Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: Entity or function? Cell. 2001;105(7):829–41. https://doi.org/10.1016/S0092-8674(01)00409-3.
Article
CAS
PubMed
Google Scholar
Lanza R, Gearhart J, Hogan B, Melton D, Pedersen R, Thomas ED, et al. Essentials of Stem Cell Biology; 2009. https://doi.org/10.1016/C2009-0-00078-6.
Book
Google Scholar
Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997;88(3):287–98. https://doi.org/10.1016/S0092-8674(00)81867-X.
Article
CAS
PubMed
Google Scholar
Post Y, Clevers H. Defining adult stem cell function at its simplest: the ability to replace lost cells through mitosis. Cell Stem Cell. 2019;25(2):174–83. https://doi.org/10.1016/j.stem.2019.07.002.
Article
CAS
PubMed
Google Scholar
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben-Hamo O, Borisenko I, et al. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev. 2022;97(1):299–325.
Weissman IL. Stem cells: Units of development, units of regeneration, and units in evolution. Cell. 2000;100(1):157–68. https://doi.org/10.1016/S0092-8674(00)81692-X.
Article
CAS
PubMed
Google Scholar
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):1–22. https://doi.org/10.1186/s13287-019-1165-5.
Article
CAS
Google Scholar
Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14(6):329–40. https://doi.org/10.1038/nrm3591.
Article
CAS
PubMed
Google Scholar
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1-2):7–25 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/747780.
CAS
PubMed
Google Scholar
Lander AD, Kimble J, Clevers H, Fuchs E, Montarras D, Buckingham M, et al. What does the concept of the stem cell niche really mean today? BMC Biology. 2012;10:1–15. https://doi.org/10.1186/1741-7007-10-19.
Article
Google Scholar
Li X, Zeng X, Xu Y, Wang B, Zhao Y, Lai X, et al. Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J Hematol Oncol. 2020;13(1):31. https://doi.org/10.1186/s13045-020-00864-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shim J, Gururaja-Rao S, Banerjee U. Nutritional regulation of stem and progenitor cells in Drosophila. Development (Cambridge). 2013. https://doi.org/10.1242/dev.079087.
Mazo IB, Massberg S, von Andrian UH. Hematopoietic stem and progenitor cell trafficking. Trends Immunol. 2011;32(10):493–503. https://doi.org/10.1016/j.it.2011.06.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mikkola HKA, Orkin SH. The journey of developing hematopoietic stem cells. Development. 2006;133(19):3733–44. https://doi.org/10.1242/dev.02568.
Article
CAS
PubMed
Google Scholar
Ohlstein B, Kai T, Decotto E, Spradling A. The stem cell niche: Theme and variations. Curr Opin Cell Biol. 2004;16(6):693–9. https://doi.org/10.1016/j.ceb.2004.09.003.
Article
CAS
PubMed
Google Scholar
Alié A, Leclère L, Jager M, Dayraud C, Chang P, Le Guyader H, et al. Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of ‘germline genes’ with stemness. Dev Biol. 2011;350(1):183–97. https://doi.org/10.1016/j.ydbio.2010.10.019.
Article
CAS
PubMed
Google Scholar
Beltz BS, Zhang Y, Benton JL, Sandeman DC. Adult neurogenesis in the decapod crustacean brain: a hematopoietic connection? Eur J Neurosci. 2011;34(6):870–83. https://doi.org/10.1111/j.1460-9568.2011.07802.x.
Article
PubMed
PubMed Central
Google Scholar
Giani VC, Yamaguchi E, Boyle MJ, Seaver EC. Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta. EvoDevo. 2011;2(1):10. https://doi.org/10.1186/2041-9139-2-10.
Article
PubMed
PubMed Central
Google Scholar
Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–31. https://doi.org/10.1146/annurev.cellbio.21.012704.131525.
Article
CAS
PubMed
Google Scholar
Bosch TCG. Hydra and the evolution of stem cells. BioEssays. 2009;31:478–86. https://doi.org/10.1002/bies.200800183.
Article
PubMed
Google Scholar
Funayama N. The cellular and molecular bases of the sponge stem cell systems underlying reproduction, homeostasis and regeneration. Int J Dev Biol. 2018;62(6-7-8):513–25. https://doi.org/10.1387/ijdb.180016nf.
Article
CAS
PubMed
Google Scholar
Laird DJ, De Tomaso AW, Weissman IL. Stem cells are units of natural selection in a colonial ascidian. Cell. 2005;123(7):1351–60. https://doi.org/10.1016/j.cell.2005.10.026.
Article
CAS
PubMed
Google Scholar
Nakanishi N, Camara AC, Yuan DC, Gold D a, Jacobs DK. Gene Expression Data from the Moon Jelly, Aurelia, Provide insights into the evolution of the combinatorial code controlling animal sense organ development. Plos One. 2015;10(7):e0132544. https://doi.org/10.1371/journal.pone.0132544.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rinkevich Y, Voskoboynik A, Rosner A, Rabinowitz C, Paz G, Oren M, et al. Repeated, long-term cycling of putative stem cells between niches in a basal chordate. Dev Cell. 2013;24:76–88. https://doi.org/10.1016/j.devcel.2012.11.010.
Article
CAS
PubMed
Google Scholar
Voskoboynik A, Soen Y, Rinkevich Y, Rosner A, Ueno H, Reshef R, et al. Identification of the endostyle as a stem cell niche in a colonial chordate. Cell Stem Cell. 2008;3:456–64.
Article
CAS
Google Scholar
De Mulder K, Kuales G, Pfister D, Willems M, Egger B, Salvenmoser W, et al. Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev Biol. 2009;9:69.
Article
Google Scholar
Juliano C, Wang J, Lin H. Uniting germline and stem cells: the function of piwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet. 2011;45(1):447–69. https://doi.org/10.1146/annurev-genet-110410-132541.
Article
CAS
PubMed
Google Scholar
Rinkevich Y, Rosner A, Rabinowitz C, Lapidot Z, Moiseeva E, Rinkevich B. Piwi positive cells that line the vasculature epithelium, underlie whole body regeneration in a basal chordate. Dev Biol. 2010;345(1):94–104. https://doi.org/10.1016/j.ydbio.2010.05.500.
Article
CAS
PubMed
Google Scholar
Vogel G. STEM CELLS: “Stemness” Genes Still Elusive. Science. 2003;302(5644):371. https://doi.org/10.1126/science.302.5644.371a.
Article
CAS
PubMed
Google Scholar
Rosner A, Paz G, Rinkevich B. Divergent roles of the DEAD box protein BS-PL10, the urochordate homologue of human DDX3 and DDX3Y proteins in colony astogeny and ontogeny. Dev Dyn. 2006;235:1508–12. https://doi.org/10.1002/dvdy.20728.
Article
CAS
PubMed
Google Scholar
Pfister D, De Mulder K, Hartenstein V, Kuales G, Borgonie G, Marx F, et al. Flatworm stem cells and the germ line: developmental and evolutionary implications of macvasa expression in Macrostomum lignano. Dev Biol. 2008;319(1):146–59. https://doi.org/10.1016/j.ydbio.2008.02.045.
Article
CAS
PubMed
Google Scholar
Rosner A, Moiseeva E, Rinkevich Y, Lapidot Z, Rinkevich B. Vasa and the germ line lineage in a colonial urochordate. Dev Biol. 2009;331:113–28. https://doi.org/10.1016/j.ydbio.2009.04.025.
Article
CAS
PubMed
Google Scholar
Wang Z, Lin H. Nanos maintains germline stem cell self-renewal by preventing differentiation. Science. 2004;303(5666):2016–9. https://doi.org/10.1126/science.1093983.
Article
PubMed
Google Scholar
Rosner A, Moiseeva E, Rabinowitz C, Rinkevich B. Germ lineage properties in the urochordate Botryllus schlosseri - From markers to temporal niches. Dev Biol. 2013;384(2):356–74. https://doi.org/10.1016/j.ydbio.2013.10.002.
Article
CAS
PubMed
Google Scholar
Rebscher N. Establishing the germline in spiralian embryos. Int J Dev Biol. 2014;58(6-8):403–11. https://doi.org/10.1387/ijdb.140125nr.
Article
PubMed
Google Scholar
Bolker JA. Model systems in developmental biology. BioEssays. 1995;17(5):451–5. https://doi.org/10.1002/bies.950170513.
Article
CAS
PubMed
Google Scholar
Trumpp A, Essers M, Wilson A. Awakening dormant haematopoietic stem cells. Nat Rev Immunol. 2010;10(3):201–9. https://doi.org/10.1038/nri2726.
Article
CAS
PubMed
Google Scholar
Medvinsky A, Rybtsov S, Taoudi S. Embryonic origin of the adult hematopoietic system: advances and questions. Development. 2011;138(6):1017–31. https://doi.org/10.1242/dev.040998.
Article
CAS
PubMed
Google Scholar
Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017;17(9):573–90. https://doi.org/10.1038/nri.2017.53.
Article
CAS
PubMed
Google Scholar
Eliazer S, Buszczak M. Finding a niche: studies from the Drosophila ovary. Stem Cell Res Ther. 2011;2(6):45. https://doi.org/10.1186/scrt86.
Article
PubMed
PubMed Central
Google Scholar
Hanna CB, Hennebold JD. Ovarian germline stem cells: an unlimited source of oocytes? Fertil Steril. 2014;101(1):20–30. https://doi.org/10.1016/j.fertnstert.2013.11.009.
Article
PubMed
PubMed Central
Google Scholar
Huang D, Chen C, Hao X, Gu H, Xie L, Yu Z, et al. Metabolic regulations in hematopoietic stem cells. Adv Exp Med Biol. 2019;1143:59–74. https://doi.org/10.1007/978-981-13-7342-8_3.
Article
CAS
PubMed
Google Scholar
Lee HJ, Li N, Evans SM, Diaz MF, Wenzel PL. Biomechanical force in blood development: extrinsic physical cues drive pro-hematopoietic signaling. Differentiation. 2013;86(3):92–103. https://doi.org/10.1016/j.diff.2013.06.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lucas D. Leukocyte trafficking and regulation of murine hematopoietic stem cells and their niches. Front Immunol. 2019;10:387.
Article
CAS
Google Scholar
Oatley JM, Brinster RL. The germline stem cell niche unit in mammalian testes. Physiol Rev. 2012;92(2):577–95. https://doi.org/10.1152/physrev.00025.2011.
Article
CAS
PubMed
Google Scholar
Guo J, Sosa E, Chitiashvili T, Nie X, Rojas EJ, Oliver E, et al. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell. 2021;28(4):764–78.e4. https://doi.org/10.1016/j.stem.2020.12.004.
Article
CAS
PubMed
Google Scholar
Hardy RW, Tokuyasu KT, Lindsley DL, Garavito M. The germinal proliferation center in the testis of Drosophila melanogaster. J Ultrastruct Res. 1979;69:180–90.
Article
CAS
Google Scholar
Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science. 2000;290(5490):328–30. https://doi.org/10.1126/science.290.5490.328.
Article
CAS
PubMed
Google Scholar
Hayashi Y, Yoshinari Y, Kobayashi S, Niwa R. The regulation of Drosophila ovarian stem cell niches by signaling crosstalk. Curr Opin Insect Sci. 2020;37:23–9. https://doi.org/10.1016/j.cois.2019.10.006.
Article
PubMed
Google Scholar
Chen D, McKearin D. Gene circuitry controlling a stem cell niche. Curr Biol. 2005;15(2):179–84. https://doi.org/10.1016/j.cub.2005.01.004.
Article
CAS
PubMed
Google Scholar
Wang X, Page-McCaw A. A matrix metalloproteinase mediates long-distance attenuation of stem cell proliferation. J Cell Biol. 2014;206(7):923–36. https://doi.org/10.1083/jcb.201403084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jevitt A, Chatterjee D, Xie G, Wang XF, Otwell T, Huang YC, et al. A single-cell atlas of adult Drosophila ovary identifies transcriptional programs and somatic cell lineage regulating oogenesis. PLoS Biol. 2020;18(4):e3000538. https://doi.org/10.1371/journal.pbio.3000538.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rust K, Byrnes LE, Yu KS, Park JS, Sneddon JB, Tward AD, et al. A single-cell atlas and lineage analysis of the adult Drosophila ovary. Nat Commun. 2020;11(1):5628. https://doi.org/10.1038/s41467-020-19361-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slaidina M, Banisch TU, Gupta S, Lehmann RA. A single-cell atlas of the developing Drosophila ovary identifies follicle stem cell progenitors. Genes Dev. 2020;34(3-4):239–49. https://doi.org/10.1101/gad.330464.119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Z, Lim C, Tran V, Cui K, Zhao K, Chen X. Single-cyst transcriptome analysis of Drosophila male germline stem cell lineage. Development. 2020;147(8):dev184259. https://doi.org/10.1242/dev.184259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hubbard EJA, Schedl T. Biology of the Caenorhabditis elegans Germline Stem Cell System. Genetics. 2019;213(4):1145–88. https://doi.org/10.1534/genetics.119.300238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joshi PM, Riddle MR, Djabrayan NJV, Rothman JH. Caenorhabditis elegans as a model for stem cell biology. Dev Dyn. 2010;239(5):1539–54. https://doi.org/10.1002/dvdy.22296.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimble J. Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. Dev Biol. 1981;87(2):286–300. https://doi.org/10.1016/0012-1606(81)90152-4.
Article
CAS
PubMed
Google Scholar
Cinquin O, Crittenden SL, Morgan DE, Kimble J. Progression from a stem cell-like state to early differentiation in the C. elegans germ line. Proc Natl Acad Sci U S A. 2010;107(5):2048–53. https://doi.org/10.1073/pnas.0912704107.
Article
PubMed
PubMed Central
Google Scholar
Austin J, Kimble J. glp-1 Is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell. 1987;51(4):589–99. https://doi.org/10.1016/0092-8674(87)90128-0.
Article
CAS
PubMed
Google Scholar
Gazave E, Lapébie P, Richards GS, Brunet F, Ereskovsky AV, Degnan BM, et al. Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol Biol. 2009;9:249. https://doi.org/10.1186/1471-2148-9-249.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koch U, Lehal R, Radtke F. Stem cells living with a Notch. Development (Cambridge). 2013;140(4):689–704. https://doi.org/10.1242/dev.080614.
Article
CAS
Google Scholar
Van Hoffelen S, Herman MA. Stem cells: specifying stem-cell niches in the worm. Curr Biol. 2006;16(5):R175–7. https://doi.org/10.1016/j.cub.2006.02.043.
Article
CAS
PubMed
Google Scholar
Gordon KL, Zussman JW, Li X, Miller C, Sherwood DR. Stem cell niche exit in C. elegans via orientation and segregation of daughter cells by a cryptic cell outside the niche. Elife. 2020;9:e56383. https://doi.org/10.7554/eLife.56383.
Article
CAS
PubMed
PubMed Central
Google Scholar
Persico V, Callaini G, Riparbelli MG. The male stem cell niche of Drosophila melanogaster: interactions between the germline stem cells and the hub. Exp Cell Res. 2019;383(1):111489. https://doi.org/10.1016/j.yexcr.2019.07.002.
Article
CAS
PubMed
Google Scholar
Schmidt ED, Dorn A. Structural polarity and dynamics of male germline stem cells in the milkweed bug (Oncopeltus fasciatus). Cell Tissue Res. 2004;318(2):383–94. https://doi.org/10.1007/s00441-004-0983-6.
Article
PubMed
Google Scholar
Packer JS, Zhu Q, Huynh C, Sivaramakrishnan P, Preston E, Dueck H, et al. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science. 2019;365(6459):eaax1971. https://doi.org/10.1126/science.aax1971.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schild ES, Mars J, Ebbing A, Vivié J, Betist M, Korswagen HC. Spatial transcriptomics of the nematode Caenorhabditis elegans using RNA tomography. STAR Protoc. 2021;2(2):100411. https://doi.org/10.1016/j.xpro.2021.100411.
Article
PubMed
PubMed Central
Google Scholar
Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol. 2008;9(1):11–21. https://doi.org/10.1038/nrm2319.
Article
CAS
PubMed
Google Scholar
Pagella P, Neto E, Lamghari M, Mitsiadis TA. Investigation of orofacial stem cell niches and their innervation through microfluidic devices. Eur Cell Mater. 2015;29:213–23. https://doi.org/10.22203/ecm.v029a16.
Article
CAS
PubMed
Google Scholar
Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107(11):4872–7. https://doi.org/10.1073/pnas.0903269107.
Article
PubMed
PubMed Central
Google Scholar
Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, et al. The magnitude of global marine species diversity. Curr Biol. 2012;22:2189–202.
Article
CAS
Google Scholar
Knope ML, Bush AM, Frishkoff LO, Heim NA, Payne JL. Ecologically diverse clades dominate the oceans via extinction resistance. Science. 2020;367(6481):1035–8.
Article
CAS
Google Scholar
Williamson M. Marine biodiversity in its global context. In: Ormond M, Gage RFG, Angel JD, editors. Marine Biodiversity: Patterns and Processes. Cambridge: Cambridge University Press; 1997. p. 1–17.
Google Scholar
Rink JC. Stem cell systems and regeneration in planaria. Dev Genes Evol. 2013;223(1-2):67–84. https://doi.org/10.1007/s00427-012-0426-4.
Article
PubMed
Google Scholar
Benton JL, Kery R, Li J, Noonin C, Söderhäll I, Beltz BS. Cells from the immune system generate adult-born neurons in crayfish. Dev Cell. 2014;30(3):322–33. https://doi.org/10.1016/j.devcel.2014.06.016.
Article
CAS
PubMed
Google Scholar
Bosch TCG, Anton-Erxleben F, Hemmrich G, Khalturin K. The hydra polyp: nothing but an active stem cell community. Dev Growth Differ. 2010;52(1):15–25. https://doi.org/10.1111/j.1440-169X.2009.01143.x.
Article
CAS
PubMed
Google Scholar
Lindsay-Mosher N, Chan A, Pearson BJ. Planarian EGF repeat-containing genes megf6 and hemicentin are required to restrict the stem cell compartment. PLoS Genetics. 2020;16(2):1–24. https://doi.org/10.1371/journal.pgen.1008613.
Article
CAS
Google Scholar
Voskoboynik A, Simon-Blecher N, Soen Y, Rinkevich B, De Tomaso AW, Ishizuka KJ, et al. Striving for normality: whole body regeneration through a series of abnormal zooidal generations. FASEB J. 2007;21:1335–44.
Article
CAS
Google Scholar
Vogg MC, Galliot B, Tsiairis CD. Model systems for regeneration: Hydra. Development. 2019;146(21):dev177212. https://doi.org/10.1242/dev.177212.
Article
CAS
PubMed
Google Scholar
Frank U, Nicotra ML, Schnitzler CE. The colonial cnidarian Hydractinia. Evodevo. 2020;11:7. https://doi.org/10.1186/s13227-020-00151-0.
Article
PubMed
PubMed Central
Google Scholar
Amiel AR, Johnston HT, Nedoncelle K, Warner JF, Ferreira S, Röttinger E. Characterization of morphological and cellular events underlying oral regeneration in the sea anemone, Nematostella vectensis. Int J Mol Sci. 2015;16(12):28449–71. https://doi.org/10.3390/ijms161226100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gold DA, Jacobs DK. Stem cell dynamics in Cnidaria: are there unifying principles? Dev Genes Evol. 2013;223(1–2):53–66. https://doi.org/10.1007/s00427-012-0429-1.
Article
PubMed
Google Scholar
Bosch TCG, David CN. Stem cells of Hydra magnipapillata can differentiate into somatic cells and germ line cells. Dev Biol. 1987;21(1):182–91. https://doi.org/10.1016/0012-1606(87)90151-5.
Article
Google Scholar
Gahan JM, Bradshaw B, Flici H, Frank U. The interstitial stem cells in Hydractinia and their role in regeneration. Curr Opin Genet Dev. 2016;40:65–73. https://doi.org/10.1016/j.gde.2016.06.006.
Article
CAS
PubMed
Google Scholar
Schmid V. Transdifferentiation in Medusae. Int Rev Cytol. 1992;142:213–61.
Article
CAS
Google Scholar
Künzel T, Heiermann R, Frank U, Müller W, Tilmann W, Bause M, et al. Migration and differentiation potential of stem cells in the cnidarian Hydractinia analysed in eGFP-transgenic animals and chimeras. Dev Biol. 2010;348(1):120–9. https://doi.org/10.1016/j.ydbio.2010.08.017.
Article
CAS
PubMed
Google Scholar
Müller WA, Teo R, Frank U. Totipotent migratory stem cells in a hydroid. Dev Biol. 2004;275(1):215–24. https://doi.org/10.1016/j.ydbio.2004.08.006.
Article
CAS
PubMed
Google Scholar
Bode HR. The interstitial cell lineage of hydra: a stem cell system that arose early in evolution. J Cell Sci. 1996;109(6):1155–64.
Article
CAS
Google Scholar
David CN, Plotnick I. Distribution of interstitial stem cells in Hydra. Dev Biol. 1980;76(1):175–84. https://doi.org/10.1016/0012-1606(80)90370-X.
Article
CAS
PubMed
Google Scholar
Hobmayer B, Jenewein M, Eder D, Eder MK, Glasauer S, Gufler S, et al. Stemness in Hydra - a current perspective. Int J Dev Biol. 2012;56(6-8):509–17. https://doi.org/10.1387/ijdb.113426bh.
Article
CAS
PubMed
Google Scholar
Boehm AM, Bosch TCG. Migration of multipotent interstitial stem cells in Hydra. Zoology. 2012;115(5):275–82. https://doi.org/10.1016/j.zool.2012.03.004.
Article
PubMed
Google Scholar
Hartl M, Mitterstiller AM, Valovka T, Breuker K, Hobmayer B, Bister K. Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra. Proc Natl Acad Sci U S A. 2010;107(9):4051–6. https://doi.org/10.1073/pnas.0911060107.
Article
PubMed
PubMed Central
Google Scholar
Käsbauer T, Towb P, Alexandrova O, David CN, Dall'armi E, Staudigl A, et al. The Notch signaling pathway in the cnidarian Hydra. Dev Biol. 2007;303(1):376–90. https://doi.org/10.1016/j.ydbio.2006.11.022.
Article
CAS
PubMed
Google Scholar
Siebert S, Farrell JA, Cazet JF, Abeykoon Y, Primack AS, Schnitzler CE, et al. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science. 2019;365(6451):eaav9314. https://doi.org/10.1126/science.aav9314.
Article
CAS
PubMed
PubMed Central
Google Scholar
David CN. Interstitial stem cells in Hydra: multipotency and decision-making. Int J Dev Biol. 2012;56(6-8):489–97. https://doi.org/10.1387/ijdb.113476cd.
Article
PubMed
Google Scholar
Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature. 2000;407(6801):186–9. https://doi.org/10.1038/35025063.
Article
CAS
PubMed
Google Scholar
Duffy DJ, Plickert G, Kuenzel T, Tilmann W, Frank U. Wnt signaling promotes oral but suppresses aboral structures in Hydractinia metamorphosis and regeneration. Development. 2010;137(18):3057–66. https://doi.org/10.1242/dev.046631.
Article
CAS
PubMed
Google Scholar
Hartl M, Glasauer S, Gufler S, Raffeiner A, Puglisi K, Breuker K, et al. Differential regulation of myc homologs by Wnt/β-Catenin signaling in the early metazoan Hydra. FEBS J. 2019;286(12):2295–310. https://doi.org/10.1111/febs.14812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khalturin K, Anton-Erxleben F, Milde S, Plötz C, Wittlieb J, Hemmrich G, et al. Transgenic stem cells in Hydra reveal an early evolutionary origin for key elements controlling self-renewal and differentiation. Dev Biol. 2007;309(1):32–44. https://doi.org/10.1016/j.ydbio.2007.06.013.
Article
CAS
PubMed
Google Scholar
Teo R, Möhrlen F, Plickert G, Müller WA, Frank U. An evolutionary conserved role of Wnt signaling in stem cell fate decisions. Dev Biol. 2006;289(1):91–9. https://doi.org/10.1016/j.ydbio.2005.10.009.
Article
CAS
PubMed
Google Scholar
Holstein TW, David CN. Putative intermediates in the nerve cell differentiation pathway in Hydra have properties of multipotent stem cells. Dev Biol. 1990;142:401–5. https://doi.org/10.1016/0012-1606(90)90361-L.
Article
CAS
PubMed
Google Scholar
Buzgariu W, Al Haddad S, Tomczyk S, Wenger Y, Galliot B. Multi-functionality and plasticity characterize epithelial cells in Hydra. Tissue Barriers. 2015;3(4):e1068908. https://doi.org/10.1080/21688370.2015.1068908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujita S, Kuranaga E, Nakajima YI. Regeneration potential of jellyfish: cellular mechanisms and molecular insights. Genes (Basel). 2021;12(5):758. https://doi.org/10.3390/genes12050758.
Article
CAS
Google Scholar
Kirillova A, Genikhovich G, Pukhlyakova E, Demilly A, Kraus Y, Technau U. Germ-layer commitment and axis formation in sea anemone embryonic cell aggregates. Proc Natl Acad Sci U S A. 2018;115(8):1813–8. https://doi.org/10.1073/pnas.1711516115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raz-Bahat M, Erez J, Rinkevich B. In vivo light-microscopic documentation for primary calcification processes in the hermatypic coral Stylophora pistillata. Cell Tissue Res. 2006;325(2):361–8. https://doi.org/10.1007/s00441-006-0182-8.
Article
PubMed
Google Scholar
Sanders SM, Ma Z, Hughes JM, Riscoe BM, Gibson GA, Watson AM, et al. CRISPR/Cas9-mediated gene knockin in the hydroid Hydractinia symbiolongicarpus. BMC Genomics. 2018;19(1):649. https://doi.org/10.1186/s12864-018-5032-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klimovich A, Wittlieb J, Bosch TCG. Transgenesis in Hydra to characterize gene function and visualize cell behavior. Nat Protoc. 2019;14(7):2069–90. https://doi.org/10.1038/s41596-019-0173-3.
Article
CAS
PubMed
Google Scholar
Quiroga-Artigas G, Duscher A, Lundquist K, Waletich J, Schnitzler CE. Gene knockdown via electroporation of short hairpin RNAs in embryos of the marine hydroid Hydractinia symbiolongicarpus. Sci Rep. 2020;10(1):12806. https://doi.org/10.1038/s41598-020-69489-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Achatz JG, Chiodin M, Salvenmoser W, Tyler S, Martinez P. The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis). Org Divers Evol. 2013;13(2):267–86. https://doi.org/10.1007/s13127-012-0112-4.
Article
PubMed
Google Scholar
Baguñà J, Salo E, Auladell C. Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development. 1989a;107:77–86.
Article
Google Scholar
Bely AE, Sikes JM. Acoel and platyhelminth models for stem-cell research. J Biol. 2010;9(2):2–5. https://doi.org/10.1186/jbiol223.
Article
Google Scholar
Mouton S, Wudarski J, Grudniewska M, Berezikov E. The regenerative flatworm macrostomum lignano, a model organism with high experimental potential. Int J Dev Biol. 2018;62(6–8):551–8. https://doi.org/10.1387/ijdb.180077eb.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rozario T, Quinn EB, Wang J, Davis RE, Newmark PA. Region-specific regulation of stem cell-driven regeneration in tapeworms. Elife. 2018;8:e48958. https://doi.org/10.7554/eLife.48958.
Article
Google Scholar
Rink JC. Stem Cells, Patterning and regeneration in planarians: Self-Organization at the Organismal Scale. Methods Mol Biol. 2018;1774:57–172. https://doi.org/10.1007/978-1-4939-7802-1_2.
Article
CAS
PubMed
Google Scholar
Baguñà J. Planarian neoblasts. Nondeferred, Multipurpose stem cells for body homeostasis, growth, degrowth, and regeneration. In: Bishop B, Hall CD, editors. Deferring Development. Setting Aside Cells for Future Use in Development and Evolution. Taylor & Francis Group: CRC Press; 2020. p. 135–58.
Google Scholar
Molina MD, Cebrià F. Decoding stem cells: an overview on planarian stem cell heterogeneity and lineage progression. Biomolecules. 2021;11(10):1532. https://doi.org/10.3390/biom11101532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lange CS. A quantitative study of the number and distribution of neoblasts in Dugesia lugubris (Planaria) with reference to size and ploidy. J Embryol Exp Morphol. 1967;18(2):199–213.
CAS
PubMed
Google Scholar
Collins JJ 3rd, Wang B, Lambrus BG, Tharp ME, Iyer H, Newmark PA. Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature. 2013;494(7438):476–9. https://doi.org/10.1038/nature11924.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baguñá J, Romero R. Quantitative analysis of cell types during growth, degrowth and regeneration in the planarians Dugesia mediterranea and Dugesia tigrina. Hydrobiologia. 1981;84:181–94. https://doi.org/10.1007/BF00026179.
Article
Google Scholar
Sánchez Alvarado A. Stem cells and the Planarian Schmidtea mediterranea. C R Biologies. 2007;330(6-7):498–503. https://doi.org/10.1016/j.crvi.2007.05.005.
Article
CAS
PubMed
Google Scholar
Orii H, Sakurai T, Watanabe K. Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica. Dev Genes Evol. 2005;215(3):143–57. https://doi.org/10.1007/s00427-004-0460-y.
Article
CAS
PubMed
Google Scholar
Srivastava M, Mazza-Curll KL, van Wolfswinkel JC, Reddien PW. Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr Biol. 2014;24(10):1107–13. https://doi.org/10.1016/j.cub.2014.03.042.
Article
CAS
PubMed
Google Scholar
Gehrke AR, Srivastava M. Neoblasts and the evolution of whole-body regeneration. Curr Opin Genet Dev. 2016;40:131–7. https://doi.org/10.1016/j.gde.2016.07.009.
Article
CAS
PubMed
Google Scholar
Baguñà J. The planarian neoblast: the rambling history of its origin and some current black boxes. Int J Dev Biol. 2012;56(1-3):19–37. https://doi.org/10.1387/ijdb.113463jb.
Article
CAS
PubMed
Google Scholar
Wagner DE, Wang IE, Reddien PW. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science. 2011;332(6031):811–6.
Article
CAS
Google Scholar
Eisenhoffer GT, Kang H, Sánchez AA. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell. 2008;3(3):327–39. https://doi.org/10.1016/j.stem.2008.07.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Labbé RM, Irimia M, Currie KW, Lin A, Zhu SJ, Brown DD, et al. A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells. 2012;30(8):1734–45. https://doi.org/10.1002/stem.1144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner DE, Ho JJ, Reddien PW. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell. 2012;10(3):299–311. https://doi.org/10.1016/j.stem.2012.01.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng A, Li H, Guo L, Gao X, McKinney S, Wang Y, et al. Prospectively isolated tetraspanin + neoblasts are adult pluripotent stem cells underlying planarian regeneration. Cell. 2018;173(7):1593–608.e20. https://doi.org/10.1016/j.cell.2018.05.006.
Article
CAS
PubMed
Google Scholar
Raz AA, Wurtzel O, Reddien PW. Planarian stem cells specify fate yet retain potency during the cell cycle. Cell Stem Cell. 2021;28:1–16. https://doi.org/10.1016/j.stem.2021.03.021.
Article
CAS
Google Scholar
Forsthoefel DJ, James NP, Escobar DJ, Stary JM, Vieira AP, Waters FA, et al. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. Dev Cell. 2012;23(4):691–704. https://doi.org/10.1016/j.devcel.2012.09.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan A, Ma S, Pearson BJ, Chan D. Collagen IV differentially regulates planarian stem cell potency and lineage progression. Proc Natl Acad Sci U S A. 2021;118(16):e2021251118. https://doi.org/10.1073/pnas.2021251118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oviedo NJ, Levin M. smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development. 2007;134:3121–31.
Article
CAS
Google Scholar
Baguñà J, Saló E, Romero R. Effects of activators and antagonists of the neuropeptides substance P and substance K on cell proliferation in planarians. Int J Dev Biol. 1989b;33(2):261–6.
PubMed
Google Scholar
Barberán S, Fraguas S, Cebrià F. The EGFR signaling pathway controls gut progenitor differentiation during planarian regeneration and homeostasis. Development. 2016;143:2089–102.
PubMed
Google Scholar
Lapan SW, Reddien PW. Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration. Cell Rep. 2012;2:294–307.
Article
CAS
Google Scholar
Gschwentner R, Ladurner P, Nimeth K, Rieger R. Stem cells in a basal bilaterian. Cell Tissue Res. 2001;304(3):401–8. https://doi.org/10.1007/s004410100375.
Article
CAS
PubMed
Google Scholar
Duruz J, Kaltenrieder C, Ladurner P, Bruggmann R, Martìnez P, Sprecher SG. Acoel Single-Cell Transcriptomics: Cell type analysis of a deep branching bilaterian. Mol Biol Evol. 2021;38(5):1888–904. https://doi.org/10.1093/molbev/msaa333.
Article
CAS
PubMed
Google Scholar
Rossi L, Salvetti A. Planarian stem cell niche, the challenge for understanding tissue regeneration. Semin Cell Dev Biol. 2019;87:30–6. https://doi.org/10.1016/j.semcdb.2018.03.005.
Article
CAS
PubMed
Google Scholar
Newmark PA, Sánchez Alvarado A. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol. 2000;220(2):142–53. https://doi.org/10.1006/dbio.2000.9645.
Article
CAS
PubMed
Google Scholar
Durant F, Lobo D, Hammelman J, Levin M. Physiological controls of large-scale patterning in planarian regeneration: a molecular and computational perspective on growth and form. Regeneration (Oxf). 2016;3(2):78–102. https://doi.org/10.1002/reg2.54.
Article
PubMed
PubMed Central
Google Scholar
Levin M, Pietak AM, Bischof J. Planarian regeneration as a model of anatomical homeostasis: recent progress in biophysical and computational approaches. Semin Cell Dev Biol. 2019;87:125–44. https://doi.org/10.1016/j.semcdb.2018.04.003.
Article
CAS
PubMed
Google Scholar
González-Estévez C, Felix DA, Smith MD, Paps J, Morley SJ, James V, et al. SMG-1 and mTORC1 act antagonistically to regulate response to injury and growth in planarians. PLoS Genet. 2012;8:e1002619.
Article
Google Scholar
Issigonis M, Newmark PA. From worm to germ: germ cell development and regeneration in planarians. Curr Top Dev Biol. 2019;135:127–53. https://doi.org/10.1016/bs.ctdb.2019.04.001.
Article
CAS
PubMed
Google Scholar
Issigonis M, Redkar A, Rozario T, Khan U, Mejia-Sanchez R, Lapan S, et al. Krüppel-like factor 4 is required for development and regeneration of germline and yolk cells from somatic stem cells in planarians. bioRxiv. 2021. https://doi.org/10.1101/2021.11.08.467675.
Manni L, Anselmi C, Cima F, Gasparini F, Voskoboynik A, Martini M, et al. Sixty years of experimental studies on the blastogenesis of the colonial tunicate Botryllus schlosseri. Dev Biol. 2019;448(2):293–308. https://doi.org/10.1016/j.ydbio.2018.09.009.
Article
CAS
PubMed
Google Scholar
Rinkevich B. The colonial urochordate Botryllus schlosseri: from stem cells and natural tissue transplantation to issues in evolutionary ecology. BioEssays. 2002;24(8):730–40. https://doi.org/10.1002/bies.10123.
Article
PubMed
Google Scholar
Rosental B, Kowarsky M, Seita J, Corey DM, Ishizuka KJ, Palmeri KJ, et al. Complex mammalian-like haematopoietic system found in a colonial chordate. Nature. 2018;564(7736):425–9. https://doi.org/10.1038/s41586-018-0783-x. London: Springer Nature.
Ogasawara M, Di Lauro R, Satoh N. Ascidian homologs of mammalian thyroid transcription factor-1 gene are expressed in the endostyle. Zool Sci. 1999;16(3):559–65. https://doi.org/10.2108/zsj.16.559.
Article
CAS
Google Scholar
Ben-Hamo O, Rosner A, Rabinowitz C, Oren M, Rinkevich B. Coupling astogenic aging in the colonial tunicate Botryllus schlosseri with the stress protein mortalin. Dev Biol. 2018;433(1):33–46. https://doi.org/10.1016/j.ydbio.2017.10.023.
Article
CAS
PubMed
Google Scholar
Magor BG, De Tomaso AW, Rinkevich B, Weissman IL. Allorecognition in colonial tunicates: protection against predatory cell lineages? Immunol Rev. 1999;167:69–79.
Article
CAS
Google Scholar
Blanchoud S, Rinkevich B, Wilson MJ. Whole-body regeneration in the colonial tunicate Botrylloides leachii. In: Kloc J, Kubiac M, editors. Marine Organisms as Model Systems in Biology and Medicine: Springer; 2018. p. 337–55.
Kassmer SH, Rodriguez D, De Tomaso AW. Evidence that ABC transporter-mediated autocrine export of an eicosanoid signaling molecule enhances germ cell chemotaxis in the colonial tunicate Botryllus schlosseri. Development (Cambridge, England). 2020;147(15):dev184663. https://doi.org/10.1242/dev.184663.
Article
CAS
Google Scholar
Rinkevich Y, Paz G, Rinkevich B, Reshef R. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biology. 2007;5(4):e71. https://doi.org/10.1371/journal.pbio.0050071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Auger H, Sasakura Y, Joly JS, Jeffery WR. Regeneration of oral siphon pigment organs in the ascidian Ciona intestinalis. Dev Biol. 2010;339(2):374–89. https://doi.org/10.1016/j.ydbio.2009.12.040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeffery WR. Regeneration, stem cells, and aging in the tunicate Ciona: insights from the oral siphon. Int Rev Cell Mol Biol. 2015;319:255–82. https://doi.org/10.1016/bs.ircmb.2015.06.005.
Article
CAS
PubMed
Google Scholar
Jeffery WR. Progenitor targeting by adult stem cells in Ciona homeostasis, injury, and regeneration. Dev Biol. 2019;448(2):279–90. https://doi.org/10.1016/j.ydbio.2018.09.005.
Article
CAS
PubMed
Google Scholar
Jiménez-Merino J, Santos De Abreu I, Hiebert LS, Allodi S, Tiozzo S, De Barros CM, et al. Putative stem cells in the hemolymph and in the intestinal submucosa of the solitary ascidian Styela plicata. EvoDevo. 2019;10:31. https://doi.org/10.1186/s13227-019-0144-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Funayama N. The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells). Dev Genes Evol. 2013;223(1-2):23–38. https://doi.org/10.1007/s00427-012-0417-5.
Article
PubMed
Google Scholar
Leys SP, Mackie GO, Reiswig HM. The Biology of Glass Sponges. Adv Marine Biol. 2007;52:1–145. https://doi.org/10.1016/S0065-2881(06)52001-2. Amsterdam: Elsevier B.V.
Ijima I. Studies on the Hexactinelida, contribution I. (Euplectellidae). J Coll Sci Imper Univ Tokyo. 1901;15:1–299.
Google Scholar
Singla C, Mackie MG. Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Phil Trans Roy Soc Lond. 1983;301:365–400. https://doi.org/10.1098/rstb.1983.0028.
Alexander BE, Liebrand K, Osinga R, van der Geest HG, Admiraal W, Cleutjens JP, et al. Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLoS One. 2014;9(10):e109486. https://doi.org/10.1371/journal.pone.0109486.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ereskovsky A, Lavrov A. Porifera. In: LaDouceur EEB, editor. Invertebrate Histology: John Wiley & Sons, Inc; 2021.
Ereskovsky AV. The Comparative Embryology of Sponges. Dordrecht: Springer-Verlag; 2010.
Book
Google Scholar
Amiel AR, Foucher K, Ferreira S, Röttinger E. Synergic coordination of stem cells is required to induce a regenerative response in anthozoan cnidarians. BioRxiv. 2019. https://doi.org/10.1101/2019.12.31.891804.
Ramon-Mateu J, Ellison ST, Angelini TE, Martindale MQ. Regeneration in the ctenophore Mnemiopsis leidyi occurs in the absence of a blastema, requires cell division, and is temporally separable from wound healing. BMC Biology. 2019;17(1):1–25. https://doi.org/10.1186/s12915-019-0695-8.
Article
Google Scholar
Rinkevich B. Quo vadis chimerism? Chimerism. 2011a;2:1–5.
Article
Google Scholar
Ujvari B, Papenfuss AT, Belov K. Transmissible cancers in an evolutionary context. BioEssays. 2016;38(Suppl 1):S14–23. https://doi.org/10.1002/bies.201670904.
Article
PubMed
Google Scholar
Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche-there goes the neighborhood? Int J Cancer. 2011;29(10):2315–27. https://doi.org/10.1002/ijc.26312.
Article
CAS
Google Scholar
Lean C, Plutynski A. The evolution of failure: explaining cancer as an evolutionary process. Biol Philos. 2016;31:39–57. https://doi.org/10.1007/s10539-015-9511-1.
Article
Google Scholar
Okamoto K, Nakatsukasa M, Alié A, Masuda Y, Agata K, Funayama N. The active stem cell specific expression of sponge Musashi homolog EflMsiA suggests its involvement in maintaining the stem cell state. Mech Dev. 2012;129(1–4):24–37. https://doi.org/10.1016/j.mod.2012.03.001.
Article
CAS
PubMed
Google Scholar
Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38. https://doi.org/10.1016/j.stem.2015.02.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. https://doi.org/10.1038/nm.3394. London: Springer Nature.
Sneddon JB, Werb Z. Location, location, location: the cancer stem cell niche. Cell Stem Cell. 2007;1(6):607–11. https://doi.org/10.1016/j.stem.2007.11.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Santo JP. Natural killer cells: diversity in search of a niche. Nat Immunol. 2008;9(5):473–5. https://doi.org/10.1038/ni.f.201.
Article
CAS
PubMed
Google Scholar
Ayala-Díaz S, Medina DA, Lizano M, Manzo-Merino J. Transmissible cancer: a canine transmissible venereal tumor during pregnancy, Case Report. J Cancer Res. 2017;1(1):1–4.
Google Scholar
Adamska M. Differentiation and transdifferentiation of sponge cells. In: Kloc J, Kubiak M, editors. Marine Organisms as Model Systems in Biology and Medicine: Springer International Publishing; 2018. p. 229–53.
Lavrov AI, Kosevich IA. Sponge cell reaggregation: Cellularstructure and morphogenetic potencies of multicellular aggregates. J Exp Zool A Ecol Genet Physiol. 2016;325(2):158–77.
Article
Google Scholar
Soubigou A, Ross EG, Touhami Y, Chrismas N, Modepalli V. Regeneration in the sponge Sycon ciliatum partly mimics postlarval development. Development (Cambridge, England). 2020;147(22):dev193714. https://doi.org/10.1242/dev.193714.
Article
CAS
Google Scholar
Shortt AJ, Secker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT. Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells. 2007;25(6):1402–9. https://doi.org/10.1634/stemcells.2006-0580.
Article
PubMed
Google Scholar
Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood. 2015;125(17):2621–9. https://doi.org/10.1182/blood-2014-09-570192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexander BE, Achlatis M, Osinga R, van der Geest HG, Cleutjens JPM, Schutte B, et al. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage? Peer J. 2015;3:e820.
Article
Google Scholar
Lavrov AI, Bolshakov FV, Tokina DB, Ereskovsky AV. Sewing up the wounds: the epithelial morphogenesis as a central mechanism of calcaronean sponge regeneration. J Exp Zool B Mol Dev Evol. 2018;330(6-7):351–71. https://doi.org/10.1002/jez.b.22830.
Article
PubMed
Google Scholar
Musser, J.M., Schippers, K.J., Nickel,M., Mizzon, G., Kohn, A.B., Pape, C., Hammel, J.U., Wolf, F., Liang, C., Hernandez-Plaza, A., Achim, K., Schieber, N.L., Francis, W.R., Vargas, R.S., Kling, S., Renkert, M., Feuda, R., Gaspar, I., Burkhardt, P., Bork, P. et al. (2019). Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. BioRxiv. https://doi.org/10.1101/758276
Levy S, Elek A, Grau-Bové X, Menéndez-Bravo S, Iglesias M, Tanay A, et al. A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell. 2021;184(11):2973–87. https://doi.org/10.1016/j.cell.2021.04.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fincher CT, Wurtzel O, de Hoog T, Kravarik KM, Reddien PW. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science. 2018;360(6391):eaaq1736. https://doi.org/10.1126/science.aaq1736.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li P, Nanes Sarfati D, Xue Y, Yu X, Tarashansky AJ, Quake SR, et al. Single-cell analysis of Schistosoma mansoni identifies a conserved genetic program controlling germline stem cell fate. Nat Commun. 2021;12:485. https://doi.org/10.1038/s41467-020-20794-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferraro F, Lo Celso C, Scadden D. Adult stem cells and their niches. Adv Exp Med Biol. 2010;695:155–68. https://doi.org/10.1007/978-1-4419-7037-4_11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132:598–611. https://doi.org/10.1016/j.cell.2008.01.038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szade K, Gulati GS, Chan CKF, Kao KS, Miyanishi M, Marjon KD, et al. Where hematopoietic stem cells live: the bone marrow niche. Antioxid Redox Signal. 2018;29(2):191–204. https://doi.org/10.1089/ars.2017.7419.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lidke AK, Bannister S, Löwer AM, Apel DM, Podleschny M, Kollmann M, et al. 17β-Estradiol induces supernumerary primordial germ cells in embryos of the polychaete Platynereis dumerilii. Gen Comp Endocrinol. 2014;196:52–61. https://doi.org/10.1016/j.ygcen.2013.11.017.
Article
CAS
PubMed
Google Scholar
Schenk S, Krauditsch C, Frühauf P, Gerner C, Raible F. Discovery of methylfarnesoate as the annelid brain hormone reveals an ancient role of sesquiterpenoids in reproduction. Elife. 2016;5:e17126. https://doi.org/10.7554/eLife.17126.
Article
PubMed
PubMed Central
Google Scholar
Gonzales KAU, Fuchs E. Skin and its regenerative powers: an alliance between stem cells and their niche. Dev Cell. 2017;43(4):387–401. https://doi.org/10.1016/j.devcel.2017.10.001.
Article
CAS
PubMed
Google Scholar
Beumer J, Clevers H. Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol. 2021;22(1):39–53. https://doi.org/10.1038/s41580-020-0278-0.
Article
CAS
PubMed
Google Scholar
Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.
Article
CAS
Google Scholar
Gamulin V, Rinkevich B, Schaecke H, Kruse M, Mueller IM, Mueller WEG. Cell adhesion receptors and nuclear receptors are highly conserved from the lowest metazoa (marine sponges) to vertebrates. Biol Chem Hoppe Seyler. 1994;375:583–8.
Article
CAS
Google Scholar
Pennings S, Liu KJ, Qian H. The stem cell niche: interactions between stem cells and their environment. Stem Cells Int. 2018;2018:4879379. https://doi.org/10.1155/2018/4879379.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh M, Helm KM, Smith RW, Giordanengo MS, Li B, Shen H, et al. A single cell functions as a tissue-specific stem cell and the in vitro niche-forming cell. Am J Respir Cell Mol Biol. 2011;45(3):459–69.
Article
CAS
Google Scholar
Scimone ML, Kravarik KM, Lapan SW, Reddien PW. Neoblast specialization in regeneration of the planarian Schmidtea mediterranea. Stem Cell Rep. 2014;3(2):339–52. https://doi.org/10.1016/j.stemcr.2014.06.001.
Article
CAS
Google Scholar
Sánchez AA. Planarian regeneration: its end is its beginning. Cell. 2006;124(2):241–5. https://doi.org/10.1016/j.cell.2006.01.012.
Article
CAS
Google Scholar
Zhang L, Theise N, Chua M, Reid LM. The stem cell niche of human livers: symmetry between development and regeneration. Hepatology. 2008;48(5):1598–607. https://doi.org/10.1002/hep.22516.
Article
CAS
PubMed
Google Scholar
Aziz A, Sebastian S, Dilworth FJ. The origin and fate of muscle satellite cells. Stem Cell Rev Rep. 2012;8(2):609–22. https://doi.org/10.1007/s12015-012-9352-0.
Article
CAS
PubMed
Google Scholar
Bery A, Cardona A, Martinez P, Hartenstein V. Structure of the central nervous system of a juvenile acoel, Symsagittifera roscoffensis. Dev Genes Evol. 2010;220(3-4):61–76. https://doi.org/10.1007/s00427-010-0328-2.
Article
PubMed
PubMed Central
Google Scholar
Rinkevich B. Cell cultures from marine invertebrates: new insights for capturing endless stemness. Mar Biotechnol. 2011b;13:345–54. https://doi.org/10.1007/s10126-010-9354-3.
Article
CAS
Google Scholar
Kobel S, Lutolf M. High-throughput methods to define complex stem cell niches. Biotechniques. 2010;48(4):ix–xxii. https://doi.org/10.2144/000113401.
Article
PubMed
Google Scholar
Peng XY, Guo Y, Peng L, Liu J. Design artificial stem cell nests for stem cell niche in a microfluidic petri dish programmed by a cell phone. Adv Mater Technol. 2021;6:2100045. https://doi.org/10.1002/admt.202100045.
Article
CAS
Google Scholar
Kim J, Adachi T. Cell-fate decision of mesenchymal stem cells toward osteocyte differentiation is committed by spheroid culture. Sci Rep. 2021;11(1):13204. https://doi.org/10.1038/s41598-021-92607-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y, Liu M, Yang J, Weissman SM, Pan X, Katz SG, et al. Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture. Cell Discov. 2021;7(1):47. https://doi.org/10.1038/s41421-021-00266-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews N, Serviss JT, Geyer N, Andersson AB, Dzwonkowska E, Šutevski I, et al. An unsupervised method for physical cell interaction profiling of complex tissues. Nat Methods. 2021;18(8):912–20. https://doi.org/10.1038/s41592-021-01196-2.
Article
CAS
PubMed
Google Scholar