Charnov EL. The theory of sex allocation. Monogr Popul Biol. 1982;18:1–355.
CAS
PubMed
Google Scholar
West SA. Sex allocation. Princeton: Princeton University Press; 2009.
Book
Google Scholar
Hamilton WD. Extraordinary sex ratios. Science. 1967;156:477–88.
Article
CAS
Google Scholar
West SA, Shuker DM, Sheldon BC. Sex-ratio adjustment when relatives interact: a test of constraints on adaptation. Evolution. 2005;59:1211–28. https://doi.org/10.1111/j.0014-3820.2005.tb01772.x.
Article
PubMed
Google Scholar
Frank SA. Hierarchical selection theory and sex ratios. II. on applying the theory, and a test with fig wasps. Evolution. 1985;39:949–64. https://doi.org/10.1111/j.1558-5646.1985.tb00440.x.
Article
PubMed
Google Scholar
West SA, Herre EA. Stabilizing selection and variance in fig wasp sex ratios. Evolution. 1998;52:475. https://doi.org/10.2307/2411083.
Article
CAS
PubMed
Google Scholar
Taylor PD. Intra-sex and inter-sex sibling interactions as sex ratio determinants. Nature. 1981;291:64–6. https://doi.org/10.1038/291064a0.
Article
Google Scholar
Charnov EL, Bull JJ, Maynard SJ. Why be an hermaphrodite? Nature. 1976;263:125–6. https://doi.org/10.1038/263125a0.
Article
Google Scholar
Charnov EL. Sex allocation and local mate competition in Barnacles. Mar Biol Lett. 1980;1:269–72.
Google Scholar
Fischer EA. Sexual allocation in a simultaneously hermaphroditic coral reef fish. Am Nat. 1981;117:64–82. https://doi.org/10.1086/283686.
Article
Google Scholar
Charnov EL. Simultaneous hermaphroditism and sexual selection. Proc Natl Acad Sci U S A. 1979;76:2480–4.
Article
CAS
Google Scholar
Schärer L. Tests of sex allocation theory in simultaneously hermaphroditic animals. Evolution. 2009;63:1377–405. https://doi.org/10.1111/j.1558-5646.2009.00669.x.
Article
PubMed
Google Scholar
Charlesworth D, Charlesworth B. Allocation of resources to male and female functions in hermaphrodites. Biol J Linnean Soc. 1981;15:57–74. https://doi.org/10.1111/j.1095-8312.1981.tb00748.x.
Article
Google Scholar
Charnov EL, Los-den Hartogh RL, Jones WT, van den Assem J. Sex ratio evolution in a variable environment. Nature. 1981;289:27–33. https://doi.org/10.1038/289027a0.
Article
CAS
PubMed
Google Scholar
Charnov EL. Sperm competition and sex allocation in simultaneous hermaphrodites. Evol Ecol. 1996;10:457–62. https://doi.org/10.1007/BF01237878.
Article
Google Scholar
Pen I, Weissing FJ. Sperm competition and sex allocation in simultaneous hermaphrodites: a new look at Charnov’s invariance principle. Evol Ecol Res. 1999;1:517–25.
Google Scholar
van Velzen E, Schärer L, Pen I. The effect of cryptic female choice on sex allocation in simultaneous hermaphrodites. Proc R Soc B. 2009;276:3123–31. https://doi.org/10.1098/rspb.2009.0566.
Article
PubMed
PubMed Central
Google Scholar
Schärer L, Pen I. Sex allocation and investment into pre- and post-copulatory traits in simultaneous hermaphrodites: the role of polyandry and local sperm competition. Philos Transact R Soc B Biol Sci. 2013;368:20120052. https://doi.org/10.1098/rstb.2012.0052.
Article
Google Scholar
de Jong TJ, Klinkhamer PGL. Evolutionary ecology of plant reproductive strategies. Cambridge; New York: Cambridge University Press; 2005.
Google Scholar
Goldman DA, Willson MF. Sex allocation in functionally hermaphroditic plants: a review and critique. Bot Rev. 1986;52:157–94.
Article
Google Scholar
Klinkhamer PGL, de Jong TJ, Metz H. Sex and size in cosexual plants. Trends Ecol Evol. 1997;12:260–5. https://doi.org/10.1016/S0169-5347(97)01078-1.
Article
CAS
PubMed
Google Scholar
Baeza JA. Sex allocation in a simultaneously hermaphroditic marine shrimp. Evolution. 2007;61:2360–73. https://doi.org/10.1111/j.1558-5646.2007.00199.x.
Article
PubMed
Google Scholar
Singh P, Vellnow N, Schärer L. Variation in sex allocation plasticity in three closely related flatworm species. Ecol Evol. 2019:ece3.5566. https://doi.org/10.1002/ece3.5566.
Hart MK, Svoboda A, Mancilla CD. Phenotypic plasticity in sex allocation for a simultaneously hermaphroditic coral reef fish. Coral Reefs. 2011;30:543–8. https://doi.org/10.1007/s00338-011-0737-3.
Article
Google Scholar
Tamechika MM, Matsuno K, Wada S, Yusa Y. Different effects of mating group size as male and as female on sex allocation in a simultaneous hermaphrodite. Ecol Evol. 2020;10:2492–8. https://doi.org/10.1002/ece3.6075.
Article
PubMed
PubMed Central
Google Scholar
Winkler L, Ramm SA. Experimental evidence for reduced male allocation under selfing in a simultaneously hermaphroditic animal. Biol Lett. 2018;14:20180570. https://doi.org/10.1098/rsbl.2018.0570.
Article
PubMed
PubMed Central
Google Scholar
Johnston MO, Das B, Hoeh WR. Negative correlation between male allocation and rate of self-fertilization in a hermaphroditic animal. Proc Natl Acad Sci U S A. 1998;95:617–20.
Article
CAS
Google Scholar
Campbell DR. Experimental tests of sex-allocation theory in plants. Trends Ecol Evol. 2000;15:227–32. https://doi.org/10.1016/S0169-5347(00)01872-3.
Article
CAS
PubMed
Google Scholar
Sicard A, Lenhard M. The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. Ann Bot. 2011;107:1433–43. https://doi.org/10.1093/aob/mcr023.
Article
PubMed
PubMed Central
Google Scholar
Plitmann U, Levin DA. Breeding systems in the Polemoniaceae. Pl Syst Evol. 1990;170:205–14. https://doi.org/10.1007/BF00937704.
Article
Google Scholar
Barrett SCH, Harder LD, Worley AC. The comparative biology of pollination and mating in flowering plants. Phil Trans R Soc Lond B. 1996;351:1271–80. https://doi.org/10.1098/rstb.1996.0110.
Article
Google Scholar
Jürgens A, Witt T, Gottsberger G. Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination, life form, style number, and sexual system. Sex Plant Reprod. 2002;14:279–89. https://doi.org/10.1007/s00497-001-0124-2.
Article
Google Scholar
Paterno GB, Silveira CL, Kollmann J, Westoby M, Fonseca CR. The maleness of larger angiosperm flowers. Proc Natl Acad Sci USA. 2020;117:10921–6. https://doi.org/10.1073/pnas.1910631117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petersen CW. Sex allocation in hermaphroditic sea basses. Am Nat. 1991;138:650–67. https://doi.org/10.1086/285240.
Article
Google Scholar
St. Mary CM. Sex allocation in Lythrypnus (Gobiidae): variations on a hermaphroditic theme. Environ Biol Fishes. 2000;58:321–33. https://doi.org/10.1023/A:1007644010331.
Article
Google Scholar
Maxfield JM, Van Tassell JL, St. Mary CM, Joyeux J-C, Crow KD. Extreme gender flexibility: using a phylogenetic framework to infer the evolution of variation in sex allocation, phylogeography, and speciation in a genus of bidirectional sex changing fishes(Lythrypnus, Gobiidae). Mol Phylogenet Evol. 2012;64:416–27. https://doi.org/10.1016/j.ympev.2012.04.016.
Article
PubMed
Google Scholar
Singh P, Schärer L. Self-fertilization, but not mating strategy, predicts the evolution of sex allocation plasticity in a hermaphroditic flatworm genus. bioRxiv. 2020. https://doi.org/10.1101/2020.06.12.149351.
Brunet J. Sex allocation in hermaphroditic plants. Trends Ecol Evol. 1992;7:79–84. https://doi.org/10.1016/0169-5347(92)90245-7.
Article
CAS
PubMed
Google Scholar
Henshaw JM, Marshall DJ, Jennions MD, Kokko H. Local gamete competition explains sex allocation and fertilization strategies in the sea. Am Nat. 2014;184:E32–49. https://doi.org/10.1086/676641.
Article
PubMed
Google Scholar
Levitan DR, Petersen C. Sperm limitation in the sea. Trends Ecol Evol. 1995;10:228–31. https://doi.org/10.1016/S0169-5347(00)89071-0.
Article
CAS
PubMed
Google Scholar
Parker GA, Immler S, Pitnick S, Birkhead TR. Sperm competition games: Sperm size (mass) and number under raffle and displacement, and the evolution of P2. J Theor Biol. 2010;264:1003–23. https://doi.org/10.1016/j.jtbi.2010.03.003.
Article
CAS
PubMed
Google Scholar
Schärer L, Ladurner P. Phenotypically plastic adjustment of sex allocation in a simultaneous hermaphrodite. Proc R Soc B Biol Sci. 2003;270:935–41. https://doi.org/10.1098/rspb.2002.2323.
Article
Google Scholar
Brand JN, Harmon LJ, Schärer L. Frequent origins of traumatic insemination involve convergent shifts in sperm and genital morphology. Evol Lett. 2022. https://doi.org/10.1002/evl3.268.
Schärer L, Littlewood DTJ, Waeschenbach A, Yoshida W, Vizoso DB. Mating behavior and the evolution of sperm design. Proc Natl Acad Sci. 2011;108:1490–5. https://doi.org/10.1073/pnas.1013892108.
Article
PubMed
PubMed Central
Google Scholar
Vizoso DB, Rieger G, Schärer L. Goings-on inside a worm: functional hypotheses derived from sexual conflict thinking. Biol J Linnean Soc. 2010;99:370–83.
Article
Google Scholar
Luther A. Untersuchungen an rhabdocoelen Turbellarien VI. Macrostomiden aus Finnland. Fauna Fennica. 1947;49:1–38.
Google Scholar
Schärer L, Joss G, Sandner P. Mating behaviour of the marine turbellarian Macrostomum sp.: these worms suck. Mar Biol. 2004;145:373–80. https://doi.org/10.1007/s00227-004-1314-x.
Article
Google Scholar
Patlar B, Weber M, Temizyürek T, Ramm SA. Seminal fluid-mediated manipulation of post-mating behavior in a simultaneous hermaphrodite. Curr Biol. 2020;30:143–9. https://doi.org/10.1016/j.cub.2019.11.018.
Article
CAS
PubMed
Google Scholar
Weber M, Patlar B, Ramm SA. Effects of two seminal fluid transcripts on post-mating behaviour in the simultaneously hermaphroditic flatworm Macrostomum lignano. J Evol Biol. 2020:jeb.13606. https://doi.org/10.1111/jeb.13606.
Schärer L, Janicke T. Sex allocation and sexual conflict in simultaneously hermaphroditic animals. Biol Lett. 2009;5:705–8. https://doi.org/10.1098/rsbl.2009.0100.
Article
PubMed
PubMed Central
Google Scholar
Parker GA. Sperm competition games: raffles and roles. Proc R Soc London Ser B Biol Sci. 1990;242:120–6. https://doi.org/10.1098/rspb.1990.0114.
Article
Google Scholar
Parker GA. Selection on non-random fusion of gametes during the evolution of anisogamy. J Theor Biol. 1978;73:1–28. https://doi.org/10.1016/0022-5193(78)90177-7.
Article
CAS
PubMed
Google Scholar
Parker GA. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J Theor Biol. 1982;281–94.
Parker GA. Sperm competition games: sperm size and sperm number under adult control. Proc R Soc London Ser B Biol Sci. 1993;253:245–54. https://doi.org/10.1098/rspb.1993.0110.
Article
CAS
Google Scholar
Immler S, Pitnick S, Parker GA, Durrant KL, Lüpold S, Calhim S, et al. Resolving variation in the reproductive tradeoff between sperm size and number. PNAS. 2011;108:5325–30. https://doi.org/10.1073/pnas.1009059108.
Article
PubMed
PubMed Central
Google Scholar
Ramm SA, Vizoso DB, Schärer L. Occurrence, costs and heritability of delayed selfing in a free-living flatworm. J Evol Biol. 2012;25:2559–68. https://doi.org/10.1111/jeb.12012.
Article
CAS
PubMed
Google Scholar
Ramm SA, Schlatter A, Poirier M, Schärer L. Hypodermic self-insemination as a reproductive assurance strategy. Proc R Soc Biol Sci. 2015;282:20150660. https://doi.org/10.1098/rspb.2015.0660.
Article
Google Scholar
Giannakara A, Ramm SA. Self-fertilization, sex allocation and spermatogenesis kinetics in the hypodermically inseminating flatworm Macrostomum pusillum. J Exp Biol. 2017;220:1568–77. https://doi.org/10.1242/jeb.149682.
Article
PubMed
Google Scholar
Brand JN, Viktorin G, Wiberg RAW, Beisel C, Schärer L. Large-scale phylogenomics of the genus Macrostomum (Platyhelminthes) reveals cryptic diversity and novel sexual traits. Mol Phylogenet Evol. 2022;166:107296. https://doi.org/10.1016/j.ympev.2021.107296.
Boucher FC. BBMV: an R package for the estimation of macroevolutionary landscapes. Ecography. 2019;42:558–64. https://doi.org/10.1111/ecog.04045.
Article
Google Scholar
Boucher FC, Démery V, Conti E, Harmon LJ, Uyeda J. A general model for estimating macroevolutionary landscapes. Syst Biol. 2018;67:304–19. https://doi.org/10.1093/sysbio/syx075.
Article
PubMed
Google Scholar
Falconer DS, Mackay T. Introduction to quantitative genetics. 4. ed., [16. print.]. Harlow: Pearson, Prentice Hall; 2009.
Google Scholar
Davidson NM, Hawkins ADK, Oshlack A. SuperTranscripts: a data driven reference for analysis and visualisation of transcriptomes. Genome Biol. 2017;18:148. https://doi.org/10.1186/s13059-017-1284-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gallardo R, Dominguez E, Muñoz JM. Pollen-ovule ratio, pollen size, and breeding system in Astragalus (Fabaceae) subgenus Epiglottis: a pollen and seed allocation approach. Am J Bot. 1994;81:1611–9. https://doi.org/10.1002/j.1537-2197.1994.tb11473.x.
Article
Google Scholar
Damgaard C, Abbott RJ. Positive correlations between selfing rate and pollen-ovule ratio within plant populations. Evolution. 1995;49:214–7.
Article
CAS
Google Scholar
Galloni M, Podda L, Vivarelli D, Cristofolini G. Pollen presentation, pollen-ovule ratios, and other reproductive traits in Mediterranean Legumes (Fam. Fabaceae - Subfam. Faboideae). Plant Syst Evol. 2007;266:147–64. https://doi.org/10.1007/s00606-007-0526-1.
Article
Google Scholar
Escobar JS, Auld JR, Correa AC, Alonso JM, Bony YK, Coutellec M-A, et al. Patterns of mating-system evolution in hermaphroditic animals: correlations among selfing rate, inbreeding depression, and the timing of reproduction. Evolution. 2011;65:1233–53. https://doi.org/10.1111/j.1558-5646.2011.01218.x.
Article
PubMed
Google Scholar
Noël E, Chemtob Y, Janicke T, Sarda V, Pélissié B, Jarne P, et al. Reduced mate availability leads to evolution of self-fertilization and purging of inbreeding depression in a hermaphrodite: selfing evolution in a hermaphroditic snail. Evolution. 2016;70:625–40. https://doi.org/10.1111/evo.12886.
Article
PubMed
Google Scholar
Tian-Bi Y-NT, N’goran EK, N’guetta S-P, Matthys B, Sangare A, Jarne P. Prior selfing and the selfing syndrome in animals: an experimental approach in the freshwater snail Biomphalaria pfeifferi. Genet Res. 2008;90:61–72. https://doi.org/10.1017/S0016672307008919.
Article
Google Scholar
Kiontke KC, Félix M-A, Ailion M, Rockman MV, Braendle C, Pénigault J-B, et al. A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol. 2011;11:339. https://doi.org/10.1186/1471-2148-11-339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cutter AD. Reproductive transitions in plants and animals: selfing syndrome, sexual selection and speciation. New Phytol. 2019;224:1080–94. https://doi.org/10.1111/nph.16075.
Article
PubMed
Google Scholar
Cutter AD. Caenorhabditis evolution in the wild. BioEssays. 2015;37:983–95. https://doi.org/10.1002/bies.201500053.
Article
PubMed
Google Scholar
Hughes RN, Wright PJ, Carvalho GR, Hutchinson WF. Patterns of self compatibility, inbreeding depression, outcrossing, and sex allocation in a marine bryozoan suggest the predominating influence of sperm competition. Biol J Linnean Soc. 2009;98:519–31. https://doi.org/10.1111/j.1095-8312.2009.01312.x.
Article
Google Scholar
Weinzierl RP, Berthold K, Beukeboom LW, Michiels NK. Reduced male allocation in the parthenogenetic hermaphrodite Dugesia polychroa. Evolution. 1998;52:109–15. https://doi.org/10.1111/j.1558-5646.1998.tb05143.x.
Article
PubMed
Google Scholar
Weinzierl RP, Schmidt P, Michiels NK. High fecundity and low fertility in parthenogenetic planarians. Invert Biol. 1999;118:87. https://doi.org/10.2307/3227051.
Article
Google Scholar
Janssen T, Vizoso DB, Schulte G, Littlewood DTJ, Waeschenbach A, Schärer L. The first multi-gene phylogeny of the Macrostomorpha sheds light on the evolution of sexual and asexual reproduction in basal Platyhelminthes. Mol Phylogenet Evol. 2015;92:82–107. https://doi.org/10.1016/j.ympev.2015.06.004.
Article
CAS
PubMed
Google Scholar
Michiels NK, Newman LJ. Sex and violence in hermaphrodites. Nature. 1998;391:647.
Article
CAS
Google Scholar
Macdonald S, Caley J. Sexual reproduction in the monogenean <I>Diclidophora merlangi</i>: tissue penetration by sperms. Z Parasitenk. 1975;45:323–34. https://doi.org/10.1007/BF00329822.
Article
CAS
PubMed
Google Scholar
Llewellyn J. Sperm transfer in the monogenean gill parasite Gastrocotyle trachuri. Proc R Soc London Ser B Biol Sci. 1983;219:439–46. https://doi.org/10.1098/rspb.1983.0083.
Article
Google Scholar
Lange R, Reinhardt K, Michiels NK, Anthes N. Functions, diversity, and evolution of traumatic mating: function and evolution of traumatic mating. Biol Rev. 2013;88:585–601. https://doi.org/10.1111/brv.12018.
Article
PubMed
Google Scholar
Tatarnic NJ. Traumatic insemination and copulatory wounding. Reference Module in Life Sciences: Elsevier; 2018. https://doi.org/10.1016/B978-0-12-809633-8.20730-9.
Apelt G. Fortpflanzungsbiologie, Entwicklungszyklen und vergleichende Frühentwicklung acoeler Turbellarien. Mar Biol. 1969;4:59.
Google Scholar
Stebbins GL. Self fertilization and population variability in the higher plants. Am Nat. 1957;91:337–54.
Article
Google Scholar
Glémin S, François CM, Galtier N. Genome evolution in outcrossing vs. selfing vs. asexual species. In: Anisimova M, editor. Evolutionary Genomics: Statistical and Computational Methods. New York: Springer; 2019. p. 331–69. https://doi.org/10.1007/978-1-4939-9074-0_11.
Chapter
Google Scholar
Gremigni V. Platyhelminthes-Turbellaria. Reproductive Biology of Invertebrates, Vol 1 Oogenesis, oviposition, and oosorption. New York: Wiley; 1983. p. 67–107.
Google Scholar
Gremigni V, Falleni A, Lucchesi P. An ultrastructural study of oogenesis in the Turbellarian Macrostomum. Acta Embryol Morphol Exper. 1987;8:257–62.
Google Scholar
Van Noordwijk AJ, de Jong G. Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat. 1986;128:137–42.
Article
Google Scholar
Reznick D, Nunney L, Tessier A. Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol Evol. 2000;15:421–5. https://doi.org/10.1016/S0169-5347(00)01941-8.
Article
CAS
PubMed
Google Scholar
Schärer L, Sandner P, Michiels NK. Trade-off between male and female allocation in the simultaneously hermaphroditic flatworm Macrostomum sp. J Evol Biol. 2005;18:396–404. https://doi.org/10.1111/j.1420-9101.2004.00827.x.
Article
PubMed
Google Scholar
Simmons LW, Lüpold S, Fitzpatrick JL. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol Evol. 2017;32:964–76. https://doi.org/10.1016/j.tree.2017.09.011.
Article
PubMed
Google Scholar
Vizoso DB, Schärer L. Resource-dependent sex-allocation in a simultaneous hermaphrodite. J Evol Biol. 2007;20:1046–55. https://doi.org/10.1111/j.1420-9101.2007.01294.x.
Article
CAS
PubMed
Google Scholar
Teixido AL, Valladares F. Heat and drought determine flower female allocation in a hermaphroditic Mediterranean plant family. Plant Biology. 2019;21:1024–30. https://doi.org/10.1111/plb.13031.
Article
CAS
PubMed
Google Scholar
Angeloni L, Bradbury JW, Charnov EL. Body size and sex allocation in simultaneously hermaphroditic animals. Behav Ecol. 2002;13:419–26. https://doi.org/10.1093/beheco/13.3.419.
Article
Google Scholar
Angeloni L. Sexual selection in a simultaneous hermaphrodite with hypodermic insemination: body size, allocation to sexual roles and paternity. Anim Behav. 2003;66:417–26. https://doi.org/10.1006/anbe.2003.2255.
Article
Google Scholar
Gage MJ. Associations between body size, mating pattern, testis size and sperm lengths across butterflies. Proc R Soc Lond B. 1994;258:247–54. https://doi.org/10.1098/rspb.1994.0169.
Article
Google Scholar
Pitnick S. Investment in testes and the cost of making long sperm in Drosophila. Am Nat. 1996;148:57–80. https://doi.org/10.1086/285911.
Article
Google Scholar
Rowley A, Locatello L, Kahrl A, Rego M, Boussard A, Garza-Gisholt E, et al. Sexual selection and the evolution of sperm morphology in sharks. J Evol Biol. 2019;32:1027–35. https://doi.org/10.1111/jeb.13501.
Article
PubMed
Google Scholar
Gage MJG, Freckleton RP. Relative testis size and sperm morphometry across mammals: no evidence for an association between sperm competition and sperm length. Proc R Soc London Ser B Biol Sci. 2003;270:625–32. https://doi.org/10.1098/rspb.2002.2258.
Article
Google Scholar
Pitnick S, Markow TA, Spicer GS. Delayed male maturity is a cost of producing large sperm in Drosophila. Proc Natl Acad Sci. 1995;92:10614–8. https://doi.org/10.1073/pnas.92.23.10614.
Article
CAS
PubMed
PubMed Central
Google Scholar
LaMunyon CW, Ward S. Evolution of sperm size in nematodes: sperm competition favours larger sperm. Proc R Soc B Biol Sci. 1999;266:263–7. https://doi.org/10.1098/rspb.1999.0631.
Article
CAS
Google Scholar
Lüpold S, Linz GM, Rivers JW, Westneat DF, Birkhead TR. Sperm competition selects beyond relative testes size in birds. Evolution. 2009;63:391–402. https://doi.org/10.1111/j.1558-5646.2008.00571.x.
Article
PubMed
Google Scholar
Ramm SA, Stockley P. Sperm competition and sperm length influence the rate of mammalian spermatogenesis. Biol Lett. 2010;6:219–21. https://doi.org/10.1098/rsbl.2009.0635.
Article
PubMed
Google Scholar
Schärer L, Brand JN, Singh P, Zadesenets KS, Stelzer C-P, Viktorin G. A phylogenetically informed search for an alternative Macrostomum model species, with notes on taxonomy, mating behavior, karyology, and genome size. J Zool Syst Evol Res. 2020;58:41–65. https://doi.org/10.1111/jzs.12344.
Article
Google Scholar
Zadesenets KS, Jetybayev IY, Schärer L, Rubtsov NB. Genome and karyotype reorganization after whole genome duplication in free-living flatworms of the genus Macrostomum. IJMS. 2020;21:680. https://doi.org/10.3390/ijms21020680.
Article
CAS
PubMed Central
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5. https://doi.org/10.1038/nmeth.2089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janicke T, Marie-Orleach L, De Mulder K, Berezikov E, Ladurner P, Vizoso DB, et al. Sex allocation adjustment to mating group size in a simultaneous hermaphrodite. Evolution. 2013;67:3233–42. https://doi.org/10.1111/evo.12189.
Article
CAS
PubMed
Google Scholar
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019.
Google Scholar
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;11:11.10.1-11.10.33. https://doi.org/10.1002/0471250953.bi1110s43.
Article
PubMed Central
Google Scholar
Wolak ME, Fairbairn DJ, Paulsen YR. Guidelines for estimating repeatability. Methods Ecol Evol. 2012;3:129–37. https://doi.org/10.1111/j.2041-210X.2011.00125.x.
Article
Google Scholar
Sheather SJ, Jones MC. A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc Ser B (Methodological). 1991;53:683–90.
Google Scholar
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things): phytools: R package. Methods Ecol Evol. 2012;3:217–23. https://doi.org/10.1111/j.2041-210X.2011.00169.x.
Article
Google Scholar
Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125:1–15. https://doi.org/10.1086/284325.
Article
Google Scholar
Cooper N, Thomas GH, Venditti C, Meade A, Freckleton RP. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol J Linn Soc. 2016;118:64–77. https://doi.org/10.1111/bij.12701.
Article
Google Scholar
Ives AR. R2s for correlated data: phylogenetic models, lmms, and glmms. Syst Biol. 2019;68:234–51. https://doi.org/10.1093/sysbio/syy060.
Article
PubMed
Google Scholar
Ives A, Li D. rr2: An R package to calculate R2s for regression models. JOSS. 2018;3:1028. https://doi.org/10.21105/joss.01028.
Article
Google Scholar