Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Experimental & molecular medicine. 2016. https://doi.org/10.1038/emm.2016.6.
Winzell MS, Ahrén B. G-protein-coupled receptors and islet function-Implications for treatment of type 2 diabetes. Pharmacol Ther. 2007;116:437–48. https://doi.org/10.1016/j.pharmthera.2007.08.002.
Article
CAS
PubMed
Google Scholar
Ruiz de Azua I, Gautam D, Jain S, Guettier J-M, Wess J. Critical metabolic roles of β-cell M3 muscarinic acetylcholine receptors. Life Sci. 2012;91:986–91. doi:10.1016/j.lfs.2012.04.010.
Begg DP, Woods SC. Interactions between the central nervous system and pancreatic islet secretions: a historical perspective. Adv Physiol Educ. 2013;37:53–60. https://doi.org/10.1152/advan.00167.2012.
Article
PubMed
PubMed Central
Google Scholar
Reimann F, Gribble FM. G protein-coupled receptors as new therapeutic targets for type 2 diabetes. Diabetologia. 2016;59:229–33. https://doi.org/10.1007/s00125-015-3825-z.
Article
CAS
PubMed
Google Scholar
Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005;26:19–39.
PubMed
PubMed Central
Google Scholar
Seino S, Shibasaki T, Minami K. Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest. 2011;121:2118–25. https://doi.org/10.1172/JCI45680.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function. J Cell Biol. 2018;217:2273–89. https://doi.org/10.1083/jcb.201802095.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci. 2009;122:893–903. https://doi.org/10.1242/jcs.034355.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou JC, Min L, Pessin JE. Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm. 2009;80:473–506. https://doi.org/10.1016/S0083-6729(08)00616-X.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomas A. Regulation of pancreatic -cell insulin secretion by actin cytoskeleton remodelling: role of gelsolin and cooperation with the MAPK signalling pathway. J Cell Sci. 2006;119:2156–67. https://doi.org/10.1242/jcs.02942.
Article
CAS
PubMed
Google Scholar
Reimann F, Gribble FM. Mechanisms underlying glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretion. J Diabetes Investig. 2016;7:13–9. https://doi.org/10.1111/jdi.12478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007;113:546–93. https://doi.org/10.1016/j.pharmthera.2006.11.007.
Article
CAS
PubMed
Google Scholar
Nauck MA, Meier JJ. Incretin hormones: their role in health and disease. Diabetes, Obes Metab. 2018;20:5–21. https://doi.org/10.1111/dom.13129.
Article
CAS
Google Scholar
de Graaf C, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, et al. Glucagon-like peptide-1 and its class B G protein–coupled receptors: a long march to therapeutic successes. Pharmacol Rev. 2016;68:954–1013. https://doi.org/10.1124/pr.115.011395.
Article
CAS
PubMed
PubMed Central
Google Scholar
Müller TD, Finan B, Bloom SR, D’Alessio D, Drucker DJ, Flatt PR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72–130. https://doi.org/10.1016/j.molmet.2019.09.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci. 2007;104:19333–8. https://doi.org/10.1073/pnas.0707054104.
Article
PubMed
Google Scholar
Leech CA, Chepurny OG, Holz GG. Epac2-dependent rap1 activation and the control of islet insulin secretion by glucagon-like peptide-1. Vitam Horm. 2010;84:279–302. https://doi.org/10.1016/B978-0-12-381517-0.00010-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alenkvist I, Gandasi NR, Barg S, Tengholm A. Recruitment of Epac2A to insulin granule docking sites regulates priming for exocytosis. Diabetes. 2017;66:2610–22. https://doi.org/10.2337/db17-0050.
Article
CAS
PubMed
Google Scholar
Kaihara KA, Dickson LM, Jacobson DA, Tamarina N, Roe MW, Philipson LH, et al. β-Cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion. Diabetes. 2013;62:1527–36. https://doi.org/10.2337/db12-1013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villalpando S, Cazevieille C, Fernandez A, Lamb NJ, Hani E-H. Type II PKAs are anchored to mature insulin secretory granules in INS-1 β-cells and required for cAMP-dependent potentiation of exocytosis. Biochimie. 2016;125:32–41. https://doi.org/10.1016/j.biochi.2016.02.008.
Article
CAS
PubMed
Google Scholar
Meloni AR, DeYoung MB, Lowe C, Parkes DG. GLP-1 receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence. Diabetes, Obes Metab. 2013;15:15–27. https://doi.org/10.1111/j.1463-1326.2012.01663.x.
Article
CAS
Google Scholar
Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr. 2017;30:202–10. https://doi.org/10.2337/ds16-0026.
Article
PubMed
PubMed Central
Google Scholar
Knerr PJ, Mowery SA, Finan B, Perez-Tilve D, Tschöp MH, DiMarchi RD. Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates. Peptides. 2020;125:170225. https://doi.org/10.1016/j.peptides.2019.170225.
Article
CAS
PubMed
Google Scholar
Hasib A. Multiagonist unimolecular peptides for obesity and type 2 diabetes: current advances and future directions. Clin Med Insights Endocrinol Diabetes. 2020;13:117955142090584. https://doi.org/10.1177/1179551420905844.
Article
Google Scholar
Mayor F, Cruces-Sande M, Arcones AC, Vila-Bedmar R, Briones AM, Salaices M, et al. G protein-coupled receptor kinase 2 (GRK2) as an integrative signalling node in the regulation of cardiovascular function and metabolic homeostasis. Cell Signal. 2018;41:25–32. https://doi.org/10.1016/j.cellsig.2017.04.002.
Article
CAS
PubMed
Google Scholar
Murga C, Arcones AC, Cruces-Sande M, Briones AM, Salaices M, Mayor F Jr. G protein-coupled receptor kinase 2 (GRK2) as a potential therapeutic target in cardiovascular and metabolic diseases. Front Pharmacol. 2019;10:112. https://doi.org/10.3389/fphar.2019.00112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Penela P, Murga C, Ribas C, Lafarga V, Mayor F Jr, Mayor F Jr. The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physio-pathological targets. Br J Pharmacol. 2010;160:821–32. https://doi.org/10.1111/j.1476-5381.2010.00727.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watari K, Nakaya M, Kurose H. Multiple functions of G protein-coupled receptor kinases. J Mol Signal. 2014;9:1. https://doi.org/10.1186/1750-2187-9-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther. 2012;133:40–69. https://doi.org/10.1016/j.pharmthera.2011.08.001.
Article
CAS
PubMed
Google Scholar
Penela P, Ribas C, Sánchez-Madrid F, Mayor F. G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub. Cell Mol Life Sci. 2019;76:4423–46. https://doi.org/10.1007/s00018-019-03274-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciccarelli M, Chuprun JK, Rengo G, Gao E, Wei Z, Peroutka RJ, et al. G protein-coupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation. 2011;123:1953–62. https://doi.org/10.1161/CIRCULATIONAHA.110.988642.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaber M, Koch WJ, Rockman H, Smith B, Bond RA, Sulik KK, et al. Essential role of -adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci. 1996;93:12974–9. https://doi.org/10.1073/pnas.93.23.12974.
Article
CAS
PubMed
Google Scholar
Vila-Bedmar R, Cruces-Sande M, Lucas E, Willemen HLDM, Heijnen CJ, Kavelaars A, et al. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2. Sci Signal. 2015;8:ra73. doi:10.1126/scisignal.aaa4374.
Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017;23:804–14. https://doi.org/10.1038/nm.4350.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mezza T, Cinti F, Cefalo CMA, Pontecorvi A, Kulkarni RN, Giaccari A. β-cell fate in human insulin resistance and type 2 diabetes: a perspective on islet plasticity. Diabetes. 2019;68:1121–9. https://doi.org/10.2337/db18-0856.
Article
CAS
PubMed
PubMed Central
Google Scholar
Longnecker DS, Gorelick F, Thompson ED. Anatomy, histology, and fine structure of the pancreas. In: The Pancreas. Chichester, UK: John Wiley & Sons, Ltd; 2018. p. 10–23. doi:10.1002/9781119188421.ch2.
Dolenšek J, Rupnik MS, Stožer A. Structural similarities and differences between the human and the mouse pancreas. Islets. 2015;7:e1024405. https://doi.org/10.1080/19382014.2015.1024405.
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Li J, Li Z, Luo Y. Increased GLP-1 response after gavage-administration of glucose in UCP2-deficient mice. Horm Metab Res. 2012;44:86–90. https://doi.org/10.1055/s-0031-1298017.
Article
CAS
PubMed
Google Scholar
Yaekura K, Julyan R, Wicksteed BL, Hays LB, Alarcon C, Sommers S, et al. Insulin secretory deficiency and glucose intolerance in Rab3A null mice. J Biol Chem. 2003;278:9715–21. https://doi.org/10.1074/jbc.M211352200.
Article
CAS
PubMed
Google Scholar
Smith PA, Sakura H, Coles B, Gummerson N, Proks P, Ashcroft FM. Electrogenic arginine transport mediates stimulus-secretion coupling in mouse pancreatic beta-cells. J Physiol. 1997;499:625–35. https://doi.org/10.1113/jphysiol.1997.sp021955.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singhmar P, Huo X, Eijkelkamp N, Berciano SR, Baameur F, Mei FC, et al. Critical role for Epac1 in inflammatory pain controlled by GRK2-mediated phosphorylation of Epac1. Proc Natl Acad Sci U S A. 2016;113:3036–41. https://doi.org/10.1073/pnas.1516036113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barella LF, Rossi M, Zhu L, Cui Y, Mei FC, Cheng X, et al. β Cell–intrinsic β-arrestin 1 signaling enhances sulfonylurea-induced insulin secretion. J Clin Invest. 2019;129:3732–7. doi:10.1172/JCI126309.
Göke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. 1993;268:19650–5.
Article
Google Scholar
Jones B, Buenaventura T, Kanda N, Chabosseau P, Owen BM, Scott R, et al. Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nat Commun. 2018;9:1602. https://doi.org/10.1038/s41467-018-03941-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thal DM, Yeow RY, Schoenau C, Huber J, Tesmer JJG. Molecular mechanism of selectivity among G protein-coupled receptor kinase 2 inhibitors. Mol Pharmacol. 2011;80:294–303. https://doi.org/10.1124/mol.111.071522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jorgensen R, Kubale V, Vrecl M, Schwartz TW, Elling CE. Oxyntomodulin differentially affects glucagon-like peptide-1 receptor β-arrestin recruitment and signaling through Gα. J Pharmacol Exp Ther. 2007;322:148–54. https://doi.org/10.1124/jpet.107.120006.
Article
CAS
PubMed
Google Scholar
Jorgensen R, Norklit Roed S, Heding A, Elling CE. Beta-arrestin2 as a competitor for GRK2 interaction with the GLP-1 receptor upon receptor activation. Pharmacology. 2011;88:174–81. https://doi.org/10.1159/000330742.
Article
CAS
PubMed
Google Scholar
Al-Sabah S, Al-Fulaij M, Shaaban G, Ahmed HA, Mann RJ, Donnelly D, et al. The GIP receptor displays higher basal activity than the GLP-1 receptor but does not recruit GRK2 or arrestin3 effectively. PLoS One. 2014;9:e106890. https://doi.org/10.1371/journal.pone.0106890.
Article
CAS
PubMed
PubMed Central
Google Scholar
Challiss RAJ, Wess J. GPCR–G protein preassembly? Nat Chem Biol. 2011;7:657–8. https://doi.org/10.1038/nchembio.665.
Article
CAS
PubMed
Google Scholar
Ayoub MA, Al-Senaidy A, Pin J-P. Receptor-G protein interaction studied by bioluminescence resonance energy transfer: lessons from protease-activated receptor 1. Front Endocrinol (Lausanne). 2012;3. doi:10.3389/fendo.2012.00082.
Wan Q, Okashah N, Inoue A, Nehmé R, Carpenter B, Tate CG, et al. Mini G protein probes for active G protein–coupled receptors (GPCRs) in live cells. J Biol Chem. 2018;293:7466–73. https://doi.org/10.1074/jbc.RA118.001975.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen AH, Thomsen ARB, Cahill TJ, Huang R, Huang L-Y, Marcink T, et al. Structure of an endosomal signaling GPCR–G protein–β-arrestin megacomplex. Nat Struct Mol Biol. 2019;26:1123–31. https://doi.org/10.1038/s41594-019-0330-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomsen ARB, Plouffe B, Cahill TJ, Shukla AK, Tarrasch JT, Dosey AM, et al. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling. Cell. 2016;166:907–19. https://doi.org/10.1016/j.cell.2016.07.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomas A, Jones B, Leech C. New insights into beta-cell GLP-1 receptor and cAMP signaling. J Mol Biol. 2020;432:1347–66. https://doi.org/10.1016/j.jmb.2019.08.009.
Article
CAS
PubMed
Google Scholar
Kuna RS, Girada SB, Asalla S, Vallentyne J, Maddika S, Patterson JT, et al. Glucagon-like peptide-1 receptor-mediated endosomal cAMP generation promotes glucose-stimulated insulin secretion in pancreatic β-cells. Am J Physiol Metab. 2013;305:E161–70. https://doi.org/10.1152/ajpendo.00551.2012.
Article
CAS
Google Scholar
Girada SB, Kuna RS, Bele S, Zhu Z, Chakravarthi NR, DiMarchi RD, et al. Gαs regulates glucagon-like peptide 1 receptor-mediated cyclic AMP generation at Rab5 endosomal compartment. Mol Metab. 2017;6:1173–85. https://doi.org/10.1016/j.molmet.2017.08.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong KC, Gandhi U, Martin TJ, Anz CB, Yan H, Misior AM, et al. Endogenous G s -coupled receptors in smooth muscle exhibit differential susceptibility to GRK2/3-mediated desensitization †. Biochemistry. 2008;47:9279–88. https://doi.org/10.1021/bi801056w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowther KM, Uliasz TF, Götz KR, Nikolaev VO, Mehlmann LM. Regulation of constitutive GPR3 signaling and surface localization by GRK2 and β-arrestin-2 overexpression in HEK293 cells. PLoS One. 2013;8:e65365. https://doi.org/10.1371/journal.pone.0065365.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salazar NC, Vallejos X, Siryk A, Rengo G, Cannavo A, Liccardo D, et al. GRK2 blockade with βARKct is essential for cardiac β2-adrenergic receptor signaling towards increased contractility. Cell Commun Signal. 2013;11:64. https://doi.org/10.1186/1478-811X-11-64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sallese M, Mariggiò S, D’Urbano E, Iacovelli L, De Blasi A, Mariggio S, et al. Selective regulation of Gq signaling by G protein-coupled receptor kinase 2: direct interaction of kinase N terminus with activated galphaq. Mol Pharmacol. 2000;57:826–31.
Article
CAS
Google Scholar
Jorgensen R, Martini L, Schwartz TW, Elling CE. Characterization of glucagon-like peptide-1 receptor β-arrestin 2 interaction: a high-affinity receptor phenotype. Mol Endocrinol. 2005;19:812–23. https://doi.org/10.1210/me.2004-0312.
Article
CAS
PubMed
Google Scholar
Tseng C-CC, Zhang X-YY. Role of G protein-coupled receptor kinases in glucose-dependent insulinotropic polypeptide receptor signaling. Endocrinology. 2000;141:947–52. https://doi.org/10.1210/endo.141.3.7365.
Article
CAS
PubMed
Google Scholar
Ravier MA, Leduc M, Richard J, Linck N, Varrault A, Pirot N, et al. β-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice. Diabetologia. 2014;57:532–41. https://doi.org/10.1007/s00125-013-3130-7.
Article
CAS
PubMed
Google Scholar
Zhu L, Almaça J, Dadi PK, Hong H, Sakamoto W, Rossi M, et al. β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions. Nat Commun. 2017;8:14295. doi:10.1038/ncomms14295.
Zhang M, Zhu Y, Mu K, Li L, Lu J, Zhao J, et al. Loss of β-arrestin2 mediates pancreatic-islet dysfunction in mice. Biochem Biophys Res Commun. 2013;435:345–9. https://doi.org/10.1016/j.bbrc.2013.04.079.
Article
CAS
PubMed
Google Scholar
Sonoda N, Imamura T, Yoshizaki T, Babendure JL, Lu J-C, Olefsky JM. β-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic cells. Proc Natl Acad Sci. 2008;105:6614–9. doi:10.1073/pnas.0710402105.
Jones B, Bloom SR, Buenaventura T, Tomas A, Rutter GA. Control of insulin secretion by GLP-1. Peptides. 2018;100:75–84. https://doi.org/10.1016/j.peptides.2017.12.013.
Article
CAS
PubMed
Google Scholar
Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med. 2011;17:126–39. https://doi.org/10.1016/j.molmed.2010.11.004.
Article
CAS
PubMed
Google Scholar
Grundmann M, Merten N, Malfacini D, Inoue A, Preis P, Simon K, et al. Lack of beta-arrestin signaling in the absence of active G proteins. Nat Commun. 2018;9:341. https://doi.org/10.1038/s41467-017-02661-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9:25–53. https://doi.org/10.2174/1573399811309010025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daniel S, Noda M, Straub SG, Sharp GW. Identification of the docked granule pool responsible for the first phase of glucose-stimulated insulin secretion. Diabetes. 1999;48:1686–90. https://doi.org/10.2337/diabetes.48.9.1686.
Article
CAS
PubMed
Google Scholar
Maechler P, Wollheim CB. Mitochondrial signals in glucose-stimulated insulin secretion in the beta cell. J Physiol. 2000;529:49–56. https://doi.org/10.1111/j.1469-7793.2000.00049.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerich JE. Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes? Diabetes. 2002;51 Supplement 1:S117–21. doi:10.2337/diabetes.51.2007.S117.
Kanat M, Norton L, Winnier D, Jenkinson C, DeFronzo RA, Abdul-Ghani MA. Impaired early- but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetol. 2011;48:209–17. https://doi.org/10.1007/s00592-011-0285-x.
Article
CAS
PubMed
Google Scholar
Cheng K, Andrikopoulos S, Gunton JE. First phase insulin secretion and type 2 diabetes. Curr Mol Med. 2013;13:126–39. https://doi.org/10.2174/1566524011307010126.
Article
CAS
PubMed
Google Scholar
Aroda VR. A review of GLP-1 receptor agonists: evolution and advancement, through the lens of randomised controlled trials. Diabetes, Obes Metab. 2018;20:22–33. https://doi.org/10.1111/dom.13162.
Article
CAS
Google Scholar
Sharma D, Verma S, Vaidya S, Kalia K, Tiwari V. Recent updates on GLP-1 agonists: current advancements & challenges. Biomed Pharmacother. 2018;108:952–62. https://doi.org/10.1016/j.biopha.2018.08.088.
Article
CAS
PubMed
Google Scholar
Holst JJ. From the incretin concept and the discovery of GLP-1 to today’s diabetes therapy. Front Endocrinol (Lausanne). 2019;10. doi:10.3389/fendo.2019.00260.
Fehse F, Trautmann M, Holst JJ, Halseth AE, Nanayakkara N, Nielsen LL, et al. Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab. 2005;90:5991–7. https://doi.org/10.1210/jc.2005-1093.
Article
CAS
PubMed
Google Scholar
Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front Endocrinol (Lausanne). 2018;9. doi:10.3389/fendo.2018.00672.
Zummo FP, Cullen KS, Honkanen-Scott M, Shaw JAM, Lovat PE, Arden C. Glucagon-like peptide 1 protects pancreatic β-cells from death by increasing autophagic flux and restoring lysosomal function. Diabetes. 2017;66:1272–85. https://doi.org/10.2337/db16-1009.
Article
CAS
PubMed
Google Scholar
Herzberg-Schäfer S, Heni M, Stefan N, Häring H-U, Fritsche A. Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia. Diabetes, Obes Metab. 2012;14:85–90. https://doi.org/10.1111/j.1463-1326.2012.01648.x.
Article
CAS
Google Scholar
Rajan S, Dickson LM, Mathew E, Orr CMO, Ellenbroek JH, Philipson LH, et al. Chronic hyperglycemia downregulates GLP-1 receptor signaling in pancreatic β-cells via protein kinase A. Mol Metab. 2015;4:265–76. https://doi.org/10.1016/j.molmet.2015.01.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lucas E, Vila-Bedmar R, Arcones AC, Cruces-Sande M, Cachofeiro V, Mayor F Jr, et al. Obesity-induced cardiac lipid accumulation in adult mice is modulated by G protein-coupled receptor kinase 2 levels. Cardiovasc Diabetol. 2016;15:155. https://doi.org/10.1186/s12933-016-0474-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cruces-Sande M, Vila-Bedmar R, Arcones AC, Gonzalez-Rodriguez A, Rada P, Gutierrez-de-Juan V, et al. Involvement of G protein-coupled receptor kinase 2 (GRK2) in the development of non-alcoholic steatosis and steatohepatitis in mice and humans. Biochim Biophys Acta Mol Basis Dis. 1864;2018:3655–67. https://doi.org/10.1016/j.bbadis.2018.09.027.
Article
CAS
Google Scholar
Arcones AC, Cruces-Sande M, Ramos P, Mayor F, Murga C. Sex differences in high fat diet-induced metabolic alterations correlate with changes in the modulation of GRK2 levels. Cells. 2019;8:1464. https://doi.org/10.3390/cells8111464.
Article
CAS
PubMed Central
Google Scholar
Kang T, Boland BB, Alarcon C, Grimsby JS, Rhodes CJ, Larsen MR. Proteomic analysis of restored insulin production and trafficking in obese diabetic mouse pancreatic islets following euglycemia. J Proteome Res. 2019;18:3245–58. https://doi.org/10.1021/acs.jproteome.9b00160.
Article
CAS
PubMed
Google Scholar
Kang T, Boland BB, Jensen P, Alarcon C, Nawrocki A, Grimsby JS, et al. Characterization of signaling pathways associated with pancreatic β-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice. Mol Cell Proteomics. 2020;19:971–93. https://doi.org/10.1074/mcp.RA119.001882.
Article
CAS
PubMed
Google Scholar
Robertson RP, Raymond RH, Lee DS, Calle RA, Ghosh A, Savage PJ, et al. Arginine is preferred to glucagon for stimulation testing of β-cell function. Am J Physiol Metab. 2014;307:E720–7. https://doi.org/10.1152/ajpendo.00149.2014.
Article
CAS
Google Scholar
Mirasierra M, Fernández-Pérez A, Díaz-Prieto N, Vallejo M. Alx3-deficient mice exhibit decreased insulin in beta cells, altered glucose homeostasis and increased apoptosis in pancreatic islets. Diabetologia. 2011;54:403–14. https://doi.org/10.1007/s00125-010-1975-6.
Article
CAS
PubMed
Google Scholar
Nogues L, Reglero C, Rivas V, Salcedo A, Lafarga V, Neves M, et al. G protein-coupled receptor kinase 2 (GRK2) promotes breast tumorigenesis through a HDAC6-Pin1 axis. EBioMedicine. 2016;13:132–45. https://doi.org/10.1016/j.ebiom.2016.09.030.
Article
PubMed
PubMed Central
Google Scholar
Lucas E, Jurado-Pueyo M, Fortuño MA, Fernández-Veledo S, Vila-Bedmar R, Jiménez-Borreguero LJ, et al. Downregulation of G protein-coupled receptor kinase 2 levels enhances cardiac insulin sensitivity and switches on cardioprotective gene expression patterns. Biochim Biophys Acta - Mol Basis Dis. 1842;2014:2448–56. https://doi.org/10.1016/j.bbadis.2014.09.004.
Article
CAS
Google Scholar
Naylor J, Suckow AT, Seth A, Baker DJ, Sermadiras I, Ravn P, et al. Use of CRISPR/Cas9-engineered INS-1 pancreatic β cells to define the pharmacology of dual GIPR/GLP-1R agonists. Biochem J. 2016;473:2881–91. https://doi.org/10.1042/BCJ20160476.
Article
CAS
PubMed
Google Scholar
Miess E, Gondin AB, Yousuf A, Steinborn R, Mösslein N, Yang Y, et al. Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Sci Signal. 2018;11:eaas9609. doi:10.1126/scisignal.aas9609.
Machleidt T, Woodroofe CC, Schwinn MK, Méndez J, Robers MB, Zimmerman K, et al. NanoBRET—a novel BRET platform for the analysis of protein–protein interactions. ACS Chem Biol. 2015;10:1797–804. https://doi.org/10.1021/acschembio.5b00143.
Article
CAS
PubMed
Google Scholar
Mo X-L, Luo Y, Ivanov AA, Su R, Havel JJ, Li Z, et al. Enabling systematic interrogation of protein–protein interactions in live cells with a versatile ultra-high-throughput biosensor platform. J Mol Cell Biol. 2016;8:271–81. https://doi.org/10.1093/jmcb/mjv064.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyazaki J-I, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, et al. Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology. 1990;127:126–32. https://doi.org/10.1210/endo-127-1-126.
Article
CAS
PubMed
Google Scholar
Lilla V, Webb G, Rickenbach K, Maturana A, Steiner DF, Halban PA, et al. Differential gene expression in well-regulated and dysregulated pancreatic β-cell (MIN6) sublines. Endocrinology. 2003;144:1368–79. https://doi.org/10.1210/en.2002-220916.
Article
CAS
PubMed
Google Scholar
Inoue A, Raimondi F, Kadji FMN, Singh G, Kishi T, Uwamizu A, et al. Illuminating G-protein-coupling selectivity of GPCRs. Cell. 2019;177:1933-1947.e25. doi:10.1016/j.cell.2019.04.044.
Lucey M, Pickford P, Bitsi S, Minnion J, Ungewiss J, Schoeneberg K, et al. Disconnect between signalling potency and in vivo efficacy of pharmacokinetically optimised biased glucagon-like peptide-1 receptor agonists. Mol Metab. 2020;:100991. doi:10.1016/j.molmet.2020.100991.
Kroeze WK, Sassano MF, Huang X-P, Lansu K, McCorvy JD, Giguère PM, et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat Struct Mol Biol. 2015;22:362–9. https://doi.org/10.1038/nsmb.3014.
Article
CAS
PubMed
PubMed Central
Google Scholar