Ashby B, Watkins E, Lourenco J, Gupta S, Foster KR. Competing species leave many potential niches unfilled. Nat Ecol Evol. 2017;1(10):1495–501. https://doi.org/10.1038/s41559-017-0295-3.
Article
PubMed
PubMed Central
Google Scholar
Alleaume-Benharira M, Pen IR, Ronce O. Geographical patterns of adaptation within a species’ range: interactions between drift and gene flow. J Evol Biol. 2006;19(1):203–15. https://doi.org/10.1111/j.1420-9101.2005.00976.x.
Article
CAS
PubMed
Google Scholar
Bridle JR, Polechová J, Kawata M, Butlin RK. Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol Lett. 2010;13(4):485–94. https://doi.org/10.1111/j.1461-0248.2010.01442.x.
Article
PubMed
Google Scholar
Montesinos-Navarro A, Wig J, Pico FX, Tonsor SJ. Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude. New Phytol. 2011;189(1):282–94. https://doi.org/10.1111/j.1469-8137.2010.03479.x.
Article
PubMed
Google Scholar
Qiu J. China: The third pole. Nature. 2008;454(7203):393–6. https://doi.org/10.1038/454393a.
Article
CAS
PubMed
Google Scholar
Weigel D, Nordborg M. Population genomics for understanding adaptation in wild plant species. Annu Rev Genet. 2015;49(1):315–8. https://doi.org/10.1146/annurev-genet-120213-092110.
Article
CAS
PubMed
Google Scholar
Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R, et al. Adaptation genomics: the next generation. Trends Ecol Evol. 2010;25(12):705–12. https://doi.org/10.1016/j.tree.2010.09.002.
Article
PubMed
Google Scholar
Simonson TS. Altitude adaptation: a glimpse through various lenses. High Alt Med Biol. 2015;16(2):125–37. https://doi.org/10.1089/ham.2015.0033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall JE, Lawrence ES, Simonson TS, Fox K. Seq-ing higher ground: functional investigation of adaptive variation associated with high-altitude adaptation. Front Genet. 2020;11:471. https://doi.org/10.3389/fgene.2020.00471.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hämälä T, Savolainen O. Genomic patterns of local adaptation under gene flow in Arabidopsis lyrata. Mol Biol Evol. 2019;36(11):2557–71. https://doi.org/10.1093/molbev/msz149.
Article
CAS
Google Scholar
Bohutínská M, Vlček J, Yair S, Laenen B, Konečná V, Fracassetti M, et al. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Proc Natl Acad Sci U S A. 2021;118(21):e2022713118. https://doi.org/10.1073/pnas.2022713118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer MC, Rellstab C, Tedder A, Zoller S, Gugerli F, Shimizu KK, et al. Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis halleri from the Alps. Mol Ecol. 2013;22(22):5594–607. https://doi.org/10.1111/mec.12521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phippen WB, Phippen ME. Soybean Seed yield and quality as a response to field pennycress residue. Crop Sci. 2012;52(6):2767–73. https://doi.org/10.2135/cropsci2012.03.0192.
Article
Google Scholar
Sedbrook JC, Phippen WB, Marks MD. New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.). Plant Sci. 2014;227:122–32.
Article
CAS
PubMed
Google Scholar
McGinn M, Phippen WB, Chopra R, Bansal S, Jarvis BA, Phippen ME, et al. Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop. Plant Biotechnol J. 2019;17(4):776–88. https://doi.org/10.1111/pbi.13014.
Article
CAS
PubMed
Google Scholar
Dorn KM, Fankhauser JD, Wyse DL, Marks MD. A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop. DNA Res. 2015;22(2):121–31. https://doi.org/10.1093/dnares/dsu045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorn KM, Johnson EB, Daniels EC, Wyse DL, Marks MD. Spring flowering habit in field pennycress (Thlaspi arvense) has arisen multiple independent times. Plant Direct. 2018;2(11):e00097. https://doi.org/10.1002/pld3.97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warwick SI, Francis A, Susko DJ. The biology of Canadian weeds: 9. Thlaspi arvense L. (updated). Can J Plant Sci. 2002;82(4):803–23. https://doi.org/10.4141/P01-159.
Article
Google Scholar
Best KF, McIntyre GI. Studies on the flowering of Thlaspi arvense L. I. The influence of some environmental and genetic factors. Bot Gaz. 1972;133(4):454–9. https://doi.org/10.1086/336670.
Article
Google Scholar
An M. Phylogeography and adaptive evolution of Thlaspi arvense L. (Brassicaceae). PhD thesis. Shanghai: Fudan University; 2014.
Google Scholar
An M, Zeng L-Y, Zhang T-C, Zhong Y. Phylogeography of Thlaspi arvense (Brassicaceae) in China inferred from chloroplast and nuclear DNA sequences and ecological niche modeling. Int J Mol Sci. 2015;16(12):13339–55. https://doi.org/10.3390/ijms160613339.
Article
PubMed
PubMed Central
Google Scholar
Liu B-H, Shi Y-J, Yuan J-Y, Galaxy Y, Zhang H, Li N, et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. Quantit Biol. 2013;35:62–7.
Google Scholar
Simao FA, Waterhouse RM, Panagiotis I, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2. https://doi.org/10.1093/bioinformatics/btv351.
Article
CAS
PubMed
Google Scholar
Wu H-J, Zhang Z-H, Wang J-Y, Oh D-H, Dassanayake M, Liu B-H, et al. Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci U S A. 2012;109(30):12219–24. https://doi.org/10.1073/pnas.1209954109.
Article
PubMed
PubMed Central
Google Scholar
Dassanayake M, Oh D-H, Haas JS, Hernandez A, Hong H, Ali S, et al. The genome of the extremophile crucifer Thellungiella parvula. Nat Genet. 2011;43(9):913–8. https://doi.org/10.1038/ng.889.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van de Peer Y, Maere S, Meyer A. The evolutionary significance of ancient genome duplications. Nat Rev Genet. 2009;10(10):725–32. https://doi.org/10.1038/nrg2600.
Article
CAS
PubMed
Google Scholar
Bennetzen JL. Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica. 2002;115(1):29–36. https://doi.org/10.1023/A:1016015913350.
Article
CAS
PubMed
Google Scholar
Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J-Y, et al. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet. 2016;48(6):657–66. https://doi.org/10.1038/ng.3565.
Article
CAS
PubMed
Google Scholar
Liu S-Y, Liu Y-M, Yang X-H, Tong C-B, Edwards D, Parkin IAP, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun. 2014;5(1):3930. https://doi.org/10.1038/ncomms4930.
Article
CAS
PubMed
Google Scholar
Shang J-Z, Tian J-P, Cheng H-H, Yan Q-M, Li L, Jamal A, et al. The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biol. 2020;21(1):200. https://doi.org/10.1186/s13059-020-02088-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238. https://doi.org/10.1186/s13059-019-1832-y.
Article
PubMed
PubMed Central
Google Scholar
Beilstein MA, Al-Shehbaz IA, Kellogg EA. Brassicaceae phylogeny and trichome evolution. Am J Bot. 2006;93(4):607–19. https://doi.org/10.3732/ajb.93.4.607.
Article
CAS
PubMed
Google Scholar
Huang C-H, Sun R-R, Hu Y, Zeng L-P, Zhang N, Cai L-M, et al. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol Biol Evol. 2016;33(2):394–412. https://doi.org/10.1093/molbev/msv226.
Article
CAS
PubMed
Google Scholar
Yang Z-H. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91. https://doi.org/10.1093/molbev/msm088.
Article
CAS
PubMed
Google Scholar
Guo X-Y, Liu J-Q, Hao G-Q, Zhang L, Mao K-S, Wang X-J, et al. Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics. 2017;18(1):176. https://doi.org/10.1186/s12864-017-3555-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hohmann N, Wolf EM, Lysak MA, Koch MA. A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant cell. 2015;27(10):2770–84. https://doi.org/10.1105/tpc.15.00482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo X, Hu Q, Hao G, Wang X, Zhang D, Ma T, et al. The genomes of two Eutrema species provide insight into plant adaptation to high altitudes. DNA Res. 2018;25(3):307–15. https://doi.org/10.1093/dnares/dsy003.
Article
CAS
PubMed Central
Google Scholar
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–64. https://doi.org/10.1101/gr.094052.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X-M, Fu Y-X. Exploring population size changes using SNP frequency spectra. Nat Genet. 2015;47(5):555–9. https://doi.org/10.1038/ng.3254.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovi MR, Fjellheim S, Sandve SR, Larsen A, Rudi H, Asp T, et al. Population structure, genetic variation, and linkage disequilibrium in perennial ryegrass populations divergently selected for freezing tolerance. Front Plant Sci. 2015;6:929.
Article
PubMed
PubMed Central
Google Scholar
Tolone M, Mastrangelo S, Rosa AJM, Portolano B. Genetic diversity and population structure of Sicilian sheep breeds using microsatellite markers. Small Rumin Res. 2012;102(1):18–25. https://doi.org/10.1016/j.smallrumres.2011.09.010.
Article
Google Scholar
Campoy JA, Lerigoleur-Balsemin E, Christmann H, Beauvieux R, Girollet N, Quero-García J, et al. Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars. BMC Plant Biol. 2016;16:49.
Article
PubMed
PubMed Central
Google Scholar
Suzuki Y. Statistical methods for detecting natural selection from genomic data. Genes Genet Syst. 2010;85(6):359–76. https://doi.org/10.1266/ggs.85.359.
Article
PubMed
Google Scholar
Vitti JJ, Grossman SR, Sabeti PC. Detecting natural selection in genomic data. Annu Rev Genet. 2013;47(1):97–120. https://doi.org/10.1146/annurev-genet-111212-133526.
Article
CAS
PubMed
Google Scholar
Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X-L, et al. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A. 2008;105(34):12411–6. https://doi.org/10.1073/pnas.0805685105.
Article
PubMed
PubMed Central
Google Scholar
Xu R-Q, Li Q-Q. A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol. 2003;53(1/2):37–50. https://doi.org/10.1023/B:PLAN.0000009256.01620.a6.
Article
CAS
PubMed
Google Scholar
Chiang GCK, Bartsch M, Barua D, Nakabayashi K, Debieu M, Kronholm I, et al. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol Ecol. 2011;20(16):3336–49. https://doi.org/10.1111/j.1365-294X.2011.05181.x.
Article
CAS
PubMed
Google Scholar
Horton MW, Hancock AM, Huang Y-S, Toomajian C, Atwell S, Auton A, et al. Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet. 2012;44(2):212–6. https://doi.org/10.1038/ng.1042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Best KF, McIntyre GI. Studies on the flowering of Thlaspi arvense L. III. The influence of vernalization under natural and controlled conditions. Bot Gaz. 1976;137(2):121–7. https://doi.org/10.1086/336850.
Article
Google Scholar
Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A. 2000;97(7):3753–8. https://doi.org/10.1073/pnas.97.7.3753.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L-Y, Turkington R, Tang Y. Flowering and fruiting phenology of 24 plant species on the north slope of Mt. Qomolangma (Mt. Everest). J Mt Sci. 2010;7(1):45–54. https://doi.org/10.1007/s11629-010-1107-2.
Article
Google Scholar
Zhang T, Qiao Q, Novikova PY, Wang Q, Yue J, Guan Y, et al. Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude. Proc Natl Acad Sci U S A. 2019;116(14):7137–46. https://doi.org/10.1073/pnas.1817580116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo Y-L, Todesco M, Hagmann J, Das S, Weigel D. Independent FLC mutations as causes of flowering-time variation in Arabidopsis thaliana and Capsella rubella. Genetics. 2012;192(2):729–39. https://doi.org/10.1534/genetics.112.143958.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020;17(2):155–8. https://doi.org/10.1038/s41592-019-0669-3.
Article
CAS
PubMed
Google Scholar
Luo R-B, Liu B-H, Xie Y-L, Li Z-Y, Huang W-H, Yuan J-Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1(1):18. https://doi.org/10.1186/2047-217X-1-18.
Article
PubMed
PubMed Central
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27(4):578–9. https://doi.org/10.1093/bioinformatics/btq683.
Article
CAS
PubMed
Google Scholar
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–93. https://doi.org/10.1126/science.1181369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ. Analysis of alternative splicing in plants with bioinformatics tools. Curr Top Microbiol Immunol. 2008;326:17–37. https://doi.org/10.1007/978-3-540-76776-3_2.
Article
CAS
PubMed
Google Scholar
Guo S-G, Zhang J-G, Sun H-H, Salse J, Lucas WJ, Zhang H-Y, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013;45(1):51–8. https://doi.org/10.1038/ng.2470.
Article
CAS
PubMed
Google Scholar
Harris RS. Improved pairwise alignment of genomic DNA. PhD thesis. University Park: Pennsylvania State University; 2007.
Google Scholar
Wang Y-P, Tang H-B, Debarry JD, Tan X, Li J-P, Wang X-Y, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49. https://doi.org/10.1093/nar/gkr1293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110(1-4):462–7. https://doi.org/10.1159/000084979.
Article
CAS
PubMed
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80. https://doi.org/10.1093/nar/27.2.573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC, Myers EW. PILER: identification and classification of genomic repeats. Bioinformatics. 2005;21(suppl 1):i152–8. https://doi.org/10.1093/bioinformatics/bti1003.
Article
CAS
PubMed
Google Scholar
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008;9(1):18. https://doi.org/10.1186/1471-2105-9-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35(Web Server):W265–8. https://doi.org/10.1093/nar/gkm286.
Article
PubMed
PubMed Central
Google Scholar
Ou S-J, Jiang N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 2018;176(2):1410–22. https://doi.org/10.1104/pp.17.01310.
Article
CAS
PubMed
Google Scholar
Ossowski S, Schneeberger K, LucasLledó JI, Warthmann N, Clark RM, Shaw RG, et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science. 2010;327(5961):92–4. https://doi.org/10.1126/science.1180677.
Article
CAS
PubMed
Google Scholar
Exposito-Alonso M, Becker C, Schuenemann VJ, Reiter E, Setzer C, Slovak R, et al. The rate and potential relevance of new mutations in a colonizing plant lineage. Plos Genet. 2018;14(2):e1007155. https://doi.org/10.1371/journal.pgen.1007155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. https://doi.org/10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. https://doi.org/10.1093/molbev/msu300.
Article
CAS
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. https://doi.org/10.1101/gr.107524.110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Li M-Y, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. https://doi.org/10.1093/nar/gkq603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15(1):356. https://doi.org/10.1186/s12859-014-0356-4.
Article
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4. https://doi.org/10.1093/molbev/msw054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82. https://doi.org/10.1016/j.ajhg.2010.11.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 2002;12(12):1805–14. https://doi.org/10.1101/gr.631202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38(6):1358–70. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x.
Article
CAS
PubMed
Google Scholar
Wang G-D, Fan R-X, Zhai W-W, Liu F, Wang L, Zhong L, et al. Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the Tibetan Plateau. Genome Biol Evol. 2014;6(8):2122–8. https://doi.org/10.1093/gbe/evu162.
Article
PubMed
PubMed Central
Google Scholar
DeGiorgio M, Huber CD, Hubisz MJ, Hellmann I, Nielsen R. SweepFinder2: increased sensitivity, robustness and flexibility. Bioinformatics. 2016;32(12):1895–7. https://doi.org/10.1093/bioinformatics/btw051.
Article
CAS
PubMed
Google Scholar
Yu G-C, Wang L-G, Han Y-Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie C, Mao X-Z, Huang J-J, Ding Y, Wu J-M, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorn KM, Fankhauser JD, Wyse DL, Marks MD. De novo assembly of the pennycress (Thlaspi arvense) transcriptome provides tools for the development of a winter cover crop and biodiesel feedstock. Plant J. 2013;75(6):1028–38. https://doi.org/10.1111/tpj.12267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–92. https://doi.org/10.1093/bib/bbs017.
Article
CAS
PubMed
Google Scholar