Kelber A, Vorobyev M, Osorio D. Animal colour vision - behavioural tests and physiological concepts. Biol Rev. 2003;78(1):81–118.
Article
PubMed
Google Scholar
Baden T, Euler T, Berens P. Understanding the retinal basis of vision across species. Nat Rev Neurosci. 2020;21(1):5–20.
Article
CAS
PubMed
Google Scholar
Branchek T. The development of photoreceptors in the zebrafish, brachydanio rerio. II Function. J Comp Neurol. 1984;224(1):116–22.
Article
CAS
PubMed
Google Scholar
Cameron DA. Mapping absorbance spectra, cone fractions, and neuronal mechanisms to photopic spectral sensitivity in the zebrafish. Vis Neurosci. 2002;19(3):365–72.
Article
PubMed
Google Scholar
Zimmermann M, Nevala N, Yoshimatsu T, Osorio D, Nilsson D, Berens P, et al. Zebrafish differentially process color across visual space to match natural scenes. Curr Biol. 2018;28(13):2018–32.
Article
CAS
PubMed
Google Scholar
Yoshimatsu T, Schröder C, Nevala NE, Berens P, Baden T. Fovea-like photoreceptor specializations underlie single UV cone driven prey-capture behavior in zebrafish. Neuron. 2020;107(2):320–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engström K. Cone types and cone arrangement in the retina of some cyprinids. Acta Zool. 1960;41(3):277–95.
Article
Google Scholar
Raymond P, Barthel L, Curran G. Developmental patterning of rod and cone photoreceptors in embryonic zebrafish. J Comp Neurol. 1995;359(4):537–50.
Article
CAS
PubMed
Google Scholar
Orger M, Baier H. Channeling of red and green cone inputs to the zebrafish optomotor response. Vis Neurosci. 2005;22(3):275–81.
Article
PubMed
Google Scholar
Guggiana-Nilo D, Engert F. Properties of the visible light phototaxis and UV avoidance behaviors in the larval zebrafish. Front Behav Neurosci. 2016;10:160.
Article
PubMed
PubMed Central
Google Scholar
Easter SS, Nicola GN. The development of vision in the zebrafish (Danio rerio). Dev Biol. 1996;180(2):646–63.
Article
CAS
PubMed
Google Scholar
Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE. A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci U S A. 1995;92(23):10545–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark DT. Visual responses in the developing zebrafish (Brachydanio rerio). Eugene: University of Oregon Press; 1981.
Google Scholar
Borla M, Palecek B, Budick S, O’Malley D. Prey capture by larval zebrafish: evidence for fine axial motor control. Brain Behav Evol. 2002;60(4):207–29.
Article
PubMed
Google Scholar
Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F, et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature. 2012;485(7399):471–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunn TW, Gebhardt C, Naumann EA, Riegler C, Ahrens MB, Engert F, et al. Neural circuits underlying visually evoked escapes in larval zebrafish. Neuron. 2016;89(3):613–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naumann E, Fitzgerald J, Dunn T, Rihel J, Sompolinsky H, Engert F. From whole-brain data to functional circuit models: the zebrafish optomotor response. Cell. 2016;167(4):947–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Portugues R, Feierstein C, Engert F, Orger M. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron. 2014;81(6):1328–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Mu Y, Hu Y, Kuan AT, Nikitchenko M, Randlett O, et al. Brain-wide organization of neuronal activity and convergent sensorimotor transformations in larval zebrafish. Neuron. 2018;100(4):876–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Randlett O, Wee CL, Naumann EA, Nnaemeka O, Schoppik D, Fitzgerald JE, et al. Whole-brain activity mapping onto a zebrafish brain atlas. Nat Methods. 2015;12(11):1039–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson J, Schmitt E, Harosi F, Reece R, Dowling J. Zebrafish ultraviolet visual pigment - absorption-spectrum, sequence, and localization. Proc Natl Acad Sci U S A. 1993;90(13):6009–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Govardovskii V, Fyhrquist N, Reuter T, Kuzmin D, Donner K. In search of the visual pigment template. Vis Neurosci. 2000;17(4):509–28.
Article
CAS
PubMed
Google Scholar
Euler T, Franke K, Baden T. Studying a light sensor with light: multiphoton imaging in the retina. Hartveit E (eds) Multiphoton microscopy. Neuromethods, vol 148: Humana, New York, NY; 2019.
Franke K, Berens P, Schubert T, Bethge M, Euler T, Baden T. Inhibition decorrelates visual feature representations in the inner retina. Nature. 2017;542(7642):439–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nikolaou N, Lowe AS, Walker AS, Abbas F, Hunter PR, Thompson ID, et al. Parametric functional maps of visual inputs to the tectum. Neuron. 2012;76(2):317–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chklovskii DB, Koulakov AA. Maps in the brain: what can we learn from them? Annu Rev Neurosci. 2004;27:369–92.
Article
CAS
PubMed
Google Scholar
Bianco IH, Engert F. Visuomotor transformations underlying hunting behavior in zebrafish. Curr Biol. 2015;25(7):831–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niell CM, Smith SJ. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron. 2005;45(6):941–51.
Article
CAS
PubMed
Google Scholar
Temizer I, Donovan JC, Baier H, Semmelhack JL. A visual pathway for looming-evoked escape in larval zebrafish. Curr Biol. 2015;25(14):1823–34.
Article
CAS
PubMed
Google Scholar
Antinucci P, Folgueira M, Bianco IH. Pretectal neurons control hunting behaviour. Elife. 2019;8:e48114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowe A, Nikolaou N, Hunter P, Thompson I, MP M. A systems-based dissection of retinal inputs to the zebrafish tectum reveals different rules for different functional classes during development. J Neurosci. 2013;33(35):13946–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou M, Bear J, Roberts PA, Janiak FK, Semmelhack J, Yoshimatsu T, et al. Zebrafish retinal ganglion cells asymmetrically encode spectral and temporal information across visual space. Curr Biol. 2020;30(15):2927–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robles E, Laurell E, Baier H. The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity. Curr Biol. 2014;24(18):2085–96.
Article
CAS
PubMed
Google Scholar
Preuss SJ, Trivedi CA, vom Berg-Maurer CM, Ryu S, Bollmann JH. Classification of object size in retinotectal microcircuits. Curr Biol 2014;24(20):2376–2385.
Wang K, Hinz J, Zhang Y, Thiele TR, Arrenberg AB. Parallel channels for motion feature extraction in the pretectum and tectum of larval zebrafish. Cell Rep. 2020;30(2):442–53.
Article
CAS
PubMed
Google Scholar
Kubo F, Hablitzel B, Dal Maschio M, Driever W, Baier H, Arrenberg AB. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron. 2014;81(6):1344–59.
Article
CAS
PubMed
Google Scholar
Wang K, Hinz J, Haikala V, Reiff DF, Arrenberg AB. Selective processing of all rotational and translational optic flow directions in the zebrafish pretectum and tectum. BMC Biol. 2019;17(1):29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf S, Dubreuil AM, Bertoni T, Böhm UL, Bormuth V, Candelier R, et al. Sensorimotor computation underlying phototaxis in zebrafish. Nat Commun. 2017;8(1):651.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guggiana Nilo DA, Riegler C, Hübener M, Engert F. Colors everywhere: enhanced chromatic processing across the first visual synapse in the zebrafish central brain. bioRxiv 2020.06.19.160804; https://doi.org/10.1101/2020.06.19.160804.
Robinson J, Schmitt E, Dowling J. Temporal and spatial patterns of opsin gene-expression in zebrafish (Danio rerio). Vis Neurosci. 1995;12(5):895–906.
Article
CAS
PubMed
Google Scholar
Schmitt E, Dowling J. Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J Comp Neurol. 1999;404(4):515–36.
Article
CAS
PubMed
Google Scholar
Allison W, Barthel L, Skebo K, Takechi M, Kawamura S, Raymond P. Ontogeny of cone photoreceptor mosaics in zebrafish. J Comp Neurol. 2010;518(20):4182–95.
Article
PubMed
PubMed Central
Google Scholar
Meier A, Nelson R, Connaughton VP. Color processing in zebrafish retina. Front Cell Neurosci. 2018;12:327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baden T, Osorio D. The retinal basis of vertebrate color vision. Annu Rev Vis Sci. 2019;5:177–200.
Article
CAS
PubMed
Google Scholar
Connaughton PV, Nelson FR. Ultraviolet dominates ganglion cell light responses in larval zebrafish retinas. Invest Ophthalmol Vis Sci. 2015;56:3251.
Google Scholar
Burrill JD, Easter SS. Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio). J Comp Neurol. 1994;346(4):583–600.
Article
CAS
PubMed
Google Scholar
Nava SS, An S, Hamil T. Visual detection of UV cues by adult zebrafish (Danio rerio). J Vis. 2011;11(6):2.
Article
PubMed
Google Scholar
Mano H, Kojima D, Fukada Y. Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Mol Brain Res. 1999;73(1–2):110–8.
Article
CAS
PubMed
Google Scholar
Wada S, Shen B, Kawano-Yamashita E, Nagata T, Hibi M, Tamotsu S, et al. Color opponency with a single kind of bistable opsin in the zebrafish pineal organ. Proc Natl Acad Sci U S A. 2018;115(44):11310–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sapede D, Chaigne C, Blader P, Cau E. Functional heterogeneity in the pineal projection neurons of zebrafish. Mol Cell Neurosci. 2020;103:103468.
Morita Y. Lead pattern of the pineal neuron of the rainbow trout (Salmo irideus) by illumination of the diencephalon. Pflugers Arch. Gesamte Physiol. Menschen Tiere. 1966;289(3):155–67.
Article
CAS
Google Scholar
Meissl H, Ueck M. Extraocular photoreception of the pineal gland of the aquatic turtle Pseudemys scripta elegans. J Comp Phisiol. 1980;140:173–9.
Article
Google Scholar
Falcón J, Meissl H. The photosensory function of the pineal organ of the pike (Esox lucius L.) correlation between structure and function. Journal of Comparative Physiology. 1981;144:127–37.
Article
Google Scholar
Nüsslein-Volhard C, Dahm R. Zebrafish: a practical approach. Oxford: Oxford University Press; 2002.
Google Scholar
Müllenbroich MC, Turrini L, Silvestri L, Alterini T, Gheisari A, Tiso N, et al. Bessel beam illumination reduces random and systematic errors in quantitative functional studies using light-sheet microscopy. Front Cell Neurosci. 2018;12:315.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vladimirov N, Mu Y, Kawashima T, Bennett DV, Yang CT, Looger LL, et al. Light-sheet functional imaging in fictively behaving zebrafish. Nat Methods. 2014;11(9):883–4.
Article
CAS
PubMed
Google Scholar
Freeman J, Vladimirov N, Kawashima T, Mu Y, Sofroniew NJ, Bennett DV, et al. Mapping brain activity at scale with cluster computing. Nat Methods. 2014;11(9):941–50.
Article
CAS
PubMed
Google Scholar
Turrini L, Fornetto C, Marchetto G, Müllenbroich MC, Tiso N, Vettori A, et al. Optical mapping of neuronal activity during seizures in zebrafish. Sci Rep. 2017;7(1):3025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawashima T, Zwart M, Yang C, Mensh B, Ahrens M. The serotonergic system tracks the outcomes of actions to mediate short-term motor learning. Cell. 2016;167(4):933–46.
Article
CAS
PubMed
Google Scholar
Miri A, Daie K, Burdine RD, Aksay E, Tank DW. Regression-based identification of behavior-encoding neurons during large-scale optical imaging of neural activity at cellular resolution. J Neurophysiol. 2011;105(2):964–80.
Article
PubMed
Google Scholar
Rohlfing T, Maurer CR. Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Trans Inf Technol Biomed. 2003;7(1):16–25.
Article
PubMed
Google Scholar
Jefferis GS, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR, et al. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell. 2007;128(6):1187–203.
Article
CAS
PubMed
PubMed Central
Google Scholar