Salichos L, Rokas A. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature. 2013;497:327.
Article
CAS
PubMed
Google Scholar
Fernandez R, Kallal RJ, Dimitrov D, Ballesteros JA, Arnedo MA, Giribet G, Hormiga G. Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Curr Biol. 2018;28:1489–97.
Article
CAS
PubMed
Google Scholar
Whitfield JB, Lockhart PJ. Deciphering ancient rapid radiations. Trends Ecol Evol. 2007;22:258–65.
Article
PubMed
Google Scholar
Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim J-W, Lambkin C, Bertone MA, Cassel BK, Bayless KM, Heimberg AM, Wheeler BM, Peterson KJ, Pape T, Sinclair BJ, Skevington JH, Blagoderov V, Caravas J, Kutty SN, Schmidt-Ott U, Kampmeier GE, Thompson FC, Grimaldi DA, Beckenbach AT, Courtney GW, Friedrich M, Meier R, Yeates DK. Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A. 2011;108:5690–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pauli T, TO B, Meusemann K, Bayless K, Donath A, Podsiadlowski L, Mayer C, Kozlov A, Vasilikopoulos A, Liu S, Zhou XI. New data, same story: phylogenomics does not support Syrphoidea (Diptera: Syrphidae, Pipunculidae). Syst Entomol. 2018;43:447–59.
Article
Google Scholar
Pape T. Economic importance of Diptera. In A Manual of Central American Diptera. Ottawa: Canadian Government Publishing; 2009. p. 65–77.
Ashburner M, Bergman CM. Drosophila melanogaster: a case study of a model genomic sequence and its consequences. Genome Res. 2005;15:1661–7.
Article
CAS
PubMed
Google Scholar
Pape T, Blagoderov V, Mostovski MB. Order DIPTERA Linnaeus, 1758. In: Zhang Z-Q, editor. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness; 2011. p. 222–9.
Google Scholar
Grimaldi D, Engel MS, Engel MS. Evolution of the insects. Cambridge: Cambridge University Press; 2005.
Google Scholar
Lambkin CL, Sinclair BJ, Pape T, Courtney GW, Skevington JH, Meier R, Yeates DK, Blagoderov V, Wiegmann BM. The phylogenetic relationships among infraorders and superfamilies of Diptera based on morphological evidence. Syst Entomol. 2013;38:164–79.
Article
Google Scholar
Yeates DK, Wiegmann BM. Congruence and controversy: toward a higher-level phylogeny of Diptera. Annu Rev Entomol. 1999;44:397–428.
Article
CAS
PubMed
Google Scholar
Bickel D, Pape T, Meier R. Species of Diptera per family for all regions. In Diptera Diversity: Status, Challenges and Tools. Brill; 2010. p. 439–444.
Marshall SA. Flies the natural history & diversity of Diptera. New York: Firefly; 2012.
Google Scholar
Winkler IS, Rung A, Scheffer SJ. Hennig’s orphans revisited: testing morphological hypotheses in the “Opomyzoidea”(Diptera: Schizophora). Mol Phylo Evol. 2010;54:746–62.
Article
Google Scholar
Rust J, Singh H, Rana RS, McCann T, Singh L, Anderson K, Sarkar N, Nascimbene PC, Stebner F, Thomas JC, Kraemer MS. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proc Natl Acad Sci U S A. 2010;107:18360–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
von Tschirnhaus M, Hoffeins C. Fossil flies in Baltic amber–insights in the diversity of Tertiary Acalyptratae (Diptera, Schizophora), with new morphological characters and a key based on 1,000 collected inclusions. Denisia. 2009;26:171–212.
Google Scholar
Hennig W. Die Familien der Diptera Schizophora und ihre phylogenetischen Verwandtschaftsbeziehungen. Beiträge zur Entomol. 1958;8:505–688.
Google Scholar
Griffiths GCD. The phylogenetic classification of Diptera Cyclorrhapha, with special reference to the male postabdomen. Ser Entomol. 1972;8:1–340.
Google Scholar
McAlpine JF. Phylogeny and classification of the Muscomorpha. Manual of Nearctic Diptera 3. Ottawa: Canadian Government Publishing; 1989. p. 1397–518.
Kutty SN, Meusemann K, Bayless KM, Marinho MA, Pont AC, Zhou X, Misof B, Wiegmann BM, Yeates D, Cerretti P, Meier R. Phylogenomic analysis of Calyptratae: resolving the phylogenetic relationships within a major radiation of Diptera. Cladistics. 2019;35:605–22.
Article
Google Scholar
Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett. 2006;2:543–7.
Article
PubMed
PubMed Central
Google Scholar
Jarvis, ED, Mirarab, S, Aberer, AJ, Li, B, Houde, P, Li, C, Ho, SY, Faircloth, BC, Nabholz, B, Howard, JT, Suh, A, 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–1331.
Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–73.
Article
CAS
PubMed
Google Scholar
Ghavi-Helm Y, Jankowski A, Meiers S, Viales RR, Korbel JO, Furlong EE. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat Genet. 2019;51:1272–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Misof, B, Liu, S, Meusemann, K, Peters, RS, Donath, A, Mayer, C, Frandsen, PB, Ware, J, Flouri, T, Beutel, RG, Niehuis, O, Petersen, M, Izquierdo-Carrasco, F, Wappler, T, Rust, J, Aberer, AJ, Aspock, U, Aspock, H, Bartel, D, Blanke, A, Berger, S, Bohm, A, Buckley, TR, Calcott, B, Chen, J, Friedrich, F, Fukui, M, Fujita, M, Greve, C, Grobe, P, Gu, S, Huang, Y, Jermiin, LS, Kawahara, AY, Krogmann, L, Kubiak, M, Lanfear, R, Letsch, H, Li, Y, Li, Z, Li, J, Lu, H, Machida, R, Mashimo, Y, Kapli, P, McKenna, DD, Meng, G, Nakagaki, Y, Navarrete-Heredia, JL, Ott, M, Ou, Y, Pass, G, Podsiadlowski, L, Pohl, H, von Reumont, BM, Schutte, K, Sekiya, K, Shimizu, S, Slipinski, A, Stamatakis, A, Song, W, Su, X, Szucsich, NU, Tan, M, Tan, X, Tang, M, Tang, J, Timelthaler, G, Tomizuka, S, Trautwein, MD, Tong, X, Uchifune, T, Walzl, MG, Wiegmann, BM, Wilbrandt, J, Wipfler, B, Wong, TKF, Wu, Q, Wu, G, Xie, Y, Yang, S, Yang, Q, Yeates, DK, Yoshizawa, K, Zhang, Q, Zhang, R, Zhang, W, Zhang, Y, Zhao, J, Zhou, C, Zhou, L, Ziesmann, T, Zou, S, Li, Y, Xu, X, Zhang, Y, Yang, H, Wang, J, Wang, J, Kjer, KM, and Zhou, X, Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–7.
Shen XX, Hittinger CT, Rokas A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat Ecol Evol. 2017;5:1–10.
Google Scholar
Simon S, Blanke A, Meusemann K. Reanalyzing the Palaeoptera problem - the origin of insect flight remains obscure. Arthropod Struct Dev. 2018;47:328–38.
Article
PubMed
Google Scholar
Vasilikopoulos A, Balke M, Beutel RG, Donath A, Podsiadlowski L, Pflug JM, Waterhouse RM, Meusemann K, Peters RS, Escalona HE, Mayer C. Phylogenomics of the superfamily Dytiscoidea (Coleoptera: Adephaga) with an evaluation of phylogenetic conflict and systematic error. Mol Phylo Evol. 2019;135:270–85.
Article
Google Scholar
Naser-Khdour S, Minh BQ, Zhang W, Stone EA, Lanfear R. The prevalence and impact of model violations in phylogenetic analysis. Genome Biol Evol. 2019;11:3341–52.
Article
PubMed
PubMed Central
Google Scholar
Shepherd DA, Klaere S. How well does your phylogenetic model fit your data? Syst Biol. 2019;68:157–67.
Article
Google Scholar
Dell’Ampio E, Meusemann K, Szucsich NU, Peters RS, Meyer B, Borner J, Petersen M, Aberer AJ, Stamatakis A, Walzl MG, Minh BQ. Decisive data sets in phylogenomics: lessons from studies on the phylogenetic relationships of primarily wingless insects. Mol Biol Evol. 2013;31:239–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peters RS, Niehuis O, Gunkel S, Bläser M, Mayer C, Podsiadlowski L, Kozlov A, Donath A, van Noort S, Liu S, Zhou X. Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Mol Phylo Evol. 2018;120:286–96.
Article
Google Scholar
Trautwein MD, Wiegmann BM, Yeates DK. Overcoming the effects of rogue taxa: evolutionary relationships of the bee flies. PLoS currents. 2011;5:3.
Google Scholar
Rannala B, Edwards SV, Leaché A, Yang Z. The multi-species coalescent model and species tree inference. In: Phylogenetics in the Genomic Era. Scornavacca C, Delsuc F, Galtier N. (editors). No commercial publisher, authors open access book; 2020. p. 3.3:1–3.3:21.
Google Scholar
Meiklejohn KA, Faircloth BC, Glenn TC, Kimball RT, Braun EL. Analysis of a rapid evolutionary radiation using ultraconserved elements: evidence for a bias in some multispecies coalescent methods. Syst Biol. 2016;65:612–27.
Article
PubMed
Google Scholar
Sayyari E, Whitfield JB, Mirarab S. Fragmentary gene sequences negatively impact gene tree and species tree reconstruction. Mol Biol Evol. 2017;34:3279–91.
Article
CAS
PubMed
Google Scholar
Molloy EK, Warnow T. To include or not to include: the impact of gene filtering on species tree estimation methods. Syst Biol. 2018;67:285–303.
Article
PubMed
Google Scholar
Rabiee M, Mirarab S. INSTRAL: discordance-aware phylogenetic placement using quartet scores. Syst Biol. 2020;69:384–91.
Article
CAS
PubMed
Google Scholar
Korneyev VA. Phylogenetic relationships among the families of the superfamily Tephritoidea. Fruit flies (Tephritidae). 1999;16:3–22.
Article
Google Scholar
Gaimari SD, Silva VC. Revision of the Neotropical subfamily Eurychoromyiinae (Diptera: Lauxaniidae). Zootaxa. 2010;2342:1–64.
Article
Google Scholar
Wheeler TA, Sinclair BJ. Systematics of Paraleucopis Malloch with proposal of Paraleucopidae, a new family of acalyptrate Diptera. Zootaxa. 2019;4668:301–28.
Article
Google Scholar
McAlpine DK. Review of the Borboroidini or Wombat Flies (Diptera: Heteromyzidae), with reconsideration of the status of families Heleomyzidae and Sphaeroceridae, and descriptions of femoral gland-baskets. Rec Austr Mus. 2007;59:143–219.
Article
Google Scholar
Harrison RA. The Diptera of the antipodes and the Bounty Islands. Transact Royal Society of New Zealand. 1953;81:269–82.
Google Scholar
Rohacek J. Taxonomic limits, phylogeny and higher classification of Anthomyzidae (Diptera), with special regard to fossil record. Eur J Entomol. 1998;95:141–78.
Google Scholar
Lonsdale O. Family groups of Diopsoidea and Nerioidea (Diptera: Schizophora)- definition, history and relationships. Zootaxa. 2020;473:1–77.
Article
Google Scholar
Bubak AN, Watt MJ, Yaeger JD, Renner KJ, Swallow JG. The stalk-eyed fly as a model for aggression–is there a conserved role for 5-HT between vertebrates and invertebrates? J Exp Biol. 2020;223:1–13.
Article
Google Scholar
Meade LC, Dinneen D, Kad R, Lynch DM, Fowler K, Pomiankowski A. Ejaculate sperm number compensation in stalk-eyed flies carrying a selfish meiotic drive element. Heredity. 2019;122:916–26.
Article
PubMed
Google Scholar
Kitching RL, Bickel D, Boulter S. Guild analyses of Dipteran assemblages: a rationale and investigation of seasonality and stratification in selected rainforest faunas. The evolutionary biology of flies. New York: Columbia University Press; 2005. p. 388–415.
Google Scholar
Kotrba M. Setting the records straight II: “single spermatheca” of Braula coeca (Diptera: Braulidae) is really the ventral receptacle. Organisms Diversity Evol. 2020;20:117–22.
Article
Google Scholar
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–8.
Article
CAS
PubMed
Google Scholar
Johnson KP, Nguyen NP, Sweet AD, Boyd BM, Warnow T, Allen JM. Simultaneous radiation of bird and mammal lice following the K-Pg boundary. Biol Lett. 2018;31:0141.
Google Scholar
Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A. The delayed rise of present-day mammals. Nature. 2007;446:507–12.
Article
CAS
PubMed
Google Scholar
Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA. The age of the grasses and clusters of origins of C4 photosynthesis. Glob Chang Biol. 2008;14:2963–77.
Article
Google Scholar
Maddison WP, Knowles LL. Inferring phylogeny despite incomplete lineage sorting. Syst Biol. 2006;55:21–30.
Article
PubMed
Google Scholar
Edwards SV, Xi Z, Janke A, Faircloth BC, McCormack JE, Glenn TC, Zhong B, Wu S, Lemmon EM, Lemmon AR, Leaché AD. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol Phylo Evol. 2016;94:447–62.
Article
Google Scholar
Gibson JF, Skevington JH, Kelso S. Placement of Conopidae (Diptera) within Schizophora based on mtDNA and nrDNA gene regions. Mol Phylo Evol. 2010;56:91–103.
Article
CAS
Google Scholar
Niehuis O, Hartig G, Grath S, Pohl H, Lehmann J, Tafer H, Donath A, Krauss V, Eisenhardt C, Hertel J, Petersen M. Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Curr Biol. 2012;22:1309–13.
Article
CAS
PubMed
Google Scholar
Andrews, S. FastQC: a quality control tool for high throughput sequence data. Reference Source 2010.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV. OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res. 2013;41:D358–65.
Article
CAS
PubMed
Google Scholar
Kriventseva EV, Tegenfeldt F, Petty TJ, Waterhouse RM, Simao FA, Pozdnyakov IA, Ioannidis P, Zdobnov EM. OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software. Nucleic Acids Res. 2015;43:D250–6.
Article
CAS
PubMed
Google Scholar
Petersen M, Meusemann K, Donath A, Dowling D, Liu S, Peters RS, Podsiadlowski L, Vasilikopoulos A, Zhou X, Misof B, Niehuis O. Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinformatics. 2017;18:1–10.
Article
CAS
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Misof B, Misof K. A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Syst Biol. 2009;58:21–34.
Article
CAS
PubMed
Google Scholar
Kück P, Meusemann K, Dambach J, Thormann B, von Reumont BM, Wägele JW, Misof B. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees. Front Zool. 2010;7:10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool. 2014;11:81.
Article
PubMed
PubMed Central
Google Scholar
Meyer B, Meusemann K, Misof B. MARE: MAtrix REduction-a tool to select optimized data subsets from supermatrices for phylogenetic inference. Bonn: ZFMK; 2011.
Google Scholar
Wong TK, Kalyaanamoorthy S, Meusemann K, Yeates DK, Misof B, Jermiin LS. A minimum reporting standard for multiple sequence alignments. NAR Genom Bioinform. 2020;2:2.
Google Scholar
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34:772–3.
CAS
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le SQ, Dang CC, Gascuel O. Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol Biol Evol. 2012;29:2921–36.
Article
CAS
PubMed
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jermiin LS, Ho SY, Ababneh F, Robinson J, Larkum AW. The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. Syst Biol. 2004;53:638–43.
Article
PubMed
Google Scholar
Kozlov AM, Aberer AJ, Stamatakis A. ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics. 2015;31:2577–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A. How many bootstrap replicates are necessary? J Comp Biol. 2010;17:337–54.
Article
CAS
Google Scholar
Aberer AJ, Krompass D, Stamatakis A. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst Biol. 2013;62:162–6.
Article
PubMed
Google Scholar
Mirarab S, Bayzid MS, Warnow T. Evaluating summary methods for multilocus species tree estimation in the presence of incomplete lineage sorting. Syst Biol. 2016;65:366–80.
Article
PubMed
Google Scholar
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
Article
CAS
PubMed
Google Scholar
Chernomor O, Von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65:997–1008.
Article
PubMed
PubMed Central
Google Scholar
Lonsdale O. Review of the families Tanypezidae and Strongylophthalmyiidae, with a revision Neotanypeza Hendel (Diptera: Schizophora). Washington, DC: Smithsonian Contributions to Zoology; 2013. p. 1–60.
Google Scholar
Munari L, Mathis WN. World Catalog of the Family Canacidae (including Tethinidae) (Diptera), with keys to the supraspecific taxa. Zootaxa. 2010;2471:1–84.
Article
Google Scholar
Reinhardt JA, Brand CL, Paczolt KA, Johns PM, Baker RH, Wilkinson GS. Meiotic drive impacts expression and evolution of X-linked genes in stalkeyed flies. PLoS Genet. 2014;10:e1004362.
Article
PubMed
PubMed Central
CAS
Google Scholar
Poupardin R, Schöttner K, Korbelová J, Provazník J, Doležel D, Pavlinic D, Beneš V, Koštál V. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly. Chymomyza costata BMC Genomics. 2015;16:720.
Article
PubMed
CAS
Google Scholar
Vicoso B, Bachtrog D. Numerous transitions of sex chromosomes in Diptera. PLoS Biol. 2015;13:e1002078.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou Q, Bachtrog D. Ancestral chromatin configuration constrains chromatin evolution on differentiating sex chromosomes in Drosophila. PLoS Genet. 2015;11:e1005331.
Article
PubMed
PubMed Central
CAS
Google Scholar
Calla B, Hall B, Hou S, Geib SM. A genomic perspective to assessing quality of mass-reared SIT flies used in Mediterranean fruit fly (Ceratitis capitata) eradication in California. BMC Genomics. 2014;15:98.
Article
PubMed
PubMed Central
Google Scholar
Hennig W. Diptera (Zweiflügler). Handb Zool (Berlin). 1973;4:1–200.
Google Scholar
Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, Zhou X. SOAPdenovo-Trans: de novo transcriptome assembly with shortRNA-Seq reads. Bioinformatics. 2014;30:1660–6.
Article
CAS
PubMed
Google Scholar
Misof B, Meyer B, von Reumont BM, Kück P, Misof K, Meusemann K. Selecting informative subsets of sparse supermatrices increases the chance to find correct trees. BMC Bioinformatics. 2013;14:348.
Article
PubMed
PubMed Central
Google Scholar
Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol. 2014;14:82.
Article
PubMed
PubMed Central
Google Scholar
Dayhoff M, Schwartz R, Orcutt B. A model of evolutionary change in proteins. Atlas of protein sequence and structure. 1978;5:345–52.
Google Scholar
Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;1:691–9.
Article
Google Scholar
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25:1307–20.
Article
CAS
PubMed
Google Scholar
Borowiec ML. AMAS: a fast tool for alignment manipulation and computing of ummary statistics. PeerJ. 2016;4:e1660.
Article
PubMed
PubMed Central
Google Scholar
Miller MA, Pfeiffer W, Schwartz, T Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE), IEEE. New Orleans: 2010;1–8.
Bowker AH. A test for symmetry in contingency tables. J Am Stat Assoc. 1948;43:572–4.
Article
CAS
PubMed
Google Scholar
Strimmer K, Von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A. 1997;94:6815–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Z, Zhang H, Gao S, Lercher MJ, Chen WH, Hu S. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Research. 2016;44:W236-41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8.
Article
CAS
PubMed
PubMed Central
Google Scholar