Kay RF, Hylander WL. The dental structure of mammalian folivores with special reference to Primates and Phalangeroidea. In: The Ecology of Arboreal Folivores. Edited by Montgomery GG. Washington, D.C.: Smithsonian Institution Press; 1978. p. 173–91.
Google Scholar
Clauss M, Frey R, Kiefer B, Lechner-Doll M, Loehlein W, Polster C, et al. The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Oecol. 2003;136(1):14–27. https://doi.org/10.1007/s00442-003-1254-z.
Article
CAS
Google Scholar
Carbone C, Mace GM, Roberts SC, Macdonald DW. Energetic constraints on the diet of terrestrial carnivores. Nature. 1999;402(6759):286–8. https://doi.org/10.1038/46266.
Article
CAS
PubMed
Google Scholar
Cork SJ, Foley WJ. Digestive and metabolic strategies of arboreal folivores in relation to chemical defenses in temperate and tropical forests. In: Palo RT, Robbins CT, editors. Plant Defenses Against Mammalian Herbivory. Boca Raton: CRC Press; 1991. p. 166–75.
Google Scholar
McNab BK. Uniformity in the basal metabolic rate of marsupials: its causes and consequences. Rev Chil de Hist Nat. 2005;78:183–98.
Google Scholar
Robinson JG, Redford KH. Body size, diet, and population density of Neotropical forest mammals. Am Nat. 1986;128(5):665–80. https://doi.org/10.2307/2461950.
Article
Google Scholar
Speakman JR. Body size, energy metabolism and lifespan. J Exp Biol. 2005;208(9):1717. https://doi.org/10.1242/jeb.01556.
Article
PubMed
Google Scholar
Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S. Relationships between body size and some life history parameters. Oecol. 1978;37(2):257–72. https://doi.org/10.1007/BF00344996.
Article
CAS
Google Scholar
Reiss M. Scaling of home range size: body size, metabolic needs and ecology. Trends Ecol Evol. 1988;3(3):85–6. https://doi.org/10.1016/0169-5347(88)90025-0.
Article
CAS
PubMed
Google Scholar
Weckerly FW. Sexual-size dimorphism: influence of mass and mating systems in the most dimorphic mammals. J Mammal. 1998;79(1):33–52.
Article
Google Scholar
Jerison HJ. Evolution of the brain and intelligence. New York: Academic Press; 1973.
Google Scholar
Burger JR, George MA Jr, Leadbetter C, Shaikh F. The allometry of brain size in mammals. J Mammal. 2019;100(2):276–83. https://doi.org/10.1093/jmammal/gyz043.
Article
Google Scholar
Shockey BJ, Croft DA, Anaya F. Analysis of function in the absence of extant functional analogs: a case study of mesotheriid notoungulates. Paleobiology. 2007;33(2):227–47.
Article
Google Scholar
Geist V. On the relationship of social evolution and ecology in ungulates. Am Zool. 1974;14(1):205–20. https://doi.org/10.2307/3881984.
Article
Google Scholar
Ercoli MD, Prevosti FJ, Forasiepi AM. The structure of the mammalian predator guild in the Santa Cruz Formation (late early Miocene). J Mammal Evol. 2014;21(4):369–81. https://doi.org/10.1007/s10914-013-9243-4.
Article
Google Scholar
Dayan T, Simberloff D. Character displacement, sexual dimorphism, and morphological variation among British and Irish Mustelids. Ecology. 1994;75(4):1063–73. https://doi.org/10.2307/1939430.
Article
Google Scholar
Tejada-Lara JV, MacFadden BJ, Bermudez L, Rojas G, Salas-Gismondi R, Flynn JJ. Body mass predicts isotope enrichment in herbivorous mammals. Proc R Soc B. 2018;285(1881). https://doi.org/10.1098/rspb.2018.1020.
Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, et al. Multiple causes of high extinction risk in large mammal species. Science. 2005;309(5738):1239–41. https://doi.org/10.1126/science.1116030.
Article
CAS
PubMed
Google Scholar
Calder WA. Size, function, and life history. Cambridge: Harvard University Press; 1984.
Google Scholar
Peters RH. The ecological implications of body size. Cambridge: Cambridge University Press; 1983.
Book
Google Scholar
Damuth J. MacFadden BJ (eds.): Body size in mammalian paleobiology: estimation and biological implications. Cambridge: Cambridge University Press; 1990.
Google Scholar
Hone DWE. Variation in the tail length of non-avian dinosaurs. J Vertebr Paleontol. 2012;32(5):1082–9. https://doi.org/10.1080/02724634.2012.680998.
Article
Google Scholar
Murray PF, Vickers-Rich P. Magnificent Mihirungs. The colossal flightless birds of the Australian dreamtime. Bloomington: Indiana University Press; 2004.
Google Scholar
McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends Ecol Evol. 2006;21(4):178–85. https://doi.org/10.1016/j.tree.2006.02.002.
Article
PubMed
Google Scholar
Gingerich PD, Smith BH. Allometric scaling in the dentition of primates and insectivores. In: Jungers WL, editor. Size and Scaling in Primate Biology. Boston: Springer US; 1985. p. 257–72.
Chapter
Google Scholar
McNab BK. Complications inherent in scaling the basal rate of metabolism in mammals. Q Rev Biol. 1988;63(1):25–54. https://doi.org/10.1086/415715.
Article
CAS
PubMed
Google Scholar
Damuth J, MacFadden BJ. Introduction: body size and its estimation. In: Damuth J, BJ MF, editors. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge University Press; 1990. p. 1–10.
Google Scholar
Bartholomew GA. A matter of size: an examination of endothermy in insects and terrestrial vertebrates. In: Henrich B, editor. Insect Thermoregulation. New York: Wiley; 1981. p. 45–78.
Google Scholar
Schmidt-Nielsen K. Scaling: why is animal size so important? Cambridge: Cambridge University Press; 1984.
Book
Google Scholar
Rose KD. The beginning of the age of mammals. Baltimore: The John Hopkins University Press; 2006.
Google Scholar
Millien V, Bovy H. When teeth and bones disagree: body mass estimation of a giant extinct rodent. J Mammal. 2010;91(1):11–8. https://doi.org/10.1644/08-mamm-a-347r1.1.
Article
Google Scholar
Egi N. Body mass estimates in extinct mammals from limb bone dimensions: the case of North American Hyaenodontids. Palaeontology. 2001;44(3):497–528. https://doi.org/10.1111/1475-4983.00189.
Article
Google Scholar
Sinclair WJ. Mammalia of the Santa Cruz Beds. Marsupialia. In: Scott WB, editor. vol. IV, Part III Reports of the Princeton University Expeditions to Patagonia, 1896-1899. Stuttgart: Princeton University, E. Schweizerbart’sche Verlagshandlung (E. Nägele); 1906. p. 333–460.
Google Scholar
Scott WB, Jepsen GL. The Mammalian fauna of the White River Oligocene: Part I. Insectivora and Carnivora. Trans Am Phil Soc. 1936;28(1):1–153. https://doi.org/10.2307/1005507.
Article
Google Scholar
Sinclair WJ. The marsupial fauna of the Santa Cruz Beds. Proc Am Philos Soc. 1906;44(179):73–81.
Google Scholar
Argot C. Postcranial functional adaptations in the South American Miocene borhyaenoids (Mammalia, Metatheria): Cladosictis, Pseudonotictis and Sipalocyon. Alcheringa. 2003;27(3-4):303–56.
Article
Google Scholar
Zhou X, Sanders WJ, Gingerich PD. Functional and behavioral implications of vertebral structure in Pachyaena ossifraga (Mammalia, Mesonychia). Contrib Mus Paleontol Univ Mich. 1992;28(12):289–312.
Google Scholar
Wortman JL. Osteology of Patriofelis, a middle Eocene creodont. Bull Am Mus Nat Hist. 1894;6:129–64.
Google Scholar
Van Valkenburgh B. Skeletal and dental predictors of body mass in carnivores. In: Damuth J, BJ MF, editors. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge University Press; 1990. p. 181–205.
Google Scholar
Hunt RM Jr. Amphicyonidae. In: Janis CM, Scott KM, Jacobs LL, editors. vol. 1: Terrestrial carnivores, ungulates, and ungulate-like mammals Evolution of Tertiary Mammals of North America. Cambridge: Cambridge University Press; 1998. p. 196–227.
Google Scholar
Figueirido B, Pérez-Claros JA, Hunt RM, Palmqvist P. Body mass estimation in amphicyonid carnivoran mammals: a multiple regression approach from the skull and skeleton. Acta Palaeontol Pol. 2011;56(2):225–46. https://doi.org/10.4202/app.2010.0005.
Article
Google Scholar
Simons EL. The Paleocene Pantodonta. Trans Am Phil Soc. 1960;50(6):3–99.
Article
Google Scholar
Osborn HF. A complete skeleton of Coryphodon radians. Notes upon the locomotion of this animal. Bull Am Mus Nat Hist. 1898;10(6):81–91.
Google Scholar
Argot C. Postcranial analysis of a carnivoran-like archaic ungulate: the case of Arctocyon primaevus (Arctocyonidae, Mammalia) from the late Paleocene of France. J Mammal Evol. 2013;20(2):83–114. https://doi.org/10.1007/s10914-012-9198-x.
Article
Google Scholar
Schoch RM. Systematics, functional morphology, and macroevolution of the extinct mammalian order Taeniodonta. Peabody Mus Bull. 1986;42:1–307.
Google Scholar
Joeckel RM. A functional interpretation of the masticatory system and paleoecology of entelodonts. Paleobiology. 1990;16(4):459–82.
Article
Google Scholar
Sharp AC. A quantitative comparative analysis of the size of the frontoparietal sinuses and brain in vombatiform marsupials. Mem Mus Vic. 2016;74:331–42.
Article
Google Scholar
Riggs ES. A skeleton of Astrapotherium. Field Mus Nat Hist, Geol ser. 1935;6(13):167–76.
Google Scholar
Sinclair WJ. The Santa Cruz Typotheria. Proc Am Philos Soc. 1908;47(188):64–78.
Google Scholar
Carrillo JD, Asher RJ. An exceptionally well-preserved skeleton of Thomashuxleya externa (Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina. Palaeontol Electron. 2017;20.2.34A:1–33.
Google Scholar
Simpson GG. A Deseado hegetothere from Patagonia. Am J Sci. 1945;243(10):550–64.
Article
Google Scholar
Croft DA, Gelfo JN, López GM. Splendid innovation: the extinct South American native ungulates. Ann Rev Earth Planet Sci. 2020;48(1):259–90. https://doi.org/10.1146/annurev-earth-072619-060126.
Article
CAS
Google Scholar
Millien V. The largest among the smallest: the body mass of the giant rodent Josephoartigasia monesi. Proc R Soc B. 2008;275(1646):1953–5.
Article
PubMed
PubMed Central
Google Scholar
Reynolds PS. How big is a giant? The importance of method in estimating body size of extinct mammals. J Mammal. 2002;83(2):321–32. https://doi.org/10.1644/1545-1542(2002)083<0321:HBIAGT>2.0.CO;2.
Article
Google Scholar
Jungers WL. Problems and methods in reconstructing body size in fossil primates. In: Damuth J, BJ MF, editors. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge University Press; 1990. p. 103–18.
Google Scholar
Van Valkenburgh B. Skeletal indicators of locomotor behavior in living and extinct carnivores. J Vertebr Paleontol. 1987;7:162–82.
Article
Google Scholar
Ruff CB. Long bone articular and diaphyseal structure in Old World monkeys and apes. II: estimation of body mass. Am J Phys Anthropol. 2003;120(1):16–37. https://doi.org/10.1002/ajpa.10118.
Article
PubMed
Google Scholar
Tsubamoto T. Estimating body mass from the astragalus in mammals. Acta Palaeontol Pol. 2014;59(2):259–65. https://doi.org/10.4202/app.2011.0067.
Article
Google Scholar
Moncunill-Solé B, Tuveri C, Arca M, Angelone C. Tooth and long bone scaling in Sardinian ochotonids (Early Pleistocene-Holocene): evidence for megalodontia and its palaeoecological implications. Palaeogeogr Palaeoclimatol Palaeoecol. 2021;582:110645. https://doi.org/10.1016/j.palaeo.2021.110645.
Article
Google Scholar
Croft DA, Bond M, Flynn JJ, Reguero MA, Wyss AR. Large archaeohyracids (Typotheria, Notoungulata) from central Chile and Patagonia including a revision of Archaeotypotherium. Fieldiana: Geology (New Series). 2003;49:1–38.
Google Scholar
Shockey BJ, Anaya F. Postcranial osteology of mammals from Salla, Bolivia (late Oligocene): form, function, and phylogenetic implications. In: Sargis EJ, Dagosto M, editors. Mammalian Evolutionary Morphology: A Tribute to Frederick S Szalay. New York: Springer; 2008. p. 135–57.
Chapter
Google Scholar
Davis EB, Calède JJM. Extending the utility of artiodactyl postcrania for species-level identifications using multivariate morphometric analyses. Palaeontol Electron. 2012;15.1.1A:1–22.
Google Scholar
Davis EB, Pyenson ND. Diversity biases in terrestrial mammalian assemblages and quantifying the differences between museum collections and published accounts: a case study from the Miocene of Nevada. Palaeogeogr Palaeoclimatol Palaeoecol. 2007;250(1):139–49. https://doi.org/10.1016/j.palaeo.2007.03.006.
Article
Google Scholar
Janis CM. Correlation of cranial and dental variables with body size in ungulates and macropodids. In: Damuth J, BJ MF, editors. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge University Press; 1990. p. 255–300.
Google Scholar
MacFadden BJ, Hulbert RCJ. Body size estimates and size distribution of ungulate mammals from the late Miocene Love Bone Bed of Florida. In: Damuth J, BJ MF, editors. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge University Press; 1990. p. 337–63.
Google Scholar
Damuth J. Problems in estimating body masses of archaic ungulates using dental measurements. In: Damuth J, BJ MF, editors. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge University Press; 1990. p. 229–53.
Google Scholar
MacFadden BJ. Fossil horses from "Eohippus" (Hyracotherium) to Equus: scaling, Cope's law, and the evolution of body size. Paleobiology. 1986;12(4):355–69. https://doi.org/10.2307/2400511.
Article
Google Scholar
Palmqvist P, Arribas A, MartÍNez-Navarro B. Ecomorphological study of large canids from the lower Pleistocene of southeastern Spain. Lethaia. 1999;32(1):75–88. https://doi.org/10.1111/j.1502-3931.1999.tb00583.x.
Article
Google Scholar
Sarko DK, Domning DP, Marino L, Reep RL. Estimating body size of fossil sirenians. Mar Mam Sci. 2010;26(4):937–59. https://doi.org/10.1111/j.1748-7692.2010.00384.x.
Article
Google Scholar
Argot C. Functional adaptations of the postcranial skeleton of two Miocene borhyaenoids (Mammalia, Metatheria), Borhyaena and Prothylacinus, from South America. Palaeontology. 2003;46(6):1213–67.
Article
Google Scholar
Vizcaíno SF, Blanco RE, Bender JB, Milne N. Proportions and function of the limbs of glyptodonts. Lethaia. 2011;44(1):93–101. https://doi.org/10.1111/j.1502-3931.2010.00228.x.
Article
Google Scholar
Biknevicius AR. Body mass estimation in armoured mammals: cautions and encouragements for the use of parameters from the appendicular skeleton. J Zool (London). 1999;248(2):179–87.
Article
Google Scholar
Biknevicius AR. Biomechanical scaling of limb bones and differential limb use in caviomorph rodents. J Mammal. 1993;74(1):95–107.
Article
Google Scholar
Fariña RA, Vizcaíno SF, Bargo MS. Body mass estimation in Lujanian (late Pleistocene-early Holocene of South America) mammal megafauna. Mastozool Neotrop. 1998;5(2):87–108.
Google Scholar
Sánchez-Villagra MR, Aguilera O, Horovitz I. The anatomy of the world’s largest extinct rodent. Science. 2003;301:1708–10. https://doi.org/10.1126/science.1089332.
Article
CAS
PubMed
Google Scholar
Etienne C, Mallet C, Cornette R, Houssaye A. Influence of mass on tarsus shape variation: a morphometrical investigation among Rhinocerotidae (Mammalia: Perissodactyla). Biol J Linn Soc. 2020;129(4):950–74. https://doi.org/10.1093/biolinnean/blaa005.
Article
Google Scholar
Mallet C, Cornette R, Billet G, Houssaye A. Interspecific variation in the limb long bones among modern rhinoceroses-extent and drivers. PeerJ. 2019;7:e7647. https://doi.org/10.7717/peerj.7647.
Article
PubMed
PubMed Central
Google Scholar
Morlo M. Niche structure and evolution in creodont (Mammalia) faunas of the European and North American Eocene. Geobios. 1999;32(2):297–305. https://doi.org/10.1016/s0016-6995(99)80043-6.
Article
Google Scholar
Sorkin B. A biomechanical constraint on body mass in terrestrial mammalian predators. Lethaia. 2008;41(4):333–47. https://doi.org/10.1111/j.1502-3931.2007.00091.x.
Article
Google Scholar
Gingerich PD. Prediction of body mass in mammalian species from long bone lengths and diameters. Contrib Mus Paleontol Univ Mich. 1990;28(4):79–92.
Google Scholar
McGrath AJ, Anaya F, Croft DA. Two new macraucheniids (Mammalia: Litopterna) from the late middle Miocene (Laventan South American Land Mammal Age) of Quebrada Honda, Bolivia. J Vertebr Paleontol. 2018;38(3):e1461632. https://doi.org/10.1080/02724634.2018.1461632.
Article
Google Scholar
Croft DA. Cenozoic environmental change in South American as indicated by mammalian body size distributions (cenograms). Divers Distrib. 2001;7:271–87.
Article
Google Scholar
Witmer LM. The Extant Phylogenetic Bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, editor. Functional Morphology in Vertebrate Paleontology. New York: Cambridge University Press; 1995. p. 19–33.
Google Scholar
Prevosti FJ, Forasiepi A, Zimicz N. The evolution of the Cenozoic terrestrial mammal guild in South America: competition or replacement? J Mammal Evol. 2013;20(1):3–21. https://doi.org/10.1007/s10914-011-9175-9.
Article
Google Scholar
Schwartz GT, Rasmussen DT, Smith RJ. Body-size diversity and community structure of fossil hyracoids. J Mammal. 1995;76(4):1088–99.
Article
Google Scholar
Mendoza M, Janis CM, Palmqvist P. Estimating the body mass of extinct ungulates: a study on the use of multiple regression. J Zool. 2006;270(1):90–101. https://doi.org/10.1111/j.1469-7998.2006.00094.x.
Article
Google Scholar
Campione NE, Evans DC. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol. 2012;10(1):60. https://doi.org/10.1186/1741-7007-10-60.
Article
PubMed
PubMed Central
Google Scholar
De Esteban-Trivigno S, Mendoza M, De Renzi M. Body mass estimation in xenarthra: a predictive equation suitable for all quadrupedal terrestrial placentals? J Morphol. 2008;269(10):1276–93. https://doi.org/10.1002/jmor.10659.
Article
PubMed
Google Scholar
Westbury M, Baleka S, Barlow A, Hartmann S, Paijmans JLA, Kramarz A, et al. A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonica. Nat Commun. 2017;8:15951. https://doi.org/10.1038/ncomms15951.
Article
CAS
PubMed
PubMed Central
Google Scholar
Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S, Cappellini E, et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature. 2015;522:81. https://doi.org/10.1038/nature14249.
Article
CAS
PubMed
Google Scholar
Alroy J. Simple equations for estimating body mass in mammals (and dinosaurs). In: 72nd Annual Meeting Society of Vertebrate Paleontology. North Carolina: Raleigh; 2012. p. 55–6.
Google Scholar
Tsubamoto T, Egi N, Takai M, Thaung H. Zin Maung Maung T: Body mass estimation from the talus in primates and its application to the Pondaung fossil amphipithecid primates. Hist Biol. 2016;28(1-2):27–34. https://doi.org/10.1080/08912963.2014.971783.
Article
Google Scholar
Tsubamoto T. Relationship between the calcaneal size and body mass in primates and land mammals. Anthropological Science. 2019;127(1):73–80. https://doi.org/10.1537/ase.190221.
Article
Google Scholar
Argot C, Babot J. Postcranial morphology, functional adaptations and palaeobiology of Callistoe vincei, a predaceous metatherian from the Eocene of Salta, north-western Argentina. Palaeontology. 2011;54(2):447–80. https://doi.org/10.1111/j.1475-4983.2011.01036.x.
Article
Google Scholar
Maddin HC, Piekarski N, Reisz RR, Hanken J. Development and evolution of the tetrapod skull-neck boundary. Biol Rev Camb Philos Soc. 2020;95(3):573–91. https://doi.org/10.1111/brv.12578.
Article
PubMed
PubMed Central
Google Scholar
Romer AS. Osteology of the reptiles. Chicago: University of Chicago Press; 1956.
Google Scholar
Radinsky L. Relative brain size: a new measure. Science. 1967;155(3764):836–8. https://doi.org/10.1126/science.155.3764.836.
Article
CAS
PubMed
Google Scholar
MacLarnon A. The evolution of the spinal cord in primates: evidence from the foramen magnum and the vertebral canal. J Human Evol. 1996;30(2):121–38. https://doi.org/10.1006/jhev.1996.0009.
Article
Google Scholar
Williams SA, Spear JK, Petrullo L, Goldstein DM, Lee AB, Peterson AL, et al. Increased variation in numbers of presacral vertebrae in suspensory mammals. Nat Ecol Evol. 2019;3(6):949–56. https://doi.org/10.1038/s41559-019-0894-2.
Article
PubMed
Google Scholar
Persons WS, Currie PJ. The tail of Tyrannosaurus: Reassessing the size and locomotive importance of the M. caudofemoralis in non-avian theropods. Anat Record. 2011;294(1):119–31. https://doi.org/10.1002/ar.21290.
Article
Google Scholar
Morton SR. Ecological correlates of caudal fat storage in small mammals. Aust Mamm. 1980;3:81–6.
Google Scholar
Grand TI. Adaptation of tissue and limb segments to facilitate moving and feeding in Arboreal folivores. In: Montgomery GG, editor. The Ecology of Arboreal Folivores. Washington D.C: Smithsonian Institute Press; 1978. p. 231–41.
Google Scholar
Organ CL. Biomechanics of ossified tendons in ornithopod dinosaurs. Paleobiology. 2006;32(4):652–65. https://doi.org/10.1666/05039.1.
Article
Google Scholar
Willey JS, Biknevicius AR, Reilly SM, Earls KD. The tale of the tail: limb function and locomotor mechanics in Alligator mississippiensis. J Exp Biol. 2004;207(3):553–63. https://doi.org/10.1242/jeb.00774.
Article
PubMed
Google Scholar
Daniels CB, Flaherty SP, Simbotwe MP. Tail size and effectiveness of autotomy in a lizard. J Herpetol. 1986;20(1):93–6. https://doi.org/10.2307/1564134.
Article
Google Scholar
Jagnandan K, Russell AP, Higham TE. Tail autotomy and subsequent regeneration alter the mechanics of locomotion in lizards. J Exp Biol. 2014;217(21):3891–7. https://doi.org/10.1242/jeb.110916.
Article
PubMed
Google Scholar
Arnold SJ. A quantitative approach to antipredator performance: salamander defense against snake attack. Copeia. 1982;1982(2):247–53. https://doi.org/10.2307/1444602.
Article
Google Scholar
Grand TI. Body weight: Its relation to tissue composition, segment distribution, and motor function. I. Interspecific comparisons. Am J Phys Anthropol. 1977;47(2):211–39. https://doi.org/10.1002/ajpa.1330470204.
Article
CAS
PubMed
Google Scholar
Grand TI, Eisenberg JF. On the affinities of the Dinomyidae. Saugetierkundliche Mitteilungen. 1982;30:151–7.
Google Scholar
Hager ER, Hoekstra HE. Tail length evolution in deer mice: linking morphology, behavior, and function. Integr Comp Biol. 2021;61(2):385–97. https://doi.org/10.1093/icb/icab030.
Article
PubMed
PubMed Central
Google Scholar
Grand TI. Body composition and the evolution of the Macropodidae (Potorous, Dendrolagus, and Macropus). Anat Embryol. 1990;182(1):85–92. https://doi.org/10.1007/BF00187530.
Article
CAS
Google Scholar
Campione NE, Evans DC, Brown CM, Carrano MT. Body mass estimation in non-avian bipeds using a theoretical conversion to quadruped stylopodial proportions. Methods Ecol Evol. 2014;5(9):913–23. https://doi.org/10.1111/2041-210X.12226.
Article
Google Scholar
Font E, García-Roa R, Pincheira-Donoso D, Carazo P. Rethinking the effects of body size on the study of brain size evolution. Brain Behav Evol. 2019;93(4):182–95. https://doi.org/10.1159/000501161.
Article
PubMed
Google Scholar
Hall GC, Kinsman MJ, Nazar RG, Hruska RT, Mansfield KJ, Boakye M, et al. Atlanto-occipital dislocation. World J Orthop. 2015;6(2):236–43. https://doi.org/10.5312/wjo.v6.i2.236.
Article
PubMed
PubMed Central
Google Scholar
Danowitz M, Domalski R, Solounias N. A new species of Prolibytherium (Ruminantia, Mammalia) from Pakistan, and the functional implications of an atypical atlanto-occipital morphology. J Mammal Evol. 2016;23(2):201–7. https://doi.org/10.1007/s10914-015-9307-8.
Article
Google Scholar
Martin RA. Body mass and basal metabolism of extinct mammals. Comp Biochem Physiol Part A Physiol. 1980;66(2):307–14. https://doi.org/10.1016/0300-9629(80)90167-X.
Article
Google Scholar
Köhler M, Moyà-Solà S. Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain Behav Evol. 2004;63(3):125–40.
Article
PubMed
Google Scholar
Moncunill-Solé B, Jordana X, Köhler M. How common is gigantism in insular fossil shrews? Examining the ‘Island Rule’ in soricids (Mammalia: Soricomorpha) from Mediterranean Islands using new body mass estimation models. Zool J Linn Soc. 2016;178(1):163–82. https://doi.org/10.1111/zoj.12399.
Article
Google Scholar
Moncunill-Solé B, Jordana X, Marín-Moratalla N, Moyà-Solà S, Köhler M. How large are the extinct giant insular rodents? New body mass estimations from teeth and bones. Integr Zool. 2014;9(2):197–212. https://doi.org/10.1111/1749-4877.12063.
Article
PubMed
Google Scholar
Moncunill-Solé B, Quintana J, Jordana X, Engelbrektsson P, Köhler M. The weight of fossil leporids and ochotonids: body mass estimation models for the order Lagomorpha. J Zool. 2015;295(4):269–78. https://doi.org/10.1111/jzo.12209.
Article
Google Scholar
Jukar AM, Lyons SK, Uhen MD. A cranial correlate of body mass in proboscideans. Zool J Linn Soc. 2018;184(3):919–31. https://doi.org/10.1093/zoolinnean/zlx108.
Article
Google Scholar
Marino L, Uhen MD, Pyenson ND, Frohlich B. Reconstructing cetacean brain evolution using computed tomography. Anat Rec B New Anat. 2003;272B(1):107–17. https://doi.org/10.1002/ar.b.10018.
Article
Google Scholar
Marino L, McShea DW, Uhen MD. Origin and evolution of large brains in toothed whales. Anat Rec A Discov Mol Cell Evol Biol. 2004;281A(2):1247–55. https://doi.org/10.1002/ar.a.20128.
Article
Google Scholar
Nummela S, Hussain ST, Thewissen JGM. Cranial anatomy of Pakicetidae (Cetacea, Mammalia). J Vertebr Paleontol. 2006;26(3):746–59. https://doi.org/10.1671/0272-4634(2006)26[746:caopcm]2.0.co;2.
Article
Google Scholar
Castelblanco-Martínez DN, Morales-Vela B, Padilla-Saldívar JA. Using craniometrical practices to infer body size of Antillean manatees. Mammalia. 2014;78(1):109–15.
Article
Google Scholar
Churchill M, Clementz MT, Kohno N. Predictive equations for the estimation of body size in seals and sea lions (Carnivora: Pinnipedia). J Anat. 2014;225(2):232–45. https://doi.org/10.1111/joa.12199.
Article
PubMed
PubMed Central
Google Scholar
Debey LB, Pyenson ND. Osteological correlates and phylogenetic analysis of deep diving in living and extinct pinnipeds: what good are big eyes? Mar Mam Sci. 2013;29(1):48–83. https://doi.org/10.1111/j.1748-7692.2011.00545.x.
Article
Google Scholar
Cassini GH, Vizcaíno SF, Bargo MS. Body mass estimation in early Miocene native South American ungulates: a predictive equation based on 3D landmarks. J Zool. 2012;287(1):53–64. https://doi.org/10.1111/j.1469-7998.2011.00886.x.
Article
Google Scholar
SSB H. Estimation of body size in fossil mammals. In: Croft DA, Su DF, Simpson SW, editors. Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities. Cham: Springer Nature; 2018. p. 7–22.
Google Scholar
Economos AC. Elastic and/or geometric similarity in mammalian design. J Theor Biol. 1983;103:167–72.
Article
CAS
PubMed
Google Scholar
Norman GR, Streiner DL. Biostatistics: the bare essentials. Shelton: People’s Medical Publishing House; 2008.
Google Scholar
Ghasemi A, Zahediasl S. Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab. 2012;10(2):486–9. https://doi.org/10.5812/ijem.3505.
Article
PubMed
PubMed Central
Google Scholar
Sears KE, Finarelli JA, Flynn JJ, Wyss AR. Estimating body mass in New World "monkeys" (Platyrrhini, Primates), with a consideration of the Miocene platyrrhine, Chilecebus carrascoensis. Am Mus Novitates. 2008;3617:1–29.
Article
Google Scholar
Yapuncich GS, Gladman JT, Boyer DM. Predicting euarchontan body mass: a comparison of tarsal and dental variables. Am J Phys Anthropol. 2015;157(3):472–506. https://doi.org/10.1002/ajpa.22735.
Article
PubMed
Google Scholar
Smith RJ. Estimation of body mass in Paleontology. J Human Evol. 2002;43(2):271–87. https://doi.org/10.1006/jhev.2002.0573.
Article
Google Scholar
Kwiecinski GG. Marmota monax. Mamm Spec. 1998;591:1–8.
Article
Google Scholar
Campione NE. Extrapolating body masses in large terrestrial vertebrates. Paleobiology. 2017;43(4):693–9. https://doi.org/10.1017/pab.2017.9.
Article
Google Scholar
Müller DWH, Codron D, Werner J, Fritz J, Hummel J, Griebeler EM, et al. Dichotomy of eutherian reproduction and metabolism. Oikos. 2012;121(1):102–15. https://doi.org/10.1111/j.1600-0706.2011.19505.x.
Article
Google Scholar
Rohlf FJ. A comment on phylogenetic correction. Evolution. 2006;60(7):1509–15.
Article
PubMed
Google Scholar
Burnham KP, Anderson DR. Model selection and multimodel inference. Springer New York: New York; 2002.
Google Scholar
Garland T Jr, Ives AR. Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat. 2000;155(3):346–64. https://doi.org/10.1086/303327.
Article
PubMed
Google Scholar
Kerkhoff AJ, Enquist BJ. Multiplicative by nature: why logarithmic transformation is necessary in allometry. J Theor Biol. 2009;257:519–21.
Article
Google Scholar
Albrecht GH, Gelvin BR, Miller JMA. Complex curvilinear allometry of brain size scaling in mammals. FASEB J. 2010;24(S1):642.641. https://doi.org/10.1096/fasebj.24.1_supplement.642.1.
Article
Google Scholar
Chan NR. Phylogenetic variation in hind-limb bone scaling of flightless theropods. Paleobiology. 2017;43(1):129–43. https://doi.org/10.1017/pab.2016.32.
Article
Google Scholar
Bertram JEA, Biewener AA. Differential scaling of the long bones in the terrestrial Carnivora and other mammals. J Morphol. 1990;204:157–69.
Article
CAS
PubMed
Google Scholar
Knell RJ. On the analysis of non-linear allometries. Ecol Entomol. 2009;34(1):1–11. https://doi.org/10.1111/j.1365-2311.2008.01022.x.
Article
Google Scholar
Packard GC. Is non-loglinear allometry a statistical artifact? Biol J Linn Soc. 2012;107(4):764–73. https://doi.org/10.1111/j.1095-8312.2012.01995.x.
Article
Google Scholar
Biewener AA. Biomechanical consequences of scaling. J Exp Biol. 2005;208(9):1665–76. https://doi.org/10.1242/jeb.01520.
Article
PubMed
Google Scholar
Rinderknecht A, Blanco RE. The largest fossil rodent. Proc R Soc B. 2008;275(1637):923–8. https://doi.org/10.1098/rspb.2007.1645.
Article
PubMed
PubMed Central
Google Scholar
Bou J, Casinos A, Ocaña J. Allometry of the limb long bones of insectivores and rodents. J Morphol. 1987;192(2):113–23. https://doi.org/10.1002/jmor.1051920204.
Article
CAS
PubMed
Google Scholar
Christiansen P. Scaling of mammalian long bones: small and large mammals compared. J Zool. 1999;247(3):333–48. https://doi.org/10.1111/j.1469-7998.1999.tb00996.x.
Article
Google Scholar
Perry JMG, Cooke SB, Runestad Connour JA, Burgess ML, Ruff CB. Articular scaling and body mass estimation in platyrrhines and catarrhines: Modern variation and application to fossil anthropoids. J Human Evol. 2018;115:20–35. https://doi.org/10.1016/j.jhevol.2017.10.008.
Article
Google Scholar
Doube M, Conroy AW, Christiansen P, Hutchinson JR, Shefelbine S. Three-dimensional geometric analysis of felid limb bone allometry. PLoS ONE. 2009;4(3):e4742. https://doi.org/10.1371/journal.pone.0004742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biewener AA. Biomechanics of mammalian terrestrial locomotion. Science. 1990;250(4984):1097–103. https://doi.org/10.1126/science.2251499.
Article
CAS
PubMed
Google Scholar
Bertrand OC, Schillaci MA, Silcox MT. Cranial dimensions as estimators of body mass and locomotor habits in extant and fossil rodents. J Vertebr Paleontol. 2016;36(1):e1014905. https://doi.org/10.1080/02724634.2015.1014905.
Article
Google Scholar
Cardini A. Craniofacial allometry is a rule in evolutionary radiations of placentals. Evolutionary Biology. 2019;46(3):239–48. https://doi.org/10.1007/s11692-019-09477-7.
Article
Google Scholar
Cardini A, Polly D, Dawson R, Milne N. Why the long face? Kangaroos and Wallabies follow the same ‘rule’ of Cranial Evolutionary Allometry (CREA) as placentals. Evol Biol. 2015;42(2):169–76. https://doi.org/10.1007/s11692-015-9308-9.
Article
Google Scholar
Myers TJ. Prediction of marsupial body mass. Aust J Zool. 2001;49(2):99–118.
Article
Google Scholar
Hopkins SSB. Reassessing the mass of exceptionally large rodents using toothrow length and area as proxies for body mass. J Mammal. 2008;89(1):232–43.
Article
Google Scholar
Aiello LC, Wood BA. Cranial variables as predictors of hominine body mass. Am J Phys Anthropol. 1994;95(4):409–26. https://doi.org/10.1002/ajpa.1330950405.
Article
CAS
PubMed
Google Scholar
Prothero J. Scaling of bodily proportions in adult terrestrial mammals. Am J Physiology-Regulatory Integr Comp Physiol. 1992;262(3):R492–503. https://doi.org/10.1152/ajpregu.1992.262.3.R492.
Article
CAS
Google Scholar
Scott KM. Postcranial dimensions of ungulates as predictors of body mass. In: Damuth J, BJ MF, editors. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge University Press; 1990. p. 301–35.
Google Scholar
Gapert R, Last J. The adult human occipital bone: measurement variance and observer error. In: Proceedings of the Fifth Annual Conference of the British Association for Biological Anthropology and Osteoarchaeology. Oxford: Archaeopress; 2005. p. 119–22.
Osborn HF. Andrewsarchus, giant mesonychid of Mongolia. Am Mus Novitates. 1924;146:1–5.
Google Scholar
Fortelius M, Kappelman J. The largest land mammal ever imagined. Zool J Linn Soc. 1993;108(1):85–101. https://doi.org/10.1111/j.1096-3642.1993.tb02560.x.
Article
Google Scholar
Larramendi A. Shoulder height, body mass, and shape of Proboscideans. Acta Palaeontol Pol. 2015;61(3):537–74. https://doi.org/10.4202/app.00136.2014.
Article
Google Scholar
Van Valkenburgh B. Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology. 1985;11(4):406–28. https://doi.org/10.1017/S0094837300011702.
Article
Google Scholar
Andersson K. Predicting carnivoran body mass from a weight-bearing joint. J Zool. 2004;262(2):161–72. https://doi.org/10.1017/S0952836903004564.
Article
Google Scholar
Klingenberg CP. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol. 2016;226(3):113–37. https://doi.org/10.1007/s00427-016-0539-2.
Article
PubMed
PubMed Central
Google Scholar
Macrini TE, Rowe T, Archer M. Obdurodon dicksoni. Dig Morphol. 2006; [http://digimorph.org/specimens/Obdurodon_dicksoni/]. Accessed 28 Jan 2021.
Lucas SG, Luo Z. Adelobasileus from the Upper Triassic of West Texas: the oldest mammal. J Vertebr Paleontol. 1993;13(3):309–34. https://doi.org/10.1080/02724634.1993.10011512.
Article
Google Scholar
Macrini TE. Tombaatar sabuli. Dig Morphol. 2001; [http://digimorph.org/specimens/Tombaatar_sabuli/]. Accessed 23 Dec 2019.
Macrini TE. Kryptobaatar dashzevegi. Dig Morphol. 2001; [http://digimorph.org/specimens/Kryptobaatar_dashzevegi/]. Accessed 23 Dec 2019.
Rougier GW. Vincelestes neuquenianus Bonaparte (Mammalia, Theria) un primitivo mamífero del Cretacico inferior de la cuenca Neuquina. Buenos Aires: Universidad Nacional de Buenos Aires; 1993.
Google Scholar
Krause DW, Wible JR, Hoffmann S, Groenke JR, O’Connor PM, Holloway WL, et al. Craniofacial morphology of Vintana sertichi (Mammalia, Gondwanatheria) from the late Cretaceous of Madagascar. J Vertebr Paleontol. 2014;34(sup1):14–109. https://doi.org/10.1080/02724634.2014.976129.
Article
Google Scholar
Gaudin TJ, Wible JR. The phylogeny of living and extinct armadillos (Mammalia, Xenarthra, Cingulata): a craniodental approach. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR, editors. Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles. Chicago: University of Chicago Press; 2006. p. 153–96.
Google Scholar
Álvarez A, Ercoli MD. Why pacaranas never say no: analysis of the unique occipitocervical configuration of †Tetrastylus intermedius Rovereto, 1914, and other dinomyids (Caviomorpha; Dinomyidae). J Vertebr Paleontol. 2017;37(6):e1385476. https://doi.org/10.1080/02724634.2017.1385476.
Article
Google Scholar
Weisbecker V, Ashwell K, Fisher D. An improved body mass dataset for the study of marsupial brain size evolution. Brain Behav Evol. 2013;82(2):81–2. https://doi.org/10.1159/000348647.
Article
PubMed
Google Scholar
Borroto-Páez R. Relative brain size in capromyid rodents. In: Borroto-Páez R, Woods CA, Sergile FE, editors. Terrestrial Mammals of the West Indies: Contributions. Gainesville: University of Florida Press; 2012. p. 165–77.
Google Scholar
Kaufman JA, Turner GH, Holroyd PA, Rovero F, Grossman A. Brain volume of the newly-discovered species Rhynchocyon udzungwensis (Mammalia: Afrotheria: Macroscelidea): implications for encephalization in sengis. PLoS ONE. 2013;8(3):e58667. https://doi.org/10.1371/journal.pone.0058667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weisbecker V, Goswami A. Brain size, life history, and metabolism at the marsupial/placental dichotomy. Proc Natl Acad Sci USA. 2010;107(37):16216–21. https://doi.org/10.1073/pnas.0906486107.
Article
PubMed
PubMed Central
Google Scholar
Wroe S, Myers T, Seebacher F, Kear B, Gillespie A, Crowther M, et al. An alternative method for predicting body mass: the case of the Pleistocene marsupial lion. Paleobiology. 2003;29(3):403–11. https://doi.org/10.1666/0094-8373(2003)029<0403:aamfpb>2.0.co;2.
Article
Google Scholar
Soul LC, Benson RBJ, Weisbecker V. Multiple regression modeling for estimating endocranial volume in extinct Mammalia. Paleobiology. 2012;39(1):149–62. https://doi.org/10.1666/0094-8373-39.1.149.
Article
Google Scholar
Quintana J, Köhler M, Moyà-Solà S. Nuralagus rex gen. et sp. nov., an endemic insular giant rabbit from the Neogene of Minorca (Balearic Islands, Spain). J Vertebr Paleontol. 2011;31(2):231–40. https://doi.org/10.1080/02724634.2011.550367.
Article
Google Scholar
Schulte-Hostedde AI, Millar JS, Hickling GJ. Sexual dimorphism in body composition of small mammals. Can J Earth Sci. 2001;79:1016–20. https://doi.org/10.1139/cjz-79-6-1016.
Article
Google Scholar
Higgins PB, Rodriguez PJ, Voruganti VS, Mattern V, Bastarrachea RA, Rice K, et al. Body composition and cardiometabolic disease risk factors in captive baboons (Papio hamadryas sp.): sexual dimorphism. Am J Phys Anthropol. 2014;153(1):9–14. https://doi.org/10.1002/ajpa.22357.
Article
PubMed
Google Scholar
Wells JCK. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab. 2007;21(3):415–30. https://doi.org/10.1016/j.beem.2007.04.007.
Article
PubMed
Google Scholar
Reimers E. Growth in Domestic and Wild Reindeer in Norway. J Wildl Manag. 1972;36(2):612–9. https://doi.org/10.2307/3799094.
Article
Google Scholar
Steyn D, Hanks J. Age determination and growth in the hyrax Procavia capensis (Mammalia: Procaviidae). J Zool. 1983;201(2):247–57. https://doi.org/10.1111/j.1469-7998.1983.tb04274.x.
Article
Google Scholar
Roseberry JL, Klimstra WD. Some morphological characteristics of the Crab Orchard Deer Herd. J Wildl Manag. 1975;39(1):48–58. https://doi.org/10.2307/3800465.
Article
Google Scholar
Prestrud P, Nilssen K. Growth, size, and sexual dimorphism in arctic foxes. J Mammal. 1995;76(2):522–30. https://doi.org/10.2307/1382360.
Article
Google Scholar
Grand TI. The functional anatomy of body size. In: Damuth J, BJ MF, editors. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge University Press; 1990. p. 39–48.
Google Scholar
Roth VL. Insular dwarf elephants: a case study in body mass estimation and ecological inference. In: Damuth J, BJ MF, editors. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge University Press; 1990. p. 151–79.
Google Scholar
Anderson JS. Occipital condyle in the ceratopsian dinosaur Triceratops, with comments on body size variation. Contrib Mus Paleontol Univ Mich. 1999;30(8):215–31.
Google Scholar
Brassey CA, Maidment SCR, Barrett PM. Body mass estimates of an exceptionally complete Stegosaurus (Ornithischia: Thyreophora): comparing volumetric and linear bivariate mass estimation methods. Biol Lett. 2015;11(3):20140984. https://doi.org/10.1098/rsbl.2014.0984.
Article
PubMed
PubMed Central
Google Scholar
Bloch JI, Rose KD, Gingerich PD. New species of Batodonoides (Lipotyphla, Geolabididae) from the early Eocene of Wyoming: smallest known mammal? J Mammal. 1998;79(3):804–27.
Article
Google Scholar
Osborn HF. Origin of the Mammalia, III. Occipital condyles of the reptilian tri-partite type. Am Nat. 1900;34:943–7.
Article
Google Scholar
Botha J, Abdala F, Smith R. The oldest cynodont: new clues on the origin and early diversification of the Cynodontia. Zool J Linn Soc. 2007;149(3):477–92. https://doi.org/10.1111/j.1096-3642.2007.00268.x.
Article
Google Scholar
Rowe T. Definition, diagnosis, and origin of Mammalia. J Vertebr Paleontol. 1988;8(3):241–64. https://doi.org/10.1080/02724634.1988.10011708.
Article
Google Scholar
Kermack KA, Mussett F, Rigney HW. The skull of Morganucodon. Zool J Linn Soc. 1981;71(1):1–158. https://doi.org/10.1111/j.1096-3642.1981.tb01127.x.
Article
Google Scholar
Kemp TS. The atlas-axis complex of the mammal-like reptiles. J Zool. 1969;159(2):223–48. https://doi.org/10.1111/j.1469-7998.1969.tb03079.x.
Article
Google Scholar
Romer AS, Price LI. Review of the Pelycosauria. Geol Soc Am Spec Publ. 1940;28:1–538.
Google Scholar
Rubidge BS, Sidor CA. On the cranial morphology of the basal therapsids Burnetia and Proburnetia (Therapsida: Burnetiidae). J Vertebr Paleontol. 2002;22(2):257–67. https://doi.org/10.1671/0272-4634(2002)022[0257:OTCMOT]2.0.CO;2.
Article
Google Scholar
Sidor CA, Rubidge BS. Herpetoskylax hopsoni, a new biarmosuchian (Therapsida: Biarmosuchia) from the Beaufort Group of Africa. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR, editors. Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles. Chicago: University of Chicago Press; 2006. p. 76–113.
Google Scholar
Güven S, Rubidge BS, Abdala F. Cranial morphology and taxonomy of South African Tapinocephalidae (Therapsida: Dinocephalia): the case of Avenantia and Riebeeckosaurus. Palaeontol Afr. 2013;48:24–33.
Google Scholar
Huttenlocker AK, Sidor CA, Smith RMH. A new specimen of Promoschorhynchus (Therapsida: Therocephalia: Akidnognathidae) from the Lower Triassic of South Africa and its implications for theriodont survivorship across the Permo-Triassic boundary. J Vertebr Paleontol. 2011;31(2):405–21. https://doi.org/10.1080/02724634.2011.546720.
Article
Google Scholar
Müller J, Scheyer TM, Head JJ, Barrett PM, Werneburg I, Ericson PGP, et al. Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes. Proc Natl Acad Sci USA. 2010;107(5):2118. https://doi.org/10.1073/pnas.0912622107.
Article
PubMed
PubMed Central
Google Scholar
Burgin CJ, Colella JP, Kahn PL, Upham NS. How many species of mammals are there? J Mammal. 2018;99(1):1–14. https://doi.org/10.1093/jmammal/gyx147.
Article
Google Scholar
Ledesma K, Werner F, Spotorno A, Albuja Viteri LH. A new species of mountain viscacha (Chinchillidae: Lagidium Meyen) from the Ecuadorean Andes. Zootaxa. 2009;2126:41–57.
Article
Google Scholar
Brito J, Tenecota GM. P-ZG: New record of Stolzmann’s crab-eating rat Ichthyomys stolzmanni (Rodentia: Cricetidae) in Ecuador. Therya. 2016;7(3):491–8.
Article
Google Scholar
Ramírez-Fernández JD, Durán AFJ, Fernández-Vargas M. First record of Tweedy’s Crab-eating Rat, Ichthyomys tweedii Anthony, 1921 (Rodentia, Cricetidae, Sigmodontinae), for Costa Rica. Check List. 2020;16(2):435–40.
Article
Google Scholar
Dalquest WW, Orcutt DR. The Biology of the Least Shrew-Mole, Neurotrichus gibbsii Minor. Am Midl Nat. 1942;27(2):387–401. https://doi.org/10.2307/2421007.
Article
Google Scholar
Martin RA. Estimating body mass and correlated variables in extinct mammals: travels in the fourth dimension. In: Damuth J, BJ MF, editors. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge University Press; 1990. p. 49–68.
Google Scholar
Esteban-Trivigno S. de, Köhler M: New equations for body mass estimation in bovids: testing some procedures when constructing regression functions. Z Saugetierkd. 2011;76(6):755–61. https://doi.org/10.1016/j.mambio.2011.07.004.
Article
Google Scholar
Labocha MK, Schutz H, Hayes JP. Which body condition index is best? Oikos. 2014;123(1):111–9. https://doi.org/10.1111/j.1600-0706.2013.00755.x.
Article
Google Scholar
Huot J, Poulle M-L, Crête M. Evaluation of several indices for assessment of coyote (Canis latrans) body composition. Can J Zool. 1995;73(9):1620–4. https://doi.org/10.1139/z95-192.
Article
Google Scholar
Core Team R. R: a language and environment for statistical computing. In: vol. 4.0.3. Vienna: R Foundation for Statistical Computing; 2020.
Google Scholar
Baty F, Ritz C, Charles S, Brutsche M, Flandrois J-P, Delignette-Muller M-L. A toolbox for nonlinear regression in R: the package nlstools. J Stat Softw. 2015;1(Issue 5). https://doi.org/10.18637/jss.v066.i05.
Akaike H. A new look at the statistical model identification. IEEE T Automat Contr. 1974;19(6):716–23. https://doi.org/10.1109/tac.1974.1100705.
Article
Google Scholar
Schwarz G. Estimating the dimension of a model. Ann Statist. 1978;6(2):461–4. https://doi.org/10.1214/aos/1176344136.
Article
Google Scholar
Janis CM, Martín-Serra A. Postcranial elements of small mammals as indicators of locomotion and habitat. PeerJ. 2020:e9634. https://doi.org/10.7717/peerj.9634.
Smith RJ. Bias in equations used to estimate fossil primate body mass. J Human Evol. 1993;25:31–41.
Article
Google Scholar
Smith RJ. Logarithmic transformation bias in allometry. Am J Phys Anthropol. 1993;90:215–28.
Article
Google Scholar
Duan N. Smearing estimate: a nonparametric retransformation method. J Am Stat Assoc. 1983;78(383):605–10. https://doi.org/10.1080/01621459.1983.10478017.
Article
Google Scholar
Snowdon P. A ratio estimator for bias correction in logarithmic regressions. Can J For Res. 1991;21(5):720–4. https://doi.org/10.1139/× 91-101.
Article
Google Scholar
Smith RJ. Allometric scaling in comparative biology: problems of concept and method. Am J Physiol. 1984;246:R152–60. https://doi.org/10.1152/ajpregu.1984.246.2.R152.
Article
CAS
PubMed
Google Scholar
Armstrong JS. Long-range forecasting: from crystal ball to computer. 2nd ed. New York: Wiley; 1985.
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–8.
Article
Google Scholar
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3(2):217–23. https://doi.org/10.1111/j.2041-210X.2011.00169.x.
Article
Google Scholar
Paterno GB, Penone C, GDA W. sensiPhy: an r-package for sensitivity analysis in phylogenetic comparative methods. Methods Ecol Evol. 2018;9(6):1461–7. https://doi.org/10.1111/2041-210X.12990.
Article
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC. nlme: linear and nonlinear mixed effects models. In: vol. R package version 3; 2019. p. 1–143.
Google Scholar
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. GEIGER: investigating evolutionary radiations. Bioinformatics. 2007;24(1):129–31. https://doi.org/10.1093/bioinformatics/btm538.
Article
CAS
PubMed
Google Scholar
Upham NS, Esselstyn JA, Jetz W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biol. 2019;17(12):e3000494. https://doi.org/10.1371/journal.pbio.3000494.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401(6756):877–84. https://doi.org/10.1038/44766.
Article
CAS
PubMed
Google Scholar
Goodchild S, Schwitzer C. The problem of obesity in captive lemurs. Int Zoo News. 2008;55(6):353–7.
Google Scholar
Morfeld KA, Meehan CL, Hogan JN, Brown JL. Assessment of body condition in African (Loxodonta africana) and Asian (Elephas maximus) elephants in North American zoos and management practices associated with high body condition scores. PLoS ONE. 2016;11(7):e0155146. https://doi.org/10.1371/journal.pone.0155146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hadfield JD. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J Stat Softw. 2010;33(2):1–22.
Article
Google Scholar
Lange-Badré B. Les Créodontes (Mammalia) d´Europe occidentale de l´Éocéne supérieur à l´Oligocéne supérieur. Mémoires du muséum national d´histoire naturelle, Série C, Sciences de la terre. 1979;42:1–249.
Google Scholar
Abramov AV, Baryshnikov GF. Geographic variation and intraspecific taxonomy of weasel Mustela nivalis (Carnivora, Mustelidae). Zoosystematica Rossica. 2000;8(2):365–402.
Google Scholar
Abramov AV, Puzachenko AY. Sexual dimorphism of craniological characters in Eurasian badgers, Meles spp. (Carnivora, Mustelidae). Zoologischer Anzeiger - A J Comp Zool. 2005;244(1):11–29. https://doi.org/10.1016/j.jcz.2004.12.002.
Article
Google Scholar
Akbarirad S, Darvish J, Aliabadian M. Increased species diversity of brush-tailed mice, genus Calomyscus (Calomyscidae, Rodentia), in the Zagros Mountains, western Iran. Mammalia. 2016;80(5):549–61. https://doi.org/10.1515/mammalia-2014-0162.
Article
Google Scholar
Allen GM. The mammals of China and Mongolia. In: Granger W, editor. Natural History of Central Asia, vol. 11. New York: American Museum of Natural History; 1940. p. 621–1350.
Google Scholar
Allen JA. Mammals from the states of Sinaloa and Jalisco, Mexico, collected by J. H. Batty during 1904 and 1905. Bull Am Mus Nat Hist. 1906;22:191–262.
Google Scholar
Allen JA. Ontogenetic and Other Variations in Muskoxen, With a Systematic Review of the Muskox Group, Recent and Extinct. Mem Am Mus Nat Hist. 1913;1(4):1–126.
Google Scholar
Allen JA. Mammals collected on the Roosevelt Brazilian Expedition, with field notes by Leo E. Miller. Bull Am Mus Nat Hist. 1916;35:559–610.
Google Scholar
Allen JA. Carnivora collected by the American Museum Congo Expedition. Bull Am Mus Nat Hist. 1924;47:73–281.
Google Scholar
Allen JA. Primates collected by the American Museum Congo Expedition. Bull Am Mus Nat Hist. 1925;47(4):283–524.
Google Scholar
Allen JA, Lang H, Chapin JP. The American Museum Congo Expedition collection of Insectivora. Bull Am Mus Nat Hist. 1922;47:1–38.
Google Scholar
Anderson S. Mammals of Bolivia: taxonomy and distribution. Bull Am Mus Nat Hist. 1997;231:1–652.
Google Scholar
Angelici FM, Capizzi D, Amori G, Luiselli L. Morphometric variation in the skulls of the crested porcupine Hystrix cristata from mainland Italy, Sicily, and northern Africa. Mamm Biol. 2003;68(3):165–73. https://doi.org/10.1078/1616-5047-00078.
Article
Google Scholar
Antunes VZ, Delciellos AC, Vieira MV. Postural climbing behaviour of didelphid marsupials: parallels with primates. Oecologia Australis. 2016;20(03):375–90. https://doi.org/10.4257/oeco.2016.2003.07.
Article
Google Scholar
Aplin KP, Helgen KM, Lunde DP. A review of Peroryctes broadbenti, the giant bandicoot of Papua New Guinea. Am Mus Novitates. 2010;3696:1–41.
Article
Google Scholar
Asahara M, Koizumi M, Macrini TE, Hand SJ, Archer M. Comparative cranial morphology in living and extinct platypuses: feeding behavior, electroreception, and loss of teeth. Sci Adv. 2016;2(10):e1601329. https://doi.org/10.1126/sciadv.1601329.
Article
PubMed
PubMed Central
Google Scholar
Asher RJ, McKenna MC, Emry RJ, Tabrum AR, Kron DG. Morphology and relationships of Apternodus and other extinct, zalambdadont, placental mammals. Bull Am Mus Nat Hist. 2002;273:1–117.
Article
Google Scholar
Bärmann EV, Schikora T. The polyphyly of Neotragus – results from genetic and morphometric analyses. Mamm Biol. 2014;79(4):283–6. https://doi.org/10.1016/j.mambio.2014.01.001.
Article
Google Scholar
Barry RE, Shoshani J. Heterohyrax brucei. Mamm Species. 2000;645:1–7. https://doi.org/10.1644/1545-1410(2000)645<0001:HB>2.0.CO;2.
Article
Google Scholar
Beisiegel BM, Zuercher GL. Speothos venaticus. Mamm Species. 2005;783:1–6. https://doi.org/10.1644/783.1.
Article
Google Scholar
Beneski JT Jr, Stinson DW. Sorex palustris. Mamm Species. 1987;296:1–6. https://doi.org/10.2307/3503968.
Article
Google Scholar
Bennett D, Hoffmann RS. Equus caballus. Mamm Species. 1999;628:1–14. https://doi.org/10.2307/3504442.
Article
Google Scholar
Berta A. Cerdocyon thous. Mamm Species. 1982;186:1–4.
Article
Google Scholar
Best TL. Lepus californicus. Mamm Species. 1996;530:1–10.
Google Scholar
Biswas B, Ghose RK. Taxonomic notes on the Indian pale hedgehogs of the genus Paraechinus Trouessart, with descriptions of a new species and subspecies. Mammalia. 1970;34(3):467–77.
Article
Google Scholar
Blanchard BM. Size and growth patterns of the Yellowstone grizzly bear Bears. Biol Manag. 1987;7:99–107. https://doi.org/10.2307/3872615.
Article
Google Scholar
Bodmer RE. Strategies of seed dispersal and seed predation in Amazonian ungulates. Biotropica. 1991;23(3):255–61.
Article
Google Scholar
Braun JK, Eaton TS Jr, Mares MA. Marmota caligata (Rodentia: Sciuridae). Mamm Species. 2011;884:155–71. https://doi.org/10.1644/884.1.
Article
Google Scholar
Braun JK, Mares MA. Neotoma micropus. Mamm Species. 1989;330:1–9.
Article
Google Scholar
Braun JK, Pratt NL, Mares MA. Thylamys pallidior (Didelphimorphia: Didelphidae). Mamm Species. 2010;42(1):90–8. https://doi.org/10.1644/856.1.
Article
Google Scholar
Burton RW. Weights and measurements of game animals. J Bombay Nat Hist Soc. 1915;186:24–36.
Google Scholar
Caldara V Jr, Leite YLR. Geographic variation in hairy dwarf porcupines of Coendou from eastern Brazil (Mammalia: Erethizontidae). Zoologia (Curitiba). 2012;29:318–36.
Article
Google Scholar
Carleton MD, Arroyo-Cabrales J. Review of the Oryzomys couesi Complex (Rodentia: Cricetidae: Sigmodontinae) in Western Mexico. Bull Am Mus Nat Hist. 2009;2009(331):94–127. https://doi.org/10.1206/582-3.1.
Article
Google Scholar
Carmignotto AP, Monfort T. Taxonomy and distribution of the Brazilian species of Thylamys (Didelphimorphia: Didelphidae). Mammalia. 2006;70(1-2):126–44. https://doi.org/10.1515/MAMM.2006.013.
Article
Google Scholar
Carraway LN. Sorex pacificus. Mamm Species. 1985;231:1–5. https://doi.org/10.2307/3504065.
Article
Google Scholar
Ceballos G. Mammals of Mexico. Baltimore: John Hopkins University Press; 2014.
Google Scholar
Cerqueira R, Lemos B. Morphometric differentiation between Neotropical black-eared opossums, Didelphis marsupialis and D. aurita (Didelphimorphia, Didelphidae). Mammalia. 2000;64(3). https://doi.org/10.1515/mamm.2000.64.3.319.
Chakraborty S. Contributions to the knowledge of the mammalian fauna of Jammu and Kashmir, India. Rec Zool Soc India. 1983;38:1–129.
Google Scholar
Chapman JA, Hockman JG, Ojeda CMM. Sylvilagus floridanus. Mamm Species. 1980;136:1–8. https://doi.org/10.2307/3504055.
Article
Google Scholar
Chapman JA, Willner GR. Sylvilagus palustris. Mamm Species. 1981;153:1–3. https://doi.org/10.2307/3503947.
Article
Google Scholar
Choudhary OP, Singh I. Morphmetrical studies on the skull of Indian Blackbuck (Antilope cervicapra). Int J Morphol. 2015;33(3):868–76.
Article
Google Scholar
Christiansen P. Species distinction and evolutionary differences in the Clouded Leopard (Neofelis nebulosa) and Diard's Clouded Leopard (Neofelis diardi). J Mammal. 2008;89(6):1435–46. https://doi.org/10.1644/08-mamm-a-013.1.
Article
Google Scholar
Clark HO Jr. Otocyon megalotis. Mamm Species. 2005;766:1–5.
Article
Google Scholar
Clark TW, Hoffmann RS, Nadler CF. Cynomys leucurus. Mamm Species. 1971;7:1–4.
Article
Google Scholar
Coals PGR, Rathbun GB. The taxonomic status of Giant Sengis (Genus Rhynchocyon) in Mozambique. J East African Nat Hist. 2013;101(2):241–50. https://doi.org/10.2982/028.101.0203.
Article
Google Scholar
Colyn M, van Rompaey H. A biogeographic study of cusimanses (Crossarchus) (Carnivora, Herpestidae) in the Zaire Basin. J Biogeogr. 1994;21(5):479–89.
Article
Google Scholar
Costa LP, Leite YLR, Patton JL. Phylogeography and systematic notes on two species of gracile mouse opossums, genus Gracilinanus (Marsupialia: Didelphidae) from Brazil. Proc Biol Soc Wash. 2003;116:275–92.
Google Scholar
Côté SD, Festa-Bianchet M. Mountain Goat (Oreamnos americanus). In: Feldhamer GA, Thompson BC, Chapman JA, editors. Wild Mammals of North America: Biology, Management, and Conservation. 2nd ed. Baltimore: John Hopkins University Press; 2003. p. 1061–75.
Google Scholar
Crawford-Cabral J. Anâlise de dados craniométricos no género Genetta G. Cuvier (Carnivora, Viverridae). Memórias da Junta de Investigações Científicas do Ultramar. 1981;66:1–329.
Google Scholar
Cremona T, Baker AM, Cooper SJB, Montague-Drake R, Stobo-Wilson AM, Carthew SM. Integrative taxonomic investigation of Petaurus breviceps (Marsupialia: Petauridae) reveals three distinct species. Zool J Linn Soc. 2020. https://doi.org/10.1093/zoolinnean/zlaa060.
Cuthbert RJ, Denny MJH. Aspects of the ecology of the kalubu bandicoot (Echymipera kalubu) and observations on Raffray’s bandicoot (Peroryctes raffrayanus), Eastern Highlands Province, Papua New Guinea. Aust Mamm. 2014;36(1):21–8.
Article
Google Scholar
Cypher BL. Foxes (Vulpes species, Urocyon species, and Alopex lagopus). In: Feldhamer GA, Thompson BC, Chapman JA, editors. Wild Mammals of North America: Biology, Management, and Conservation. 2nd ed. Baltimore: John Hopkins University Press; 2003. p. 511–46.
Google Scholar
Danilo L, Remy J, Vianey-Liaud M, Mérigeaud S, Lihoreau F. Intraspecific variation of endocranial structures in extant Equus: a prelude to endocranial studies in fossil equoids. J Mammal Evol. 2015;22(4):561–82. https://doi.org/10.1007/s10914-015-9293-x.
Article
Google Scholar
Davis WB. Notes on the Mexican shrew Megasorex gigas (Merriam). Southwest Nat. 1957;2(4):174–5.
Article
Google Scholar
Diersing VE. Systematics and evolution of the Pygmy Shrews (subgenus Microsorex) of North America. J Mammal. 1980;61(1):76–101.
Article
Google Scholar
Dietz JM. Chrysocyon brachyurus. Mamm Species. 1985;234:1–4.
Article
Google Scholar
Dolan PG, Carter DC. Glaucomys volans. Mamm Species. 1977;78:1–6. https://doi.org/10.2307/3504026.
Article
Google Scholar
Dragoo JW, Sheffield SR. Conepatus leuconotus (Carnivora: Mephitidae). Mamm Species. 2009;827:1–8. https://doi.org/10.1644/827.1.
Article
Google Scholar
Eisenberg JF, Redford KH. Mammals of the neotropics: the central neotropics, vol. 3. Chicago: University of Chicago Press; 1999.
Google Scholar
Eisenberg JF, Wilson DE. Relative brain size and demographic strategies in didelphid marsupials. Am Nat. 1981;118(1):1–15.
Article
Google Scholar
Elbroch M. Animal skulls. A Guide to North American Species. Mechanicsburg: Stackpole Books; 2006.
Google Scholar
Elliott CL, Flinders JT. Spermophilus columbianus. Mamm Species. 1991;372:1–9. https://doi.org/10.2307/3504178.
Article
Google Scholar
Ellis LS, Diersing VE, Hoffmeister DF. Taxonomic status of short-tailed shrews (Blarina) in Illinois. J Mammal. 1978;59(2):305–11. https://doi.org/10.2307/1379914.
Article
Google Scholar
Endo H, Hikida T, Chou LM, Fukuta K, Stafford BJ. Proportion and cluster analyses of the skull in various species of the tree shrews. J Vet Med Sci. 2004;66(1):1–7.
Article
PubMed
Google Scholar
Endo H, Hikida T, Motokawa M, Chou LM, Fukuta K, Stafford BJ. Morphological adaptation of the skull for various behaviors in the tree shrews. J Vet Med Sci. 2003;65(8):873–9.
Article
PubMed
Google Scholar