Taylor SR. Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta. 1964;28:1273–85.
Article
CAS
Google Scholar
Andrews SC. Iron storage in bacteria. Adv Microb Physiol. 1998;40:281–351.
Article
CAS
PubMed
Google Scholar
Andrews SC, Robinson AK, Rodriguez-Quinones F. Bacterial iron homeostasis. FEMS Microbiol Rev. 2003;27:215–37.
Article
CAS
PubMed
Google Scholar
Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol. 2000;54:881–941.
Article
CAS
PubMed
Google Scholar
Chu BC, et al. Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals. 2010;23:601–11.
Article
CAS
PubMed
Google Scholar
Zheng TEMN. Siderophore-based detection of Fe ( iii ) and microbial pathogens. Metallomics. 2012;4:866–80.
Article
CAS
PubMed
Google Scholar
Dunn LL, Rahmanto YS, Richardson DR. Iron uptake and metabolism in the new millennium. Trends Cell Biol. 2007;17:93–100.
Article
CAS
PubMed
Google Scholar
Poole K, McKay GA. Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front Biosci. 2016;8:661–8.
Article
Google Scholar
Jurkevitch E, Hadar Y, Chen Y. Differential siderophore utilization and Iron uptake by soil and rhizosphere bacteria. Appl Environ Microbiol. 1992;58:119–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cordero OX, −a. VL, DeLong EF, Polz MF. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci 2012;109:20059–20064.
Lee W, van Baalen M, Jansen VAA. Siderophore production and the evolution of investment in a public good: an adaptive dynamics approach to kin selection. J Theor Biol. 2016;388:61–71. https://doi.org/10.1016/j.jtbi.2015.09.038.
Article
CAS
PubMed
Google Scholar
Lee W, van Baalen M, Jansen VAA. An evolutionary mechanism for diversity in siderophore-producing bacteria. Ecol Lett. 2012;15:119–25. https://doi.org/10.1111/j.1461-0248.2011.01717.x.
Article
PubMed
Google Scholar
Kümmerli R, Brown SP. Molecular and regulatory properties of a public good shape the evolution of cooperation. Proc Natl Acad Sci U S A. 2010;107:18921–6. https://doi.org/10.1073/pnas.1011154107.
Article
PubMed
PubMed Central
Google Scholar
Dumas Z, Kummerli R. Cost of cooperation rules selection for cheats in bacterial metapopulations. J Evol Biol. 2011;25:473–84.
Article
PubMed
Google Scholar
Noinaj N, Guillier M, Barnard TJ, Buchanan SK. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol. 2010;64:43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seyedsayamdost MR, et al. Mixing and matching siderophore clusters: structure and biosynthesis of serratiochelins from Serratia sp V4. J Am Chem Soc. 2012;134:13550–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffiths GL, Sigel SP, Payne SM, Neilands JB. Vibriobactin, a siderophore from Vibrio cholerae. J Biol Chem. 1984;259:383–5.
Article
CAS
PubMed
Google Scholar
Okujo N, et al. Structure of vulnibactin, a new polyamine-containing siderophore from Vibrio vulnificus. Biometals. 1994;7:109–16.
CAS
PubMed
Google Scholar
Ciche TA, Blackburn M, Carney JR, Ensign JC. Photobactin: a catechol siderophore produced by Photorhabdus luminescens, an entomopathogen mutually associated with Heterorhabditis bacteriophora NC1 nematodes. Society. 2003;69:4706–13.
CAS
Google Scholar
Bergeron RJ, Dionis JB, Elliott GT, Kline SJ. Mechanism and stereospecificity of the parabactin-mediated iron-transport system in Paracoccus denitrificans. J Biol Chem. 1985;260:7936–44.
Article
CAS
PubMed
Google Scholar
Ong SA, Peterson T, Neilands JB. Agrobactin, a siderophores from Agrobacterium tumefaciens. J Biol Chem. 1979;254:1860–5.
Article
CAS
PubMed
Google Scholar
Fuell C, Elliott KA, Hanfrey CC, Franceschetti M, Michael AJ. Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem. 2010;48:513–20.
Article
CAS
PubMed
Google Scholar
Lee J, et al. An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J Biol Chem. 2009;284:9899–907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michael AJ. Polyamine function in archaea and bacteria thematic minireview downloaded from. J Biol Chem. 2018;:18693. doi:https://doi.org/10.1074/jbc.TM118.005670.
Pegg AE. Functions of polyamines in mammals * polyamine content and metabolism; 2016. https://doi.org/10.1074/jbc.R116.731661.
Book
Google Scholar
Keating TA, Marshall CG, Walsh CT, Keating AE. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat Struct Biol. 2002;9:522–6.
CAS
PubMed
Google Scholar
Keating TA, Marshall CG, Walsh CT. Vibriobactin biosynthesis in Vibrio cholerae: VibH is an amide synthase homologous to nonribosomal peptide synthetase condensation domains. Biochemistry. 2000;39:15513–21.
Article
CAS
PubMed
Google Scholar
Rondon MR, Ballering KS, Thomas MG. Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology. 2004;150(Pt 11):3857–66.
Article
CAS
PubMed
Google Scholar
Masschelein J, et al. A PKS/NRPS/FAS hybrid gene cluster from Serratia plymuthica RVH1 encoding the biosynthesis of three broad spectrum, zeamine-related antibiotics. PLoS One. 2013;8:e54143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, et al. A novel multidomain polyketide synthase is essential for Zeamine production and the virulence of Dickeya zeae. Mol Plant-Microbe Interact. 2011;24:1156–64.
Article
CAS
PubMed
Google Scholar
Pollack JR, Neilands JB. Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem Biophys Res Commun. 1970;38:989–92.
Article
CAS
PubMed
Google Scholar
O’Brien IG, Cox GB, Gibson F. Biologically active compounds containing 2,3-duhydroxybenzoic acid and serine formed by Escherichia coli. BBA - General Subjects. 1970;201:453–60.
Article
PubMed
Google Scholar
De Lorenzo V, Bindereif A, Paw BH, Neilands JB. Aerobactin biosynthesis and transport genes of plasmid colV-K30 in Escherichia coli K-12. J Bacteriol. 1986;165:570–8.
Article
PubMed
PubMed Central
Google Scholar
Sikora AL, Wilson DJ, Aldrich CC, Blanchard JS. Kinetic and inhibition studies of dihydroxybenzoate-AMP ligase from Escherichia coli. Biochemistry. 2010;49:3648–57.
Article
CAS
PubMed
Google Scholar
Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol. 2020;18:152–63. https://doi.org/10.1038/s41579-019-0284-4.
Article
CAS
PubMed
Google Scholar
Chae TU, Kim WJ, Choi S, Park SJ, Lee SY. Metabolic engineering of Escherichia coli for the production of 1, 3-diaminopropane, a three carbon diamine. Sci Rep. 2015;5:1–13.
Article
CAS
Google Scholar
Corneillie S, Smet M. Polymer chemistry PLA architectures : the role of branching. Polym Chem. 2015;6:850–67.
Article
CAS
Google Scholar
Elvers B. Ullmann’s polymers and plastics: products and processes. Germany: Wiley-VCH; 2016.
Google Scholar
Bartkowiak M, Lewandowski G, Milchert E, Pelech R. Optimization of 1, 2-diaminopropane preparation by the ammonolysis of waste. Ind Eng Chem Res. 2006;45:5681–7.
Article
CAS
Google Scholar
Lawrence S. Amines: synthesis, properties and applications. Cambridge: Cambridge Press University; 2004.
Google Scholar
Caspi R, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 2014;42:D459–71.
Article
CAS
PubMed
Google Scholar
Shah P, Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol. 2008;68:4–16.
Article
CAS
PubMed
Google Scholar
Weaver RH, Herbst EJ. Metabolism of diamines and polyamines in microorganisms. J Biol Chem. 1957;231:637–46.
Article
Google Scholar
Stevens BL, Marcelle A. Studies on the role of polyamines associated with the ribosomes from Bacillus stearothermophilus. J Biochem. 1968;108:633–40.
Article
CAS
Google Scholar
Pegg AE. Mammalian polyamine metabolism and function. Int Union Biochem Mol Biol Life J. 2010;61:880–94.
Article
CAS
Google Scholar
Minguet EG, Vera-Sirera F, Marina A, Carbonell J, Blázquez MA. Evolutionary diversification in polyamine biosynthesis. Mol Biol Evol. 2008;25:2119–28.
Article
CAS
PubMed
Google Scholar
Michael AJ. Polyamines in eukaryotes, bacteria, and archaea. J Biol Chem. 2016;291:14896–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tabor CW, Tabor H. Polyamines in microorganisms. Microbiol Rev. 1985;49:81–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol. 1988;11:1–8.
Article
CAS
Google Scholar
Kim SH, et al. The essential role of spermidine in growth of Agrobacterium tumefaciens is determined by the 1,3-diaminopropane moiety. ACS Chem Biol. 2016;11:491–9.
Article
CAS
PubMed
Google Scholar
Webster A, Litwin CM. Cloning and characterization of vuuA, a gene encoding the Vibrio vulnificus ferric vulnibactin receptor. Society. 2000;68:526–34.
CAS
Google Scholar
Skare JT, Bmm A, Seachord CL, Darveau RP, Postle K. Energy transduction between membranes - TonB, a cytoplasmic membrane protein, can be chemically cross-linked in vivo to the outer membrane receptor FepA. J Biol Chem. 1993;268:16302–8.
Article
CAS
PubMed
Google Scholar
Torres AG, Redford P, Welch RA, Payne SM. TonB-dependent systems of uropathogenic Escherichia coli: Aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun. 2001;69:6179–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Griggs DW, Tharp BB, Konisky J. Cloning and promoter identification of the iron-regulated cir gene of Escherichia coli. J Bacteriol. 1987;169:5343–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mcintosh MA, Earhart CF. Coordinate regulation by Iron of the synthesis of phenolate compounds and three outer membrane proteins in Escherichia coli. Journal of Bacteriolo. 1977;131:331–9.
Article
CAS
Google Scholar
Bosák J, Laiblová P, Smarda J, Dedicová D, Smajs D. Novel colicin FY of Yersinia frederiksenii inhibits pathogenic Yersinia strains via YiuR-mediated reception, TonB import, and cell membrane pore formation. J Bacteriol. 2012;194:1950–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goldberg MB, et al. Characterization of a Vibrio cholerae virulence factor homologous to the family of TonB-dependent proteins. Mol Microbiol. 1992;6:2407–18.
Article
CAS
PubMed
Google Scholar
Hantke K. Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12. MGG Mol Gen Genet. 1983;191:301–6.
Article
CAS
PubMed
Google Scholar
Koster M, van de Vossenberg J, Leong J, Weisbeek PJ. Identification and characterization of the pupB gene encoding an inducible ferric-pseudobactin receptor of Pseudomonas putida WCS358. Mol Microbiol. 1993;8:591–601.
Article
CAS
PubMed
Google Scholar
Coulton JW, Mason P, DuBow M. Molecular cloning of the ferrichrome-Iron receptor of Escherichia coli. J Bacteriol. 1983;156:1315–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cope LD, Yogev R, Muller-Eberhard U, Hansen EJ. A gene cluster involved in the utilization of both free heme and heme:hemopexin by Haemophilus influenzae type b. J Bacteriol. 1995;177:2644–53. https://doi.org/10.1128/jb.177.10.2644-2653.1995.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hornung JM, Jones HA, Perry RD. The hmu locus of Yersinia pestis is essential for utilization of free haemin and haem-protein complexes as iron sources. Mol Microbiol. 1996;20:725–39.
Article
CAS
PubMed
Google Scholar
Stojiljkovic I, Hantke K. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in gram-negative bacteria. EMBO J. 1992;11:4359–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gudmondsdottir A, Bradbeer C, Kadner RJ. Altered binding and transport of vitamin B12 resulting from insertion mutations in the Escherichia coli btuB gene. J Biol Chem. 1988;263:14224–30.
Article
Google Scholar
Armstrong SK, Brickman TJ, Suhadolc RJ. Involvement of multiple distinct Bordetella receptor proteins in the utilization of iron liberated from transferrin by host catecholamine stress hormones. Mol Microbiol. 2012;84:446–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen A, others. Nigribactin, a novel siderophore from Vibrio nigripulchritudo, modulates <i>Staphylococcus aureus</> virulence gene expression. Mar Drugs 2012;10:2584–2595.
Yamamoto S, others. Structures of two polyamine-containing from Vibrio fluvialis catecholate siderophores. J Biochem 1993;544:538–544.
Ehlert G, Taraz K, Budzikiewicz H. Serratiochelin, a new catecholate siderophore from Serratia marcescens. Zeitschrift fur Naturforsch - Sect C J Biosci. 1994;49:11–7.
Article
CAS
Google Scholar
Peterson T, Neilands JB. Revised structure of a catecholamide spermidine siderophore. From Paracoccus denitrificane. Tetrahedron Letters. 1979;20:4805–8.
Article
Google Scholar
González Carreró MI, Sangari FJ, Agüero J, García Lobo JM. Brucella abortus strain 2308 produces brucebactin, a highly efficient catecholic siderophore. Microbiology. 2002;148:353–60. https://doi.org/10.1099/00221287-148-2-353.
Article
PubMed
Google Scholar
Bloudoff K, Alonzo DA, Schmeing TM. Chemical probes allow structural insight into the condensation reaction of nonribosomal peptide Synthetases. Cell Chemical Biology. 2016;23:331–9. https://doi.org/10.1016/j.chembiol.2016.02.012.
Article
CAS
PubMed
Google Scholar
Rausch C, Hoof I, Weber T, Wohlleben W, Huson DH. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol. 2007;7:78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weinberg ED. Iron availability and infection. Biochim Biophys Acta - Gen Subj. 1790;2009:600–5.
Google Scholar
Lawlor MS, O’Connor C, Miller VL. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun. 2007;75:1463–72. https://doi.org/10.1128/IAI.00372-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol. 2012;8:731–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010;6:1–2.
Article
CAS
Google Scholar
Dumas Z, Ross-Gillespie A, Kümmerli R. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc R Soc B Biol Sci. 2013;280. https://doi.org/10.1098/rspb.2013.1055.
Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Frontiers in Cellular and Infection Microbiology. 2013. doi:https://doi.org/10.3389/fcimb.2013.00075.
Thode SK, Rojek E, Kozlowski M, Ahmad R, Haugen P. Distribution of siderophore gene systems on a Vibrionaceae phylogeny: database searches, phylogenetic analyses and evolutionary perspectives. PLoS One. 2018;13:e0191860. https://doi.org/10.1371/journal.pone.0191860.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Guo Y, Lu Y, Wang B, Sun J, Zhang H, et al. Chemistry and biology of siderophores from marine microbes. Mar Drugs. 2019;17:562.
Baars O, Zhang X, Morel FMM, Seyedsayamdost MR. The siderophore metabolome of Azotobacter vinelandii. Appl Environ Microbiol. 2016;82:27–39. https://doi.org/10.1128/AEM.03160-15.
Article
CAS
PubMed
Google Scholar
McRose DL, Seyedsayamdost MR, Morel FMM. Multiple siderophores: bug or feature? J Biol Inorg Chem. 2018;23:983–93. https://doi.org/10.1007/s00775-018-1617-x.
Article
CAS
PubMed
Google Scholar
Niehus R, Picot A, Oliveira NM, Mitri S, Foster KR. The evolution of siderophore production as a competitive trait. Evolution. 2017;71:1443–55. https://doi.org/10.1111/evo.13230.
Article
CAS
PubMed
Google Scholar
Schiessl KT, Janssen EM-L, Kraemer SM, McNeill K, Ackermann M. Magnitude and mechanism of siderophore-mediated competition at low iron solubility in the Pseudomonas aeruginosa pyochelin system. Front Microbiol. 2017:1964. doi:https://doi.org/10.3389/fmicb.2017.01964.
Seyedsayamdost MR, Traxler MF, Zheng S, Kolter R, Clardy J. Structure and biosynthesis of amychelin, an unusual mixed-ligand siderophore from Amycolatopsis sp AA4. J Am Chem Soc. 2011;133:11434–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Challis GL, Hopwood DA. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci. 2003;100:14555–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrero P, others. Report of six cases of human infection by Serratia plymuthica. J Clin Microbiol 1995;33:275–276.
Domingo D, et al. Nosocomial septicemia caused by Serratia plymuthica. J Clin Microbiol. 1994;32:575–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horowitz HW, et al. Serratia plymuthica sepsis associated with infection of central venous catheter. J Clin Microbiol. 1987;25:1562–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ganley JG, Pandey A, Sylvester K, Lu KY, Toro-Moreno M, Rütschlin S, et al. A systematic analysis of mosquito-microbiome biosynthetic gene clusters reveals antimalarial siderophores that reduce mosquito reproduction capacity. Cell Chemical Biology. 2020;27:817–26 e5.
Article
CAS
PubMed
Google Scholar
Fischbach M, Walsh C, Clardy J. The evolution of gene collectives: how natural selection drives chemical innovation. Proc Natl Acad Sci U S A. 2008;105:4601–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medema MH, Cimermancic P, Sali A, Takano E, Fischbach MA. A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis. PLoS Comput Biol. 2014;10:1004016. https://doi.org/10.1371/journal.pcbi.1004016.
Article
Google Scholar
Chevrette MG, Gutiérrez-García K, Selem-Mojica N, Aguilar-Martínez C, Yañez-Olvera A, Ramos-Aboites HE, et al. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat Prod Rep. 2020;37:566–99.
Article
CAS
PubMed
Google Scholar
Fischbach MA, Walsh CT. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev. 2006;106:3468–96. https://doi.org/10.1021/cr0503097.
Article
CAS
PubMed
Google Scholar
Harris WR, others. Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes. J Am Chem Soc 1979;101:6097–6104.
Hamana K, Matsuzaki S. Diaminopropane occurs ubiquitously in Acinetobacter as the major polyamine. J Gen Appl Microbiol. 1992;38:191–4.
Article
CAS
Google Scholar
Michael AJ. Biosynthesis of polyamines and polyamine-containing molecules. Biochem J. 2016;473:2315–29.
Article
CAS
PubMed
Google Scholar
Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27:637–57.
Article
CAS
PubMed
Google Scholar
Weiss DS, Chen JC, Ghigo JM, Boyd D, Beckwith J. Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol. 1999;181:508–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith CA, Want EJ, Maille GO, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment. Matching Identification. 2006;78:779–87.
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006.0008. https://doi.org/10.1038/msb4100050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergeron RJ, Weimar WR. Increase in spermine content coordinated with siderophore production in Paracoccus denitrificans. J Bacteriol. 1991;173:2238–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith MA, Davies PJ. Separation and quantitation of polyamines in plant tissue by high performance liquid chromatography of their dansyl derivatives. Plant Physiol. 1985;1:89–91.
Article
Google Scholar
Qian ZG, Xia XX, Lee SY. Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol Bioeng. 2009;104:651–62.
CAS
PubMed
Google Scholar
Stachelhaus T, Mootz HD, Bergendahl V, a MM. Peptide bond formation in nonribosomal peptide biosynthesis. J Biol Chem 1998;273:22773–22781.
Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011;27:343–50.
Article
CAS
PubMed
Google Scholar
Biasini M, others. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 2014;42:252–258.
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201. https://doi.org/10.1093/bioinformatics/bti770.
Article
CAS
PubMed
Google Scholar
Schrödinger, LLC. The {PyMOL} Molecular Graphics System, Version~1.8. 2015.