Whitelaw CB, Springbett AJ, Webster J, Clark J. The majority of G0 transgenic mice are derived from mosaic embryos. Transgenic Res. 1993;2(1):29–32. https://doi.org/10.1007/BF01977678 PubMed PMID: 8513336.
Article
CAS
PubMed
Google Scholar
Garrick D, Fiering S, Martin DI, Whitelaw E. Repeat-induced gene silencing in mammals. Nat Genet. 1998;18(1):56–9. https://doi.org/10.1038/ng0198-56 PubMed PMID: 9425901.
Article
CAS
PubMed
Google Scholar
Limberis MP, Bell CL, Heath J, Wilson JM. Activation of transgene-specific T cells following lentivirus-mediated gene delivery to mouse lung. Mol Ther. 2010;18(1):143–50. https://doi.org/10.1038/mt.2009.190 PubMed PMID: 19724265; PubMed Central PMCID: PMCPMC2839217.
Article
CAS
PubMed
Google Scholar
Zhu J, Huang X, Yang Y. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. J Virol. 2007;81(7):3170–80. https://doi.org/10.1128/JVI.02192-06 PubMed PMID: 17229689; PubMed Central PMCID: PMCPMC1866082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Zern MA, Lizarzaburu ME, Nantz MH, Wu J. Poly (cationic lipid)-mediated in vivo gene delivery to mouse liver. Gene Ther. 2003;10(2):180–7. https://doi.org/10.1038/sj.gt.3301861 PubMed PMID: 12571647.
Article
CAS
PubMed
Google Scholar
Lecocq M, Andrianaivo F, Warnier MT, Wattiaux-De Coninck S, Wattiaux R, Jadot M. Uptake by mouse liver and intracellular fate of plasmid DNA after a rapid tail vein injection of a small or a large volume. J Gene Med. 2003;5(2):142–56. https://doi.org/10.1002/jgm.328 PubMed PMID: 12539152.
Article
CAS
PubMed
Google Scholar
Herweijer H, Zhang G, Subbotin VM, Budker V, Williams P, Wolff JA. Time course of gene expression after plasmid DNA gene transfer to the liver. J Gene Med. 2001;3(3):280–91. https://doi.org/10.1002/jgm.178 PubMed PMID: 11437333.
Article
CAS
PubMed
Google Scholar
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–20. https://doi.org/10.1038/nri.2016.58 PubMed PMID: 27291964.
Article
CAS
PubMed
Google Scholar
Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol. 2014;7(1):a016246. https://doi.org/10.1101/cshperspect.a016246 PubMed PMID: 25301932; PubMed Central PMCID: PMCPMC4292165.
Article
CAS
PubMed
Google Scholar
Bell JB, Podetz-Pedersen KM, Aronovich EL, Belur LR, McIvor RS, Hackett PB. Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection. Nat Protoc. 2007;2(12):3153–65. https://doi.org/10.1038/nprot.2007.471 PubMed PMID: 18079715; PubMed Central PMCID: PMCPMC2548418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mates L, Chuah MK, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet. 2009;41(6):753–61. https://doi.org/10.1038/ng.343ng.343 Epub 2009/05/05. [pii]. PubMed PMID: 19412179.
Article
CAS
PubMed
Google Scholar
Overturf K, Al-Dhalimy M, Tanguay R, Brantly M, Ou CN, Finegold M, et al. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet. 1996;12(3):266–73. https://doi.org/10.1038/ng0396-266 PubMed PMID: 8589717.
Article
CAS
PubMed
Google Scholar
Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ, et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther. 2004;11(8):675–82. https://doi.org/10.1038/sj.gt.3302210 PubMed PMID: 14724673; PubMed Central PMCID: PMCPMC4412368.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui Z, Geurts AM, Liu G, Kaufman CD, Hackett PB. Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. J Mol Biol. 2002;318(5):1221–35. https://doi.org/10.1016/s0022-2836(02)00237-1 PubMed PMID: 12083513.
Article
CAS
PubMed
Google Scholar
Skipper KA, Andersen PR, Sharma N, Mikkelsen JG. DNA transposon-based gene vehicles - scenes from an evolutionary drive. J Biomed Sci. 2013;20:92. https://doi.org/10.1186/1423-0127-20-92 PubMed PMID: 24320156; PubMed Central PMCID: PMCPMC3878927.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehmann K, Tschuor C, Rickenbacher A, Jang JH, Oberkofler CE, Tschopp O, et al. Liver failure after extended hepatectomy in mice is mediated by a p21-dependent barrier to liver regeneration. Gastroenterology. 2012;143(6):1609–19 e4. https://doi.org/10.1053/j.gastro.2012.08.043 PubMed PMID: 22960658.
Article
CAS
PubMed
Google Scholar
Szymczak AL, Vignali DA. Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opin Biol Ther. 2005;5(5):627–38. https://doi.org/10.1517/14712598.5.5.627 PubMed PMID: 15934839.
Article
CAS
PubMed
Google Scholar
Orii KE, Orii KO, Souri M, Orii T, Kondo N, Hashimoto T, et al. Genes for the human mitochondrial trifunctional protein alpha- and beta-subunits are divergently transcribed from a common promoter region. J Biol Chem. 1999;274(12):8077–84. https://doi.org/10.1074/jbc.274.12.8077 PubMed PMID: 10075708.
Article
CAS
PubMed
Google Scholar
Beisel CL, Chen YY, Culler SJ, Hoff KG, Smolke CD. Design of small molecule-responsive microRNAs based on structural requirements for Drosha processing. Nucleic Acids Res. 2011;39(7):2981–94. https://doi.org/10.1093/nar/gkq954 PubMed PMID: 21149259; PubMed Central PMCID: PMCPMC3074164.
Article
CAS
PubMed
Google Scholar
Fellmann C, Hoffmann T, Sridhar V, Hopfgartner B, Muhar M, Roth M, et al. An optimized microRNA backbone for effective single-copy RNAi. Cell Rep. 2013;5(6):1704–13. https://doi.org/10.1016/j.celrep.2013.11.020 PubMed PMID: 24332856.
Article
CAS
PubMed
Google Scholar
Dow LE, Premsrirut PK, Zuber J, Fellmann C, McJunkin K, Miething C, et al. A pipeline for the generation of shRNA transgenic mice. Nat Protoc. 2012;7(2):374–93. https://doi.org/10.1038/nprot.2011.446 PubMed PMID: 22301776; PubMed Central PMCID: PMCPMC3724521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baratta JL, Ngo A, Lopez B, Kasabwalla N, Longmuir KJ, Robertson RT. Cellular organization of normal mouse liver: a histological, quantitative immunocytochemical, and fine structural analysis. Histochem Cell Biol. 2009;131(6):713–26. https://doi.org/10.1007/s00418-009-0577-1 PubMed PMID: 19255771; PubMed Central PMCID: PMCPMC2761764.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bos JL. The ras gene family and human carcinogenesis. Mutat Res. 1988;195(3):255–71. https://doi.org/10.1016/0165-1110(88)90004-8 PubMed PMID: 3283542.
Article
CAS
PubMed
Google Scholar
Berndt N, Eckstein J, Heucke N, Gajowski R, Stockmann M, Meierhofer D, et al. Characterization of lipid and lipid droplet metabolism in human HCC. Cells. 2019;8(5). https://doi.org/10.3390/cells8050512 PubMed PMID: 31137921; PubMed Central PMCID: PMCPMC6562484.
Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153–61. https://doi.org/10.1016/j.cmet.2013.05.017 PubMed PMID: 23791484; PubMed Central PMCID: PMCPMC3742569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorog D, Regoly-Merei J, Paku S, Kopper L, Nagy P. Alpha-fetoprotein expression is a potential prognostic marker in hepatocellular carcinoma. World J Gastroenterol. 2005;11(32):5015–8. https://doi.org/10.3748/wjg.v11.i32.5015 PdubMed PMID: 16124056; PubMed Central PMCID: PMCPMC4321920.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anatelli F, Chuang ST, Yang XJ, Wang HL. Value of glypican 3 immunostaining in the diagnosis of hepatocellular carcinoma on needle biopsy. Am J Clin Pathol. 2008;130(2):219–23. https://doi.org/10.1309/WMB5PX57Y4P8QCTY PubMed PMID: 18628090.
Article
PubMed
Google Scholar
Llovet JM, Chen Y, Wurmbach E, Roayaie S, Fiel MI, Schwartz M, et al. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology. 2006;131(6):1758–67. https://doi.org/10.1053/j.gastro.2006.09.014 PubMed PMID: 17087938.
Article
CAS
PubMed
Google Scholar
Angileri F, Roy V, Morrow G, Scoazec JY, Gadot N, Orejuela D, et al. Molecular changes associated with chronic liver damage and neoplastic lesions in a murine model of hereditary tyrosinemia type 1. Biochim Biophys Acta. 2015;1852(12):2603–17. https://doi.org/10.1016/j.bbadis.2015.09.002 PubMed PMID: 26360553.
Article
CAS
PubMed
Google Scholar
Zerbini C, Weinberg DS, Hollister KA, Perez-Atayde AR. DNA ploidy abnormalities in the liver of children with hereditary tyrosinemia type I. Correlation with histopathologic features. Am J Pathol. 1992;140(5):1111–9 PubMed PMID: 1374592; PubMed Central PMCID: PMCPMC1886502.
CAS
PubMed
PubMed Central
Google Scholar
Yew NS, Zhao H, Przybylska M, Wu IH, Tousignant JD, Scheule RK, et al. CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther. 2002;5(6):731–8. https://doi.org/10.1006/mthe.2002.0598 PubMed PMID: 12027557.
Article
CAS
PubMed
Google Scholar
Hodges BL, Taylor KM, Joseph MF, Bourgeois SA, Scheule RK. Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. Mol Ther. 2004;10(2):269–78. https://doi.org/10.1016/j.ymthe.2004.04.018 PubMed PMID: 15294174.
Article
CAS
PubMed
Google Scholar
Chen ZY, Riu E, He CY, Xu H, Kay MA. Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol Ther. 2008;16(3):548–56. https://doi.org/10.1038/sj.mt.6300399 PubMed PMID: 18253155.
Article
CAS
PubMed
Google Scholar
Bell JB, Aronovich EL, Schreifels JM, Beadnell TC, Hackett PB. Duration of expression and activity of Sleeping Beauty transposase in mouse liver following hydrodynamic DNA delivery. Mol Ther. 2010;18(10):1796–802. https://doi.org/10.1038/mt.2010.152 PubMed PMID: 20628359; PubMed Central PMCID: PMCPMC2951564.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montini E, Held PK, Noll M, Morcinek N, Al-Dhalimy M, Finegold M, et al. In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. Mol Ther. 2002;6(6):759–69. https://doi.org/10.1006/mthe.2002.0812 PubMed PMID: 12498772.
Article
CAS
PubMed
Google Scholar
Wangensteen KJ, Wilber A, Keng VW, He Z, Matise I, Wangensteen L, et al. A facile method for somatic, lifelong manipulation of multiple genes in the mouse liver. Hepatology. 2008;47(5):1714–24. https://doi.org/10.1002/hep.22195 PubMed PMID: 18435462; PubMed Central PMCID: PMCPMC5808937.
Article
CAS
PubMed
Google Scholar
Keng VW, Tschida BR, Bell JB, Largaespada DA. Modeling hepatitis B virus X-induced hepatocellular carcinoma in mice with the Sleeping Beauty transposon system. Hepatology. 2011;53(3):781–90. https://doi.org/10.1002/hep.24091 PubMed PMID: 21374658; PubMed Central PMCID: PMCPMC3079950.
Article
CAS
PubMed
Google Scholar
Riordan JD, Keng VW, Tschida BR, Scheetz TE, Bell JB, Podetz-Pedersen KM, et al. Identification of rtl1, a retrotransposon-derived imprinted gene, as a novel driver of hepatocarcinogenesis. PLoS Genet. 2013;9(4):e1003441. https://doi.org/10.1371/journal.pgen.1003441 PubMed PMID: 23593033; PubMed Central PMCID: PMCPMC3616914.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wuestefeld T, Pesic M, Rudalska R, Dauch D, Longerich T, Kang TW, et al. A Direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell. 2013;153(2):389–401. https://doi.org/10.1016/j.cell.2013.03.026 PubMed PMID: 23582328.
Article
CAS
PubMed
Google Scholar
Tschida BR, Temiz NA, Kuka TP, Lee LA, Riordan JD, Tierrablanca CA, et al. Sleeping Beauty insertional mutagenesis in mice identifies drivers of steatosis-associated hepatic tumors. Cancer Res. 2017;77(23):6576–88. https://doi.org/10.1158/0008-5472.CAN-17-2281 PubMed PMID: 28993411; PubMed Central PMCID: PMCPMC5712258.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ, et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet. 2005;37(11):1289–95. https://doi.org/10.1038/ng1651 PubMed PMID: 16200064.
Article
CAS
PubMed
Google Scholar
Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41. https://doi.org/10.1038/nature04791 PubMed PMID: 16724069.
Article
CAS
PubMed
Google Scholar
Miura H, Inoko H, Tanaka M, Nakaoka H, Kimura M, Gurumurthy CB, et al. Assessment of artificial MiRNA architectures for higher knockdown efficiencies without the undesired effects in mice. PLoS One. 2015;10(8):e0135919. https://doi.org/10.1371/journal.pone.0135919 PubMed PMID: 26285215; PubMed Central PMCID: PMCPMC4540464.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adachi N, Lieber MR. Bidirectional gene organization: a common architectural feature of the human genome. Cell. 2002;109(7):807–9. https://doi.org/10.1016/s0092-8674(02)00758-4 PubMed PMID: 12110178.
Article
CAS
PubMed
Google Scholar
Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM. An abundance of bidirectional promoters in the human genome. Genome Res. 2004;14(1):62–6. https://doi.org/10.1101/gr.1982804 PubMed PMID: 14707170; PubMed Central PMCID: PMCPMC314279.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L. Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol. 2005;23(1):108–16. https://doi.org/10.1038/nbt1049 PubMed PMID: 15619618.
Article
CAS
PubMed
Google Scholar
He K, Rad S, Poudel A, McLellan AD. Compact bidirectional promoters for dual-gene expression in a Sleeping Beauty transposon. Int J Mol Sci. 2020;21(23). https://doi.org/10.3390/ijms21239256 PubMed PMID: 33291599; PubMed Central PMCID: PMCPMC7731152.
Andrianaki A, Siapati EK, Hirata RK, Russell DW, Vassilopoulos G. Dual transgene expression by foamy virus vectors carrying an endogenous bidirectional promoter. Gene Ther. 2010;17(3):380–8. https://doi.org/10.1038/gt.2009.147 PubMed PMID: 19907502; PubMed Central PMCID: PMCPMC3739712.
Article
CAS
PubMed
Google Scholar
Golding MC, Mann MR. A bidirectional promoter architecture enhances lentiviral transgenesis in embryonic and extraembryonic stem cells. Gene Ther. 2011;18(8):817–26. https://doi.org/10.1038/gt.2011.26 PubMed PMID: 21390068.
Article
CAS
PubMed
Google Scholar
Na M, Fan X. Design of Ad5F35 vectors for coordinated dual gene expression in candidate human hematopoietic stem cells. Exp Hematol. 2010;38(6):446–52. https://doi.org/10.1016/j.exphem.2010.03.007 PubMed PMID: 20303383.
Article
CAS
PubMed
Google Scholar
Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356(6366):215–21. https://doi.org/10.1038/356215a0 PubMed PMID: 1552940.
Article
CAS
PubMed
Google Scholar
Orejuela D, Jorquera R, Bergeron A, Finegold MJ, Tanguay RM. Hepatic stress in hereditary tyrosinemia type 1 (HT1) activates the AKT survival pathway in the fah-/- knockout mice model. J Hepatol. 2008;48(2):308–17. https://doi.org/10.1016/j.jhep.2007.09.014 PubMed PMID: 18093685.
Article
CAS
PubMed
Google Scholar
Grompe M, Overturf K, Al-Dhalimy M, Finegold M. Therapeutic trials in the murine model of hereditary tyrosinaemia type I: a progress report. J Inherit Metab Dis. 1998;21(5):518–31. https://doi.org/10.1023/a:1005462804271 PubMed PMID: 9728332.
Article
CAS
PubMed
Google Scholar
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593–602. https://doi.org/10.1016/s0092-8674(00)81902-9 PubMed PMID: 9054499.
Article
CAS
PubMed
Google Scholar
Ju HL, Ahn SH, Kim DY, Baek S, Chung SI, Seong J, et al. Investigation of oncogenic cooperation in simple liver-specific transgenic mouse models using noninvasive in vivo imaging. PLoS One. 2013;8(3):e59869. https://doi.org/10.1371/journal.pone.0059869 PubMed PMID: 23555816; PubMed Central PMCID: PMCPMC3610734.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prior IA, Hood FE, Hartley JL. The frequency of Ras mutations in cancer. Cancer Res. 2020;80(14):2969–74. https://doi.org/10.1158/0008-5472.CAN-19-3682 PubMed PMID: 32209560; PubMed Central PMCID: PMCPMC7367715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gohler S, Da Silva Filho MI, Johansson R, Enquist-Olsson K, Henriksson R, Hemminki K, et al. Functional germline variants in driver genes of breast cancer. Cancer Causes Control. 2017;28(4):259–71. https://doi.org/10.1007/s10552-017-0849-3 PubMed PMID: 28238063.
Article
PubMed
Google Scholar
Mahler Convenor M, Berard M, Feinstein R, Gallagher A, Illgen-Wilcke B, Pritchett-Corning K, et al. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim. 2014;48(3):178–92 PubMed PMID: Medline:24496575.
Article
CAS
PubMed
Google Scholar
Portier I, Vanhoorelbeke K, Verhenne S, Pareyn I, Vandeputte N, Deckmyn H, et al. High and long-term von Willebrand factor expression after Sleeping Beauty transposon-mediated gene therapy in a mouse model of severe von Willebrand disease. J Thromb Haemost. 2018;16(3):592–604. https://doi.org/10.1111/jth.13938 PubMed PMID: 29288565.
Article
CAS
PubMed
Google Scholar
Thomas KC, Zheng XF, Garces Suarez F, Raftery JM, Quinlan KG, Yang N, et al. Evidence based selection of commonly used RT-qPCR reference genes for the analysis of mouse skeletal muscle. PLoS One. 2014;9(2):e88653. https://doi.org/10.1371/journal.pone.0088653 PubMed PMID: 24523926; PubMed Central PMCID: PMCPMC3921188.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262 PubMed PMID: 11846609.
Article
CAS
PubMed
Google Scholar
D'Hulst C, Parvanova I, Tomoiaga D, Sapar ML, Feinstein P. Fast quantitative real-time PCR-based screening for common chromosomal aneuploidies in mouse embryonic stem cells. Stem Cell Reports. 2013;1(4):350–9. https://doi.org/10.1016/j.stemcr.2013.08.003 PubMed PMID: 24319669; PubMed Central PMCID: PMCPMC3849352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith K, Li Y, Piccinini F, Csucs G, Balazs C, Bevilacqua A, et al. CIDRE: an illumination-correction method for optical microscopy. Nat Methods. 2015;12(5):404–6. https://doi.org/10.1038/nmeth.3323 PubMed PMID: 25775044.
Article
CAS
PubMed
Google Scholar