de Laat W, Duboule D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature. 2013;502:499–506.
Article
PubMed
CAS
Google Scholar
Rowley MJ, Corces VG. Organizational principles of 3D genome architecture. Nat Rev Genet. 2018;19:789–800.
Article
CAS
PubMed
Google Scholar
Bonev B, Cavalli G. Organization and function of the 3D genome. Nat Rev Genet. 2016;17:661–78.
Article
CAS
PubMed
Google Scholar
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Cheng YJ, Wang JW, Weigel D. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat Plants. 2017;3:742–8.
Article
CAS
PubMed
Google Scholar
Zhao L, Wang S, Cao Z, Ouyang W, Zhang Q, Xie L, Zheng R, Guo M, Ma M, Hu Z, et al. Chromatin loops associated with active genes and heterochromatin shape rice genome architecture for transcriptional regulation. Nat Commun. 2019;10:3640.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grob S, Schmid MW, Grossniklaus U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell. 2014;55:678–93.
Article
CAS
PubMed
Google Scholar
Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell. 2014;55:694–707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong P, Tu X, Chu PY, Lu P, Zhu N, Grierson D, Du B, Li P, Zhong S. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol Plant. 2017;10:1497–509.
Article
CAS
PubMed
Google Scholar
Dong Q, Li N, Li X, Yuan Z, Xie D, Wang X, Li J, Yu Y, Wang J, Ding B, et al. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. Plant J. 2018;94:1141–56.
Article
CAS
PubMed
Google Scholar
Li E, Liu H, Huang LL, Zhang XB, Dong XM, Song WB, Zhao HM, Lai JS. Long-range interactions between proximal and distal regulatory regions in maize. Nat Commun. 2019;10:2633.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou S, Jiang W, Zhao Y, Zhou DX. Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes. Nat Plants. 2019;5:795–800.
Article
CAS
PubMed
Google Scholar
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–33.
Article
CAS
PubMed
Google Scholar
Probst AV, Mittelsten SO. Stress-induced structural changes in plant chromatin. Curr Opin Plant Biol. 2015;27:8–16.
Article
CAS
PubMed
Google Scholar
Li L, Lyu X, Hou C, Takenaka N, Nguyen HQ, Ong CT, Cubenas-Potts C, Hu M, Lei EP, Bosco G, et al. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Mol Cell. 2015;58:216–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Jing Y, Liu X, Li Q, Xue Z, Cheng Z, Wang D, He H, Qian W. Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nat Commun. 2020;11:1886.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Liang Z, Cui X, Ji C, Li Y, Zhang P, Liu J, Riaz A, Yao P, Liu M, et al. N(6)-methyladenine DNA methylation in Japonica and Indica rice genomes and its association with gene expression, plant development, and stress responses. Mol Plant. 2018;11:1492–508.
Article
CAS
PubMed
Google Scholar
Wolff J, Bhardwaj V, Nothjunge S, Richard G, Renschler G, Gilsbach R, Manke T, Backofen R, Ramírez F, Grüning BA. Galaxy HiCExplorer: a web server for reproducible Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 2018;46:11–6.
Article
CAS
Google Scholar
Sedaghatmehr M, Thirumalaikumar VP, Kamranfar I, Marmagne A, Masclaux-Daubresse C, Balazadeh S. A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ. 2019;42:1054–64.
Article
CAS
PubMed
Google Scholar
Liang Z, Shen L, Cui X, Bao S, Geng Y, Yu G, Liang F, Xie S, Lu T, Gu X, Yu H. DNA N(6)-adenine methylation in Arabidopsis thaliana. Dev Cell. 2018;45:406–16 e403.
Article
CAS
PubMed
Google Scholar
Liang Z, Riaz A, Chachar S, Ding Y, Du H, Gu X. Epigenetic modifications of mRNA and DNA in plants. Mol Plant. 2020;13:14–30.
Article
CAS
PubMed
Google Scholar
Li Z, Zhao S, Nelakanti RV, Lin K, Wu TP, Alderman MH 3rd, Guo C, Wang P, Zhang M, Min W, et al. N6-methyladenine in DNA antagonizes SATB1 in early development. Nature. 2020;583:625–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertero A, Fields PA, Ramani V, Bonora G, Yardimci GG, Reinecke H, Pabon L, Noble WS, Shendure J, Murry CE. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat Commun. 2019;10:1538.
Article
PubMed
PubMed Central
CAS
Google Scholar
Allan WL, Clark SM, Hoover GJ, Shelp BJ. Role of plant glyoxylate reductases during stress: a hypothesis. Biochem J. 2009;423:15–22.
Article
CAS
PubMed
Google Scholar
Xie T, Zheng JF, Liu S, Peng C, Zhou YM, Yang QY, Zhang HY. De novo plant genome assembly based on chromatin interactions: a case study of Arabidopsis thaliana. Mol Plant. 2015;8:489–92.
Article
CAS
PubMed
Google Scholar
Servant N, Varoquaux N, Lajoie BR, Viara E, Chen C-J, Vert J-P, Heard E, Dekker J, Barillot E. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015;16:259.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42:187–91.
Article
CAS
Google Scholar
Liang Z, Geng YK, Ji CM, Du H, Wong CE, Zhang Q, Zhang Y, Zhang PX, Riaz A, Chachar S, et al. Mesostigma viride genome and transcriptome provide insights into the origin and evolution of Streptophyta. Adv Sci. 2020;7:1901850.
Article
CAS
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bajic M, Maher KA, Deal RB. Identification of open chromatin regions in plant genomes using ATAC-Seq. Methods Mol Biol. 1675;2018:183–201.
Google Scholar
Sijacic P, Bajic M, McKinney EC, Meagher RB, Deal RB. Changes in chromatin accessibility between Arabidopsis stem cells and mesophyll cells illuminate cell type-specific transcription factor networks. Plant J. 2018;94:215–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Article
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:1–9.
Google Scholar
Stark R, Brown G. DiffBind: differential binding analysis of ChIP-Seq peak data. R Package Version. 2011;100:4–3.
Google Scholar
Liang Z, Zhang Q, Liu Q, Ji C, Zhang P, Hu G, Wang Y, Gu X. Reorganization of 3D chromatin architecture of rice genomes during heat stress (ATAC-Seq). 2021;GEO: GSE144564.
Liang Z, Zhang Q, Liu Q, Ji C, Zhang P, Hu G, Wang Y, Gu X. Reorganization of 3D chromatin architecture of rice genomes during heat stress (HiC). 2021;GEO: GSE144565.
Liang Z, Zhang Q, Liu Q, Ji C, Zhang P, Hu G, Wang Y, Gu X. Reorganization of 3D chromatin architecture of rice genomes during heat stress (RNA-seq). 2021;GEO: GSE144566.
Dong P, Tu X, Li H, Zhang J, Grierson D, Li P, Zhong S. Tissue-specific Hi-C analyses of rice, foxtail millet and maize suggest non-canonical function of plant chromatin domains. J Integr Plant Biol. 2020;62:201–7.
Article
CAS
PubMed
Google Scholar