human LINE-1s. Cell. 2018;174(6):1537.
CAS
PubMed
PubMed Central
Google Scholar
Yeo J, Kim VN. U-tail as a guardian against invading RNAs. Nat Struct Mol Biol. 2018;25(10):903–5.
CAS
PubMed
Google Scholar
Kwak JE, Wickens M. A family of poly(U) polymerases. RNA. 2007;13(6):860–7.
CAS
PubMed
PubMed Central
Google Scholar
Xu F, Feng XZ, Chen XY, Weng CC, Yan Q, Xu T, Hong MJ, Guang SH. A cytoplasmic Argonaute protein promotes the inheritance of RNAi. Cell Rep. 2018;23(8):2482–94.
CAS
PubMed
Google Scholar
van Wolfswinkel JC, Claycomb JM, Batista PJ, Mello CC, Berezikov E, Ketting RF. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs. Cell. 2009;139(1):135–48.
PubMed
Google Scholar
Claycomb JM, Batista PJ, Pang KM, Gu W, Vasale JJ, van Wolfswinkel JC, Chaves DA, Shirayama M, Mitani S, Ketting RF, et al. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell. 2009;139(1):123–34.
CAS
PubMed
PubMed Central
Google Scholar
Lehrbach NJ, Armisen J, Lightfoot HL, Murfitt KJ, Bugaut A, Balasubramanian S, Miska EA. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol. 2009;16(10):1016–20.
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Maine EM: The balance of poly(U) polymerase activity ensures germline identity, survival and development in Caenorhabditis elegans. Development 2018, 145(19):dev165944. https://doi.org/10.1242/dev.165944.
Lafontaine DLJ. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol. 2015;22(1):11–9.
CAS
PubMed
Google Scholar
Henras AK, Plisson-Chastang C, O'Donohue MF, Chakraborty A, Gleizes PE. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA. 2015;6(2):225–42.
CAS
PubMed
Google Scholar
Lafontaine DL. A ‘garbage can’ for ribosomes: how eukaryotes degrade their ribosomes. Trends Biochem Sci. 2010;35(5):267–77.
CAS
PubMed
Google Scholar
Thoms M, Thomson E, Bassler J, Gnadig M, Griesel S, Hurt E. The exosome is recruited to RNA substrates through specific adaptor proteins. Cell. 2015;162(5):1029–38.
CAS
PubMed
Google Scholar
Vanacova S, Stefl R. The exosome and RNA quality control in the nucleus. EMBO Rep. 2007;8(7):651–7.
CAS
PubMed
PubMed Central
Google Scholar
Houseley J, LaCava J, Tollervey D. RNA-quality control by the exosome. Nat Rev Mol Cell Biol. 2006;7(7):529–39.
CAS
PubMed
Google Scholar
Lubas M, Damgaard CK, Tomecki R, Cysewski D, Jensen TH, Dziembowski A. Exonuclease hDIS3L2 specifies an exosome-independent 3 '-5 ' degradation pathway of human cytoplasmic mRNA. EMBO J. 2013;32(13):1855–68.
CAS
PubMed
PubMed Central
Google Scholar
Zhou XF, Feng XZ, Mao H, Li M, Xu F, Hu K, Guang SH. RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nature Structural Mole Biol. 2017;24(3):258.
CAS
Google Scholar
Ustianenko D, Pasulka J, Feketova Z, Bednarik L, Zigackova D, Fortova A, Zavolan M, Vanacova S. TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs. EMBO J. 2016;35(20):2179–91.
CAS
PubMed
PubMed Central
Google Scholar
Faehnle CR, Walleshauser J, Joshua-Tor L. Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway. Nature. 2014;514(7521):252–6.
CAS
PubMed
PubMed Central
Google Scholar
Pirouz M, Munafo M, Ebrahimi AG, Choe J, Gregory RI. Exonuclease requirements for mammalian ribosomal RNA biogenesis and surveillance. Nat Struct Mol Biol. 2019;26(6):490–500.
CAS
PubMed
PubMed Central
Google Scholar
Zhu C, Yan Q, Weng C, Hou X, Mao H, Liu D, Feng X, Guang S. Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA. Proc Natl Acad Sci U S A. 2018;115(40):10082–7.
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Chen X, Wang Y, Feng X, Guang S. A new layer of rRNA regulation by small interference RNAs and the nuclear RNAi pathway. RNA Biol. 2017;14(11):1492–8.
PubMed
PubMed Central
Google Scholar
Yan Q, Zhu C, Guang S, Feng X. The functions of non-coding RNAs in rRNA regulation. Front Genet. 2019;10:290.
CAS
PubMed
PubMed Central
Google Scholar
Guang S, Bochner AF, Pavelec DM, Burkhart KB, Harding S, Lachowiec J, Kennedy S. An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science. 2008;321(5888):537–41.
CAS
PubMed
PubMed Central
Google Scholar
Yi YH, Ma TH, Lee LW, Chiou PT, Chen PH, Lee CM, Chu YD, Yu H, Hsiung KC, Tsai YT, et al. A genetic cascade of let-7-ncl-1-fib-1 modulates nucleolar size and rRNA Pool in Caenorhabditis elegans. PLoS Genet. 2015;11(10):e1005580.
PubMed
PubMed Central
Google Scholar
Lee LW, Lee CC, Huang CR, Lo SJ. The nucleolus of Caenorhabditis elegans. J Biomed Biotechnol. 2012;2012:601274.
PubMed
PubMed Central
Google Scholar
Chang H, Triboulet R, Thornton JE, Gregory RIJN: A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathway. 2013, 497(7448):244–248.
Spracklin G, Fields B, Wan G, Becker D, Wallig A, Shukla A, Kennedy S. The RNAi inheritance machinery of Caenorhabditis elegans. Genetics. 2017;206(3):1403–16.
CAS
PubMed
PubMed Central
Google Scholar
Schmidt K, Butler JS. Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity. Wiley Interdiscip Rev RNA. 2013;4(2):217–31.
CAS
PubMed
PubMed Central
Google Scholar
Menezes MR, Balzeau J, Hagan JP. 3 ' RNA uridylation in epitranscriptomics, gene regulation, and disease. Front Mol Biosci. 2018;5.
Lee M, Kim B, Kim VN. Emerging roles of RNA modification: m (6) A and U-tail. Cell. 2014;158(5):980–7.
CAS
PubMed
Google Scholar
Trippe R, Guschina E, Hossbach M, Urlaub H, Luhrmann R, Benecke BJ. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. Rna-a Publication of the Rna Society. 2006;12(8):1494–504.
CAS
Google Scholar
De Almeida C, Scheer H, Zuber H, Gagliardi D: RNA uridylation: a key posttranscriptional modification shaping the coding and noncoding transcriptome. Wiley Interdisciplinary Reviews-Rna 2018, 9(1). https://doi.org/10.1002/wrna.1440.
Heo I, Ha M, Lim J, Yoon MJ, Park JE, Kwon SC, Chang H, Kim VN. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell. 2012;151(3):521–32.
CAS
PubMed
Google Scholar
Pirouz M, Du P, Munafo M, Gregory RI. Dis3l2-mediated decay is a quality control pathway for noncoding RNAs. Cell Rep. 2016;16(7):1861–73.
CAS
PubMed
PubMed Central
Google Scholar
Pena C, Hurt E, Panse VG. Eukaryotic ribosome assembly, transport and quality control. Nat Struct Mol Biol. 2017;24(9):689–99.
CAS
PubMed
Google Scholar
Karbstein K. Quality control mechanisms during ribosome maturation. Trends Cell Biol. 2013;23(5):242–50.
CAS
PubMed
PubMed Central
Google Scholar
Ren G, Xie M, Zhang S, Vinovskis C, Chen X, Yu B. Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage. Proc Natl Acad Sci U S A. 2014;111(17):6365–70.
CAS
PubMed
PubMed Central
Google Scholar
Kamminga LM, Luteijn MJ, den Broeder MJ, Redl S, Kaaij LJ, Roovers EF, Ladurner P, Berezikov E, Ketting RF. Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J. 2010;29(21):3688–700.
CAS
PubMed
PubMed Central
Google Scholar
Ibrahim F, Rymarquis LA, Kim EJ, Becker J, Balassa E, Green PJ, Cerutti H. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc Natl Acad Sci U S A. 2010;107(8):3906–11.
CAS
PubMed
PubMed Central
Google Scholar
Frokjaer-Jensen C, Davis MW, Sarov M, Taylor J, Flibotte S, LaBella M, Pozniakovsky A, Moerman DG, Jorgensen EM. Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat Methods. 2014;11(5):529–34.
PubMed
PubMed Central
Google Scholar
Zeng C, Weng C, Wang X, Yan YH, Li WJ, Xu D, Hong M, Liao S, Dong MQ, Feng X, et al. Functional proteomics identifies a PICS complex required for piRNA maturation and chromosome segregation. Cell Rep. 2019;27(12):3561–72 e3563.
CAS
PubMed
Google Scholar
Feng GX, Zhu ZW, Li WJ, Lin QR, Chai YP, Dong MQ, Ou GS. Hippo kinases maintain polarity during directional cell migration in Caenorhabditis elegans. EMBO J. 2017;36(3):334–45.
CAS
PubMed
Google Scholar
Wang Y, Weng C, Chen X, Zhou X, Huang X, Yan Y, Zhu C. CDE-1 suppresses the production of risiRNA by coupling polyuridylation and degradation of rRNA. Supplementary Datasets. 2020. NCBI accession GSE139530 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139530.
Wang Y, Weng C, Chen X, Zhou X, Huang X, Yan Y, Zhu C. CDE-1 suppresses the production of risiRNA by coupling polyuridylation and degradation of rRNA. Supplementary Datasets. 2020. NCBI accession GSE156000 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156000.