Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419:498. https://doi.org/10.1038/nature01097.
Article
CAS
PubMed
Google Scholar
The Taenia solium Genome Consortium, Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sanchez-Flores A, et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature. 2013;496:57–63. https://doi.org/10.1038/nature12031.
Article
CAS
PubMed Central
Google Scholar
Consortium IHG. Comparative genomics of the major parasitic worms. Nat Genet. 2019;51:163.
Article
Google Scholar
Ebert D, Fields PD. Host–parasite co-evolution and its genomic signature. Nat Rev Genet. 2020;21:754–68. https://doi.org/10.1038/s41576-020-0269-1.
Article
CAS
PubMed
Google Scholar
Dieterich C, Sommer RJ. How to become a parasite–lessons from the genomes of nematodes. Trends Genet. 2009;25:203–9. https://doi.org/10.1016/j.tig.2009.03.006.
Article
CAS
PubMed
Google Scholar
Jackson AP. Genome evolution in trypanosomatid parasites. Parasitology. 2015;142:S40–56. https://doi.org/10.1017/S0031182014000894.
Article
PubMed
Google Scholar
Jackson AP. The evolution of parasite genomes and the origins of parasitism. Parasitology. 2015;142:S1–5. https://doi.org/10.1017/S0031182014001516.
Article
PubMed
Google Scholar
Tanifuji G, Takabayashi S, Kume K, Takagi M, Nakayama T, Kamikawa R, et al. The draft genome of Kipferlia bialata reveals reductive genome evolution in fornicate parasites. PLoS One. 2018;13:e0194487. https://doi.org/10.1371/journal.pone.0194487.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slyusarev GS, Starunov VV, Bondarenko AS, Zorina NA, Bondarenko NI. Extreme genome and nervous system streamlining in the invertebrate parasite Intoshia variabili. Curr Biol. 2020;30:1292–1298.e3. https://doi.org/10.1016/j.cub.2020.01.061.
Article
CAS
PubMed
Google Scholar
Stevens L, Rooke S, Falzon LC, Machuka EM, Momanyi K, Murungi MK, et al. The genome of Caenorhabditis bovis. Curr Biol. 2020;30:1023–1031.e4. https://doi.org/10.1016/j.cub.2020.01.074.
Article
CAS
PubMed
Google Scholar
Dunn KA, Bielawski JP, Ward TJ, Urquhart C, Gu H. Reconciling ecological and genomic divergence among lineages of Listeria under an “extended mosaic genome concept”. Mol Biol Evol. 2009;26:2605–15. https://doi.org/10.1093/molbev/msp176.
Article
CAS
PubMed
Google Scholar
Stryjewski KF, Sorenson MD. Mosaic genome evolution in a recent and rapid avian radiation. Nat Ecol Evol. 2017;1:1912–22. https://doi.org/10.1038/s41559-017-0364-7.
Article
PubMed
Google Scholar
Pääbo S. The mosaic that is our genome. Nature. 2003;421:409–12. https://doi.org/10.1038/nature01400.
Article
CAS
PubMed
Google Scholar
Richter DJ, Fozouni P, Eisen MB, King N. Gene family innovation, conservation and loss on the animal stem lineage. Elife. 2018;7:e34226. https://doi.org/10.7554/eLife.34226.
Article
PubMed
PubMed Central
Google Scholar
Koop BF. Human and rodent DNA sequence comparisons: a mosaic model of genomic evolution. Trends Genet. 1995;11:367–71. https://doi.org/10.1016/S0168-9525(00)89108-8.
Article
CAS
PubMed
Google Scholar
Lu T-M, Kanda M, Furuya H, Satoh N. Dicyemid mesozoans: a unique parasitic lifestyle and a reduced genome. Genome Biol Evol. 2019;11:2232–43. https://doi.org/10.1093/gbe/evz157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heinz E, Williams TA, Nakjang S, Noël CJ, Swan DC, Goldberg AV, et al. The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution. PLoS Pathog. 2012;8:e1002979. https://doi.org/10.1371/journal.ppat.1002979.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, et al. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science. 2010;330:1543–6. https://doi.org/10.1126/science.1194573.
Article
CAS
PubMed
Google Scholar
Okamura B, Gruhl A. Evolution, origins and diversification of parasitic cnidarians. EcoEvoRxiv. 2020; https://doi.org/10.32942/osf.io/qdpje.
Lom J, Dyková I. Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitol (Praha). 2013;53:1–36 https://doi.org/10.14411/fp.2006.001.
Article
Google Scholar
Atkinson SD, Bartholomew JL, Lotan T. Myxozoans: ancient metazoan parasites find a home in phylum Cnidaria. Zoology. 2018;129:66–8. https://doi.org/10.1016/j.zool.2018.06.005.
Article
PubMed
Google Scholar
Chang ES, Neuhof M, Rubinstein ND, Diamant A, Philippe H, Huchon D, et al. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc Natl Acad Sci. 2015;112:14912–7. https://doi.org/10.1073/pnas.1511468112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Xiong J, Zhou Z, Huo F, Miao W, Ran C, et al. The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biol Evol. 2014;6:3182–98. https://doi.org/10.1093/gbe/evu247.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kyger R, Luzuriaga-Neira A, Layman T, Milkewitz Sandberg TO, Singh D, Huchon D, et al. Myxosporea (Myxozoa, Cnidaria) lack DNA cytosine methylation. Mol Biol Evol. 2021;38:393–404. https://doi.org/10.1093/molbev/msaa214.
Article
CAS
PubMed
Google Scholar
Yahalomi D, Atkinson SD, Neuhof M, Chang ES, Philippe H, Cartwright P, et al. A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome. Proc Natl Acad Sci. 2020;117:5358–63. https://doi.org/10.1073/pnas.1909907117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alama-Bermejo G, Holzer AS. Advances and discoveries in myxozoan genomics. Trends Parasitol. 2021;37:552–68. https://doi.org/10.1016/j.pt.2021.01.010.
Article
CAS
PubMed
Google Scholar
Liu Y, Whipps CM, Gu Z, Zeng C, Huang M. Myxobolus honghuensis n. sp. (Myxosporea: Bivalvulida) parasitizing the pharynx of allogynogenetic gibel carp Carassius auratus gibelio (Bloch) from Honghu Lake. China. Parasitol Res. 2012;110:1331–6. https://doi.org/10.1007/s00436-011-2629-4.
Article
PubMed
Google Scholar
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061–7. https://doi.org/10.1093/bioinformatics/btm071.
Article
CAS
PubMed
Google Scholar
Xia W, Li H, Cheng W, Li H, Mi Y, Gou X, et al. High-quality genome assembly of Chrysaora quinquecirrha provides insights into the adaptive evolution of jellyfish. Front Genet. 2020;11:535. https://doi.org/10.3389/fgene.2020.00535.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vu GT, Schmutzer T, Bull F, Cao HX, Fuchs J, Tran TD, et al. Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome. 2015;8:1–14. https://doi.org/10.3835/plantgenome2015.04.0021.
Article
CAS
Google Scholar
Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 2008;18:1944–54. https://doi.org/10.1101/gr.080978.108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takeuchi F, Sekizuka T, Ogasawara Y, Yokoyama H, Kamikawa R, Inagaki Y, et al. The mitochondrial genomes of a myxozoan genus Kudoa are extremely divergent in Metazoa. PLoS One. 2015;10:e0132030. https://doi.org/10.1371/journal.pone.0132030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yahalomi D, Haddas-Sasson M, Rubinstein ND, Feldstein T, Diamant A, Huchon D. The multipartite mitochondrial genome of Enteromyxum leei (Myxozoa): eight fast-evolving megacircles. Mol Biol Evol. 2017;34:1551–6. https://doi.org/10.1093/molbev/msx072.
Article
CAS
PubMed
Google Scholar
Poulin R, Randhawa HS. Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology. 2015;142:S6–15. https://doi.org/10.1017/S0031182013001674.
Article
PubMed
Google Scholar
Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M, et al. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res. 2004;14:2308–18. https://doi.org/10.1101/gr.2523904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol Biol Evol. 2014;31:1102–20. https://doi.org/10.1093/molbev/msu057.
Article
CAS
PubMed
Google Scholar
Kamm K, Schierwater B, DeSalle R. Innate immunity in the simplest animals – placozoans. BMC Genomics. 2019;20:5. https://doi.org/10.1186/s12864-018-5377-3.
Article
PubMed
PubMed Central
Google Scholar
Traylor-Knowles N, Vandepas LE, Browne WE. Still enigmatic: innate immunity in the ctenophore Mnemiopsis leidyi. Integr Comp Biol. 2019;59:811–8. https://doi.org/10.1093/icb/icz116.
Article
CAS
PubMed
Google Scholar
Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466:720–6. https://doi.org/10.1038/nature09201.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Matbouhi M, Sobottka I, Schumacher U, Schottelius J. Effect of passage through the gastrointestinal tract of mice on the viability of Myxobolus cerebralis (Myxozoa) spores. Bull Eur Assoc Fish Pathol. 2005;25:276–9.
Google Scholar
Takeuchi T, Sennari R, Sugiura K, Tateno H, Hirabayashi J, Kasai K. A C-type lectin of Caenorhabditis elegans: its sugar-binding property revealed by glycoconjugate microarray analysis. Biochem Biophys Res Commun. 2008;377:303–6. https://doi.org/10.1016/j.bbrc.2008.10.001.
Article
CAS
PubMed
Google Scholar
Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res. 2017;18:54. https://doi.org/10.1186/s12931-017-0544-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lun Z-R, Lai D-H, Wen Y-Z, Zheng L-L, Shen J-L, Yang T-B, et al. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii. Proc Natl Acad Sci. 2015;112:8835–42. https://doi.org/10.1073/pnas.1502599112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kita K. Energy metabolism of parasite: their strategy for adaptation. Jpn J Vet Res. 1997;44:212–3.
Google Scholar
Go G, Mani A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med. 2012;85:19–28.
CAS
PubMed
PubMed Central
Google Scholar
Lujan HD, Mowatt MR, Byrd LG, Nash TE. Cholesterol starvation induces differentiation of the intestinal parasite Giardia lamblia. Proc Natl Acad Sci. 1996;93:7628–33. https://doi.org/10.1073/pnas.93.15.7628.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bansal D, Bhatti HS, Sehgal R. Role of cholesterol in parasitic infections. Lipids Health Dis. 2005;4:10. https://doi.org/10.1186/1476-511X-4-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider E, Hunke S. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev. 1998;22:1–20. https://doi.org/10.1111/j.1574-6976.1998.tb00358.x.
Article
CAS
PubMed
Google Scholar
Laranjeira-Silva MF, Wang W, Samuel TK, Maeda FY, Michailowsky V, Hamza I, et al. A MFS-like plasma membrane transporter required for Leishmania virulence protects the parasites from iron toxicity. PLoS Pathog. 2018;14:e1007140. https://doi.org/10.1371/journal.ppat.1007140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin F, Dube F, Karlsson Lindsjö O, Eydal M, Höglund J, Bergström TF, et al. Transcriptional responses in Parascaris univalens after in vitro exposure to ivermectin, pyrantel citrate and thiabendazole. Parasit Vectors. 2020;13:342. https://doi.org/10.1186/s13071-020-04212-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–64. https://doi.org/10.1146/annurev.bi.50.070181.003505.
Article
CAS
PubMed
Google Scholar
Rebay I, Fleming RJ, Fehon RG, Cherbas L, Cherbas P, Artavanis-Tsakonas S. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell. 1991;67:687–99. https://doi.org/10.1016/0092-8674(91)90064-6.
Article
CAS
PubMed
Google Scholar
Kumar NM, Gilula NB. The gap junction communication channel. Cell. 1996;84:381–8. https://doi.org/10.1016/s0092-8674(00)81282-9.
Article
CAS
PubMed
Google Scholar
Horzum U, Ozdil B, Pesen-Okvur D. Step-by-step quantitative analysis of focal adhesions. MethodsX. 2014;1:56–9. https://doi.org/10.1016/j.mex.2014.06.004.
Article
PubMed
PubMed Central
Google Scholar
Seipel K, Schmid V. Mesodermal anatomies in cnidarian polyps and medusae. Int J Dev Biol. 2006;50:589. https://doi.org/10.1387/ijdb.062150ks.
Article
PubMed
Google Scholar
Okamura B, Gruhl A, Bartholomew JL. An introduction to Myxozoan evolution, ecology and development. In: Okamura B, Gruhl A, Bartholomew JL, editors. Myxozoan Evolution, Ecology and Development. Cham: Springer International Publishing; 2015. p. 1–20. https://doi.org/10.1007/978-3-319-14753-6_1.
Chapter
Google Scholar
Leclere L, Röttinger E. Diversity of cnidarian muscles: function, anatomy, development and regeneration. Front Cell Dev Biol. 2017;4:157. https://doi.org/10.3389/fcell.2016.00157.
Article
PubMed
PubMed Central
Google Scholar
Steinmetz PRH, Kraus JEM, Larroux C, Hammel JU, Amon-Hassenzahl A, Houliston E, et al. Independent evolution of striated muscles in cnidarians and bilaterians. Nature. 2012;487:231–4. https://doi.org/10.1038/nature11180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hwang M, Lee E-J, Chung M-J, Park S, Jeong K-S. Five transcriptional factors reprogram fibroblast into myogenic lineage cells via paraxial mesoderm stage. Cell Cycle. 2020;19:1804–16. https://doi.org/10.1080/15384101.2020.1780384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yasuoka Y, Shinzato C, Satoh N. The mesoderm-forming gene brachyury regulates ectoderm-endoderm demarcation in the coral Acropora digitifera. Curr Biol. 2016;26:2885–92. https://doi.org/10.1016/j.cub.2016.08.011.
Article
CAS
PubMed
Google Scholar
Garry DJ, Meeson A, Elterman J, Zhao Y, Yang P, Bassel-Duby R, et al. Myogenic stem cell function is impaired in mice lacking the forkhead/winged helix protein MNF. Proc Natl Acad Sci. 2000;97:5416–21. https://doi.org/10.1073/pnas.100501197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dattoli AA, Hink MA, DuBuc TQ, Teunisse BJ, Goedhart J, Röttinger E, et al. Domain analysis of the Nematostella vectensis SNAIL ortholog reveals unique nucleolar localization that depends on the zinc-finger domains. Sci Rep. 2015;5:12147. https://doi.org/10.1038/srep12147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matus DQ, Magie C, Pang K, Martindale MQ, Thomsen GH. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol. 2008;313:501–18. https://doi.org/10.1016/j.ydbio.2007.09.032.
Article
CAS
PubMed
Google Scholar
Chen C-Y, McKinney SA, Ellington LR, Gibson MC. Hedgehog signaling is required for endomesodermal patterning and germ cell development in the sea anemone Nematostella vectensis. eLife. 2020;9:e54573 https://doi.org/10.7554/eLife.54573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khalturin K, Shinzato C, Khalturina M, Hamada M, Fujie M, Koyanagi R, et al. Medusozoan genomes inform the evolution of the jellyfish body plan. Nat Ecol Evol. 2019;3:811–22. https://doi.org/10.1038/s41559-019-0853-y.
Article
PubMed
Google Scholar
Park H-B, Kim J-W, Baek K-H. Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers. Int J Mol Sci. 2020;21:3904. https://doi.org/10.3390/ijms21113904.
Article
CAS
PubMed Central
Google Scholar
Magold AI, Cacquevel M, Fraering PC. Gene expression profiling in cells with enhanced γ-secretase activity. PLoS One. 2009;4:e6952. https://doi.org/10.1371/journal.pone.0006952.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim H-M, Weber JA, Lee N, Park SG, Cho YS, Bhak Y, et al. The genome of the giant Nomura’s jellyfish sheds light on the early evolution of active predation. BMC Biol. 2019;17:1–12. https://doi.org/10.1186/s12915-019-0643-7.
Article
Google Scholar
Nong W, Cao J, Li Y, Qu Z, Sun J, Swale T, et al. Jellyfish genomes reveal distinct homeobox gene clusters and conservation of small RNA processing. Nat Commun. 2020;11:1–11.
Article
Google Scholar
Hirose M, Mukai T, Hwang D, Iida K. The acoustic characteristics of three jellyfish species: Nemopilema nomurai, Cyanea nozakii, and Aurelia aurita. ICES J Mar Sci. 2009;66:1233–7. https://doi.org/10.1093/icesjms/fsp126.
Article
Google Scholar
Morandini AC, Gul S. Rediscovery of Sanderia malayensis and remarks on Rhopilema nomadica record in Pakistan (Cnidaria: Scyphozoa). Papéis Avulsos Zool. 2016;56:171–5. https://doi.org/10.1590/0031-1049.2016.56.15.
Article
Google Scholar
Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, et al. The dynamic genome of Hydra. Nature. 2010;464:592–6. https://doi.org/10.1038/nature08830.
Article
CAS
PubMed
PubMed Central
Google Scholar
Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. science. 2007;317:86–94. https://doi.org/10.1126/science.1139158.
Article
CAS
PubMed
Google Scholar
Mao Y, Satoh N. A likely ancient genome duplication in the speciose reef-building coral genus, Acropora. iScience. 2019;13:20–32. https://doi.org/10.1016/j.isci.2019.02.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marburger S, Alexandrou MA, Taggart JB, Creer S, Carvalho G, Oliveira C, et al. Whole genome duplication and transposable element proliferation drive genome expansion in Corydoradinae catfishes. Proc R Soc B Biol Sci. 2018;285:20172732. https://doi.org/10.1098/rspb.2017.2732.
Article
CAS
Google Scholar
Hallett SL, Hartigan A, Atkinson SD. Myxozoans on the move: dispersal modes, exotic species and emerging diseases. In: Okamura B, Gruhl A, Bartholomew JL, editors. Myxozoan Evolution, Ecology and Development. Cham: Springer International Publishing; 2015. p. 343–62. https://doi.org/10.1007/978-3-319-14753-6_18.
Chapter
Google Scholar
Holzer AS, Bartošová-Sojková P, Born-Torrijos A, Lövy A, Hartigan A, Fiala I. The joint evolution of the Myxozoa and their alternate hosts: a cnidarian recipe for success and vast biodiversity. Mol Ecol. 2018;27:1651–66. https://doi.org/10.1111/mec.14558.
Article
PubMed
Google Scholar
Gong L, Fan G, Ren Y, Chen Y, Qiu Q, Liu L, et al. Chromosomal level reference genome of Tachypleus tridentatus provides insights into evolution and adaptation of horseshoe crabs. Mol Ecol Resour. 2019;19:744–56. https://doi.org/10.1111/1755-0998.12988.
Article
CAS
PubMed
Google Scholar
Lehmann R, Lightfoot DJ, Schunter C, Michell CT, Ohyanagi H, Mineta K, et al. Finding Nemo’s genes: a chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula. Mol Ecol Resour. 2019;19:570–85. https://doi.org/10.1111/1755-0998.12939.
Article
CAS
PubMed
Google Scholar
Zhang X, Yuan J, Sun Y, Li S, Gao Y, Yu Y, et al. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat Commun. 2019;10:1–14. https://doi.org/10.1038/s41467-018-08197-4.
Article
CAS
Google Scholar
Vázquez-Mendoza A, Carrero JC, Rodriguez-Sosa M. Parasitic infections: a role for C-type lectins receptors. BioMed Res Int. 2013;2013:e456352. https://doi.org/10.1155/2013/456352.
Article
CAS
Google Scholar
Hartigan A, Estensoro I, Vancová M, Bílý T, Patra S, Eszterbauer E, et al. New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa: Myxosporea) blood stages in fish. Sci Rep. 2016;6:39093. https://doi.org/10.1038/srep39093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alama-Bermejo G, Bron JE, Raga JA, Holzer AS. 3D Morphology, ultrastructure and development of Ceratomyxa puntazzi stages: first insights into the mechanisms of motility and budding in the Myxozoa. PLoS One. 2012;7:e32679. https://doi.org/10.1371/journal.pone.0032679.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brekhman V, Ofek-Lalzar M, Atkinson SD, Alama-Bermejo G, Maor-Landaw K, Malik A, et al. Proteomic analysis of the parasitic cnidarian Ceratonova shasta (Cnidaria: Myxozoa) reveals diverse roles of actin in motility and spore formation. Front Mar Sci. 2021;8:632700. https://doi.org/10.3389/fmars.2021.632700.
Article
Google Scholar
Watanabe H, Fujisawa T, Holstein TW. Cnidarians and the evolutionary origin of the nervous system. Dev Growth Differ. 2009;51:167–83. https://doi.org/10.1111/j.1440-169X.2009.01103.x.
Article
CAS
PubMed
Google Scholar
Niven JE, Farris SM. Miniaturization of nervous systems and neurons. Curr Biol. 2012;22:R323–9. https://doi.org/10.1016/j.cub.2012.04.002.
Article
CAS
PubMed
Google Scholar
Okamura B, Curry A, Wood TS, Canning EU. Ultrastructure of Buddenbrockia identifies it as a myxozoan and verifies the bilaterian origin of the Myxozoa. Parasitology. 2002;124:215–23. https://doi.org/10.1017/s0031182001001184.
Article
CAS
PubMed
Google Scholar
El-Matbouli M, Hoffmann RW. Light and electron microscopic studies on the chronological development of Myxobolus cerebralis to the actinosporean stage in Tubifex tubifex. Int J Parasitol. 1998;28:195–217. https://doi.org/10.1016/S0020-7519(97)00176-8.
Article
CAS
PubMed
Google Scholar
Zhong L, Brown JC, Wells C, Gerges NZ. Post-embedding immunogold labeling of synaptic proteins in hippocampal slice cultures. JoVE J Vis Exp. 2013:e50273. https://doi.org/10.3791/50273.
Raikova EV, Raikova OI. Nervous system immunohistochemistry of the parasitic cnidarian Polypodium hydriforme at its free-living stage. Zoology. 2016;119:143–52. https://doi.org/10.1016/j.zool.2015.11.004.
Article
PubMed
Google Scholar
Faber M, Shaw S, Yoon S, de Paiva AE, Wang B, Qi Z, et al. Comparative transcriptomics and host-specific parasite gene expression profiles inform on drivers of proliferative kidney disease. Sci Rep. 2021;11:2149. https://doi.org/10.1038/s41598-020-77881-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartholomew JL, Whipple MJ, Stevens DG, Fryer JL. The life cycle of Ceratomyxa shasta, a myxosporean parasite of salmonids, requires a freshwater polychaete as an alternate host. J Parasitol. 1997;83:859–68. https://doi.org/10.2307/3284281.
Article
CAS
PubMed
Google Scholar
Bartholomew JL, Atkinson SD, Hallett SL. Involvement of Manayunkia speciosa (Annelida: Polychaeta: Sabellidae) in the life cycle of Parvicapsula minibicornis, a myxozoan parasite of pacific salmon. J Parasitol. 2006;92:742–8. https://doi.org/10.1645/GE-781R.1.
Article
PubMed
Google Scholar
Wolf K, Markiw ME. Biology contravenes taxonomy in the Myxozoa: new discoveries show alternation of invertebrate and vertebrate hosts. Science. 1984;225:1449–52. https://doi.org/10.1126/science.225.4669.1449.
Article
CAS
PubMed
Google Scholar
Wadi L, Reinke AW. Evolution of microsporidia: an extremely successful group of eukaryotic intracellular parasites. PLOS Pathog. 2020;16:e1008276. https://doi.org/10.1371/journal.ppat.1008276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, et al. Host–parasite ‘Red Queen’ dynamics archived in pond sediment. Nature. 2007;450:870–3. https://doi.org/10.1038/nature06291.
Article
CAS
PubMed
Google Scholar
Kapusta A, Suh A, Feschotte C. Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci. 2017;114:E1460–9. https://doi.org/10.1073/pnas.1616702114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hahn MW, Han MV, Han S-G. Gene Family Evolution across 12 Drosophila Genomes. PLoS Genet. 2007;3:e197. https://doi.org/10.1371/journal.pgen.0030197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naldoni J, Zatti SA, da Silva MRM, Maia AAM, Adriano EA. Morphological, ultrastructural, and phylogenetic analysis of two novel Myxobolus species (Cnidaria: Myxosporea) parasitizing bryconid fish from São Francisco River, Brazil. Parasitol Int. 2019;71:27–36. https://doi.org/10.1016/j.parint.2019.03.009.
Article
PubMed
Google Scholar
Lom J, Arthur JR. A guideline for the preparation of species descriptions in Myxosporea. J Fish Dis. 1989;12:151–6. https://doi.org/10.1111/j.1365-2761.1989.tb00287.x.
Article
Google Scholar
Council NR. Guide for the care and use of laboratory animals: National Academies Press; 2010.
Google Scholar
Cota-Sánchez JH, Remarchuk K, Ubayasena K. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol Biol Report. 2006;24:161. https://doi.org/10.1007/BF02914055.
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–770. https://doi.org/https://doi.org/10.1093/bioinformatics/btr011.
Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13:1050–4. https://doi.org/10.1038/nmeth.4035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10:563–9. https://doi.org/10.1038/nmeth.2474.
Article
CAS
PubMed
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS One. 2014;9:e112963. https://doi.org/10.1371/journal.pone.0112963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet. 2014. https://doi.org/10.1038/ng.3098.
Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24:713–4. https://doi.org/10.1093/bioinformatics/btn025.
Article
CAS
PubMed
Google Scholar
Guo Q, Li D, Zhai Y, Gu Z. CCPRD: a novel analytical framework for the comprehensive proteomic reference database construction of nonmodel organisms. ACS Omega. 2020;5:15370–84. https://doi.org/10.1021/acsomega.0c01278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies. F1000Research. 2017;6:1287 https://doi.org/10.12688/f1000research.12232.1.
Article
Google Scholar
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35(suppl_2):W265–8. https://doi.org/10.1093/nar/gkm286.
Article
PubMed
PubMed Central
Google Scholar
Han Y, Wessler SR. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 2010;38:e199. https://doi.org/10.1093/nar/gkq862.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21(suppl_1):i351–8. https://doi.org/10.1093/bioinformatics/bti1018.
Article
CAS
PubMed
Google Scholar
Edgar RC, Myers EW. PILER: identification and classification of genomic repeats. Bioinformatics. 2005;21(suppl_1):i152–8. https://doi.org/10.1093/bioinformatics/bti1003.
Article
CAS
PubMed
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–82. https://doi.org/10.1038/nrg2165-c3.
Article
CAS
PubMed
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462–7. https://doi.org/10.1186/s13100-015-0041-9.
Article
CAS
PubMed
Google Scholar
Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinforma. 2009;25:4–10. https://doi.org/10.1002/0471250953.bi0410s25.
Article
Google Scholar
Jukes TH, Cantor CR, Munro HN. Evolution of protein molecules: Mamm Protein Metab Acad Press N Y; 1969. p. 21–123.
Google Scholar
Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 1997;268:78–94. https://doi.org/10.1006/jmbi.1997.0951.
Article
CAS
PubMed
Google Scholar
Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33(suppl_2):W465–7. https://doi.org/10.1093/nar/gki458.
Article
CAS
PubMed
PubMed Central
Google Scholar
Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics. 2004;20:2878–9. https://doi.org/10.1093/bioinformatics/bth315.
Article
CAS
PubMed
Google Scholar
Alioto T, Blanco E, Parra G, Guigó R. Using geneid to identify genes. Curr Protoc Bioinforma. 2018;64:e56. https://doi.org/10.1002/0471250953.bi0403s18.
Article
Google Scholar
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59. https://doi.org/10.1186/1471-2105-5-59.
Article
PubMed
PubMed Central
Google Scholar
Keilwagen J, Wenk M, Erickson JL, Schattat MH, Grau J, Hartung F. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 2016;44:e89. https://doi.org/10.1093/nar/gkw092.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, et al. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature. 2011;476:320–3. https://doi.org/10.1038/nature10249.
Article
CAS
PubMed
Google Scholar
Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci. 2015;112:11893–8. https://doi.org/10.1073/pnas.1513318112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prada C, Hanna B, Budd AF, Woodley CM, Schmutz J, Grimwood J, et al. Empty niches after extinctions increase population sizes of modern corals. Curr Biol. 2016;26:3190–4. https://doi.org/10.1016/j.cub.2016.09.039.
Article
CAS
PubMed
Google Scholar
The C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998;282:2012–8. https://doi.org/10.1126/science.282.5396.2012.
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650. https://doi.org/10.1038/nprot.2016.095.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494. https://doi.org/10.1038/nprot.2013.084.
Article
CAS
PubMed
Google Scholar
Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18. https://doi.org/10.1093/nar/29.12.2607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell MA, Haas BJ, Hamilton JP, Mount SM, Buell CR. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics. 2006;7:327. https://doi.org/10.1186/1471-2164-7-327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9:R7. https://doi.org/10.1186/gb-2008-9-1-r7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64. https://doi.org/10.1093/nar/25.5.955.
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 2005;33(suppl_1):D121–4. https://doi.org/10.1093/nar/gki081.
Article
CAS
PubMed
Google Scholar
Leclère L, Horin C, Chevalier S, Lapébie P, Dru P, Peron S, et al. The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle. Nat Ecol Evol. 2019;3:801–10. https://doi.org/10.1038/s41559-019-0833-2.
Article
PubMed
Google Scholar
Ohdera A, Ames CL, Dikow RB, Kayal E, Chiodin M, Busby B, et al. Box, stalked, and upside-down? Draft genomes from diverse jellyfish (Cnidaria, Acraspeda) lineages: Alatina alata (Cubozoa), Calvadosia cruxmelitensis (Staurozoa), and Cassiopea xamachana (Scyphozoa). GigaScience. 2019;8:giz069. https://doi.org/10.1093/gigascience/giz069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeon Y, Park SG, Lee N, Weber JA, Kim H-S, Hwang S-J, et al. The draft genome of an octocoral, Dendronephthya gigantea. Genome Biol Evol. 2019;11:949–53. https://doi.org/10.1093/gbe/evz043.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang JB, Quattrini AM, Francis WR, Ryan JF, Rodríguez E, McFadden CS. A hybrid de novo assembly of the sea pansy (Renilla muelleri) genome. GigaScience. 2019;8. https://doi.org/10.1093/gigascience/giz026.
Wang X, Liew YJ, Li Y, Zoccola D, Tambutte S, Aranda M. Draft genomes of the corallimorpharians Amplexidiscus fenestrafer and Discosoma sp. Mol Ecol Resour. 2017;17:e187–95. https://doi.org/10.1111/1755-0998.12680.
Article
CAS
PubMed
Google Scholar
Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89. https://doi.org/10.1101/gr.1224503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91. https://doi.org/10.1093/molbev/msm088.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol. 2017;34:1812–9. https://doi.org/10.1093/molbev/msx116.
Article
CAS
PubMed
Google Scholar
De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22:1269–71. https://doi.org/10.1093/bioinformatics/btl097.
Article
CAS
PubMed
Google Scholar
Mohajeri K, Cantsilieris S, Huddleston J, Nelson BJ, Coe BP, Campbell CD, et al. Interchromosomal core duplicons drive both evolutionary instability and disease susceptibility of the Chromosome 8p23.1 region. Genome Res. 2016;26:1453–67. https://doi.org/10.1101/gr.211284.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan JF, Pang K, Schnitzler CE, Nguyen A-D, Moreland RT, Simmons DK, et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 2013;342:1242592. https://doi.org/10.1126/science.1242592.
Article
CAS
PubMed
PubMed Central
Google Scholar
King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008;451:783–8. https://doi.org/10.1038/nature06617.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suga H, Chen Z, De Mendoza A, Sebé-Pedrós A, Brown MW, Kramer E, et al. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun. 2013;4:1–9. https://doi.org/10.1038/ncomms3325.
Article
CAS
Google Scholar
Morse D. A transcriptome-based perspective of meiosis in dinoflagellates. Protist. 2019;170:397–403. https://doi.org/10.1016/j.protis.2019.06.003.
Article
CAS
PubMed
Google Scholar
Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. https://doi.org/10.1093/nar/gkr1293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. Illumina sequencing of Myxobolus honghuensis spores RNA. NCBI Sequence Read Archive. 2022. https://identifiers.org/ncbi/insdc.sra:SRX13090597.
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. Illumina sequencing of Myxobolus honghuensis spores DNA. NCBI Sequence Read Archive. 2022. https://identifiers.org/ncbi/insdc.sra:SRX13090520.
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. PacBio sequencing of Myxobolus honghuensis spores DNA. NCBI Sequence Read Archive. 2022. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA779846/.
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. Myxobolus honghuensis transcriptome sequencing for genomic analysis. NCBI Transcriptome Shotgun Assembly Sequence Database. 2022. https://identifiers.org/ncbi/insdc:GJPJ00000000.
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. Myxobolus honghuensis Illumina genome assembly. NGDC Genome Warehouse. 2022. https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA007205.
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. Myxobolus honghuensis PacBio genome sequencing and assembly. NGDC Genome Warehouse. 2022. https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA007199.
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. A myxozoan genome reveals mosaic evolution in a parasitic cnidarian. Harvard Dataverse. 2022. https://doi.org/https://doi.org/10.7910/DVN/INLEPM.
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. A myxozoan genome reveals mosaic evolution in a parasitic cnidarian. TreeBASE. 2022. http://purl.org/phylo/treebase/phylows/study/TB2:S28997.