Goremykin VV, Nikiforova SV, Cavalieri D, Pindo M, Lockhart P. The root of flowering plants and total evidence. Syst Biol. 2015;64(5):879–91.
Article
CAS
PubMed
Google Scholar
Albert VA, Barbazuk WB, Depamphilis CW, Der JP, Leebens-Mack J, Ma H, et al. The Amborella genome and the evolution of flowering plants. Science. 2013;342(6165):1241089.
Morgan CC, Foster PG, Webb AE, Pisani D, McInerney JO, O'Connell MJ. Heterogeneous models place the root of the placental mammal phylogeny. Mol Biol Evol. 2013;30(9):2145–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Zhang T, Luebert F, Xiang Y, Huang C-H, Hu Y, et al. Asterid phylogenomics/phylotranscriptomics uncover morphological evolutionary histories and support phylogenetic placement for numerous whole-genome duplications. Mol Biol Evol. 2020;37(11):3188–210.
Article
CAS
PubMed
Google Scholar
Koenen EJM, Ojeda DI, Steeves R, Migliore J, Bakker FT, Wieringa JJ, et al. Large-scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near-simultaneous evolutionary origin of all six subfamilies. New Phytol. 2020;225(3):1355–69.
Article
CAS
PubMed
Google Scholar
Zhang R, Wang YH, Jin JJ, Stull GW, Bruneau A, Cardoso D, et al. Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of Leguminosae. Syst Biol. 2020;69(4):613–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Z-Y, Nie Z-L, Ren C, Liu X-Q, Zimmer EA, Wen J. Phylogenomic relationships and character evolution of the grape family (Vitaceae). Mol Phylogenet Evol. 2021;154:106948.
Article
PubMed
Google Scholar
Watson LE, Siniscalchi CM, Mandel J. Phylogenomics of the hyperdiverse daisy tribes: Anthemideae, Astereae, Calenduleae, Gnaphalieae, and Senecioneae. J Syst Evol. 2020;58(6):841–52.
Article
Google Scholar
Feng C, Wang J, Harris AJ, Folta KM, Zhao M, Kang M. Tracing the diploid ancestry of the cultivated octoploid strawberry. Mol Biol Evol. 2021;38(2):478–85.
Article
CAS
PubMed
Google Scholar
Lee-Yaw JA, Grassa CJ, Joly S, Andrew RL, Rieseberg LH. An evaluation of alternative explanations for widespread cytonuclear discordance in annual sunflowers (Helianthus). New Phytol. 2019;221(1):515–26.
Kapli P, Yang Z, Telford MJ. Phylogenetic tree building in the genomic age. Nat Rev Genet. 2020;21(7):428–44.
Article
CAS
PubMed
Google Scholar
Mendes FK, Hahn MW. Gene tree discordance causes apparent substitution rate variation. Syst Biol. 2016;65(4):711-21.
Cai L, Xi Z, Lemmon EM, Lemmon AR, Mast A, Buddenhagen CE, et al. The perfect storm: gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade, Malpighiales. Syst Biol. 2021;70(3):491–507.
Article
PubMed
Google Scholar
Degnan JH, Rosenberg NA. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol. 2009;24(6):332–40.
Article
PubMed
Google Scholar
Philippe H, Roure B. Difficult phylogenetic questions: more data, maybe; better methods, certainly. BMC Biol. 2011;9:91.
Article
PubMed
PubMed Central
Google Scholar
Hodel RGJ, Zimmer E, Wen J. A phylogenomic approach resolves the backbone of Prunus (Rosaceae) and identifies signals of hybridization and allopolyploidy. Mol Phylogenet Evol. 2021;160:107118.
Dong W, Liu Y, Li E, Xu C, Sun J, Li W, et al. Phylogenomics and biogeography of Catalpa (Bignoniaceae) reveal incomplete lineage sorting and three dispersal events. Mol Phylogenet Evol. 2022;166:107330.
Blischak PD, Chifman J, Wolfe AD, Kubatko LS. HyDe: a Python package for genome-scale hybridization detection. Syst Biol. 2018;67(5):821–9.
Article
PubMed
PubMed Central
Google Scholar
Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J, Dikow RB, et al. Genomic architecture and introgression shape a butterfly radiation. Science. 2019;366(6465):594.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solís-Lemus C, Ané C. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genet. 2016;12(3):e1005896.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang G, Zhang X, Herre EA, McKey D, Machado CA, Yu W-B, et al. Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Nat Commun. 2021;12(1):718.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rose JP, Toledo CAP, Lemmon EM, Lemmon AR, Sytsma KJ. Out of sight, out of mind: Widespread nuclear and plastid-nuclear discordance in the flowering plant genus Polemonium (Polemoniaceae) suggests widespread historical gene flow despite limited nuclear signal. Syst Biol. 2021;70(1):162–80.
Article
CAS
PubMed
Google Scholar
Wang K, Lenstra JA, Liu L, Hu Q, Ma T, Qiu Q, et al. Incomplete lineage sorting rather than hybridization explains the inconsistent phylogeny of the wisent. Commun Biol. 2018;1(1):169.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat Commun. 2019;10(1):5477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morales-Briones DF, Kadereit G, Tefarikis DT, Moore MJ, Smith SA, Brockington SF, et al. Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae s.l. Syst Biol. 2021;70(2):219–35.
Article
PubMed
Google Scholar
Wallander E, Albert VA. Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am J Bot. 2000;87(12):1827–41.
Article
CAS
PubMed
Google Scholar
Green PS: Oleaceae. In: Flowering Plants · Dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae). Edited by Kadereit JW. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004: 296-306.
Xia Z, Wen J, Gao Z. Does the enigmatic Wightia belong to Paulowniaceae (Lamiales)? Front Plant Sc. 2019;10:528.
Julca I, Marcet-Houben M, Vargas P, Gabaldón T. Phylogenomics of the olive tree (Olea europaea) reveals the relative contribution of ancient allo- and autopolyploidization events. BMC Biol. 2018;16(1):15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yuan W-J, Zhang W-R, Han Y-J, Dong M-F, Shang F-D. Molecular phylogeny of Osmanthus (Oleaceae) based on non-coding chloroplast and nuclear ribosomal internal transcribed spacer regions. J Syst Evol. 2010;48(6):482–9.
Article
Google Scholar
Guo S-Q, Xiong M, Ji C-F, Zhang Z-R, Li D-Z, Zhang Z-Y. Molecular phylogenetic reconstruction of Osmanthus Lour. (Oleaceae) and related genera based on three chloroplast intergenic spacers. Plant Syst Evol. 2011;294(1):57–64.
Article
Google Scholar
Besnard G, Green PS, Bervillé A. The genus Olea: molecular approaches of its structure and relationships to other Oleaceae. Acta Botanica Gallica. 2002;149(1):49–66.
Article
CAS
Google Scholar
Hong-Wa C, Besnard G. Intricate patterns of phylogenetic relationships in the olive family as inferred from multi-locus plastid and nuclear DNA sequence analyses: a close-up on Chionanthus and Noronhia (Oleaceae). Mol Phylogenet Evol. 2013;67(2):367–78.
Article
CAS
PubMed
Google Scholar
Hong-Wa C, Besnard G. Species limits and diversification in the Madagascar olive (Noronhia, Oleaceae). Bot J Linn Soc. 2014;174(1):141–61.
Article
Google Scholar
Olofsson JK, Cantera I, Van de Paer C, Hong-Wa C, Zedane L, Dunning LT, et al. Phylogenomics using low-depth whole genome sequencing: a case study with the olive tribe. Mol Ecol Resour. 2019;19(4):877–92.
Article
PubMed
Google Scholar
Dupin J, Raimondeau P, Hong-Wa C, Manzi S, Gaudeul M, Besnard G. Resolving the phylogeny of the olive family (Oleaceae): Confronting information from organellar and nuclear genomes. Genes. 2020;11(12):1508.
Article
CAS
PubMed Central
Google Scholar
Dong W, Sun J, Liu Y, Xu C, Wang Y, Suo Z, Zhou S, Zhang Z, Wen J: Phylogenomic relationships and species identification of the olive genus Olea (Oleaceae). J Syst Evol. 2021:doi: https://doi.org/10.1111/jse.12802.
Li J, Alexander JH, Zhang D. Paraphyletic Syringa (Oleaceae): evidence from sequences of nuclear ribosomal DNA ITS and ETS regions. Syst Bot. 2002;27(3):592–7.
Google Scholar
Besnard G, Rubio de Casas R, Christin P-A, Vargas P. Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann Bot. 2009;104(1):143–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ha Y-H, Kim C, Choi K, Kim J-H. Molecular phylogeny and dating of Forsythieae (Oleaceae) provide insight into the Miocene history of Eurasian temperate shrubs. Front Plant Sc. 2018;9:99.
Van de Paer C, Bouchez O, Besnard G. Prospects on the evolutionary mitogenomics of plants: a case study on the olive family (Oleaceae). Mol Ecol Resour. 2018;18(3):407–23.
Article
PubMed
CAS
Google Scholar
Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics. 2018;19(Suppl 6):153.
Article
PubMed
PubMed Central
Google Scholar
Zhong B, Deusch O, Goremykin VV, Penny D, Biggs PJ, Atherton RA, et al. Systematic error in seed plant phylogenomics. Genome Biol Evol. 2011;3:1340–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith SA, Donoghue MJ. Rates of molecular evolution are linked to life history in flowering plants. Science. 2008;322(5898):86–9.
Article
CAS
PubMed
Google Scholar
Amanda R, Li Z, Van de Peer Y, Ingvarsson PK. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol Biol Evol. 2017;34(6):1363–77.
Schwarz EN, Ruhlman TA, Weng M-L, Khiyami MA, Sabir JSM, HajarahNH, et al. Plastome-wide nucleotide substitution rates reveal accelerated rates in Papilionoideae and correlations with genome features across legume subfamilies. J Mol Evol. 2017;84:187–203.
Choi K, Weng M-L, Ruhlman TA, Jansen RK. Extensive variation in nucleotide substitution rate and gene/intron loss in mitochondrial genomes of Pelargonium. Mol Phylogenet Evol. 2021;155:106986.
Article
PubMed
Google Scholar
Lanfear R, Ho SYW, Jonathan Davies T, Moles AT, Aarssen L, Swenson NG, et al. Taller plants have lower rates of molecular evolution. Nat Commun. 2013;4(1):1879.
Article
PubMed
CAS
Google Scholar
Bromham L, Hua X, Lanfear R, Cowman PF. Exploring the relationships between mutation rates, life history, genome size, environment, and species richness in flowering plants. Am. Nat. 2015;185(4):507–24.
Article
PubMed
Google Scholar
Barraclough TG, Savolainen V. Evolutionary rates and species diversity in flowering plants. Evolution. 2001;55(4):677–83.
Article
CAS
PubMed
Google Scholar
Corriveau JL, Coleman AW. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot. 1988;75(10):1443–58.
Article
Google Scholar
Zhang Q, Liu Y. Sodmergen: Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol. 2003;44(9):941–51.
Article
CAS
PubMed
Google Scholar
Wicke S, Schaferhoff B, Depamphilis CW, Muller KF. Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of Carnivorous Lentibulariaceae. Mol Biol Evol. 2014;31(3):529-45.
Sabir J, Schwarz E, Ellison N, Zhang J, Baeshen NA, Mutwakil M, et al. Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes. Plant Biotechnol J. 2014;12(6):743–54.
Article
CAS
PubMed
Google Scholar
Nevill PG, Howell KA, Cross AT, Williams AV, Zhong X, Tonti-Filippini J, et al. Plastome-wide rearrangements and gene losses in Carnivorous Droseraceae. Genome Biol Evol. 2019;11(2):472–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabah SO, Shrestha B, Hajrah NH, Sabir MJ, Alharby HF, Sabir MJ, et al. Passiflora plastome sequencing reveals widespread genomic rearrangements. J Syst Evol. 2019;57(1):1–14.
Shrestha B, Weng M-L, Theriot EC, Gilbert LE, Ruhlman TA, Krosnick SE, et al. Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba. Mol Phylogenet Evol. 2019;138:53–64.
Lee H-L, Jansen RK, Chumley TW, Kim K-J. Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol. 2007;24(5):1161–80.
Article
CAS
PubMed
Google Scholar
Guisinger MM, Kuehl JNV, Boore JL, Jansen RK. Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions. Proc Nat Acad Sci USA. 2008;105(47):18424–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weng M-L, Blazier JC, Govindu M, Jansen RK. Reconstruction of the ancestral plastid genome in geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol. 2014;31(3):645–59.
Article
CAS
PubMed
Google Scholar
Barnard-Kubow KB, Sloan DB, Galloway LF. Correlation between sequence divergence and polymorphism reveals similar evolutionary mechanisms acting across multiple timescales in a rapidly evolving plastid genome. BMC Evol Biol. 2014;14(1):268.
Article
PubMed
Google Scholar
Dong W, Xu C, Wu P, Cheng T, Yu J, Zhou S, et al. Resolving the systematic positions of enigmatic taxa: manipulating the chloroplast genome data of Saxifragales. Mol Phylogenet Evol. 2018;126:321–30.
Article
CAS
PubMed
Google Scholar
Xu L-L, Yu R-M, Lin X-R, Zhang B-W, Li N, Lin K, Zhang D-Y, Bai W-N: Different rates of pollen and seed gene flow cause branch-length and geographic cytonuclear discordance within Asian butternuts. New Phytol 2021; n/a(n/a).
Besnard G, Rubio de Casas R, Vargas P: Plastid and nuclear DNA polymorphism reveals historical processes of isolation and reticulation in the olive tree complex (Olea europaea). J Biogeogr 2007, 34(4):736-752.
Wright JW. New chromosome counts in Acer and Fraxinus. Morris Arboretum Bull. 1957;8:33–4.
Google Scholar
Meleshko O, Martin MD, Korneliussen TS, Schröck C, Lamkowski P, Schmutz J, Healey A, Piatkowski BT, Shaw AJ, Weston DJ. Extensive genome-wide phylogenetic discordance is due to incomplete lineage sorting and not ongoing introgression in a rapidly radiated bryophyte genus. Mol Biol Evol. 2021;38(7):2750–66.
Leo Elworth RA, Allen C, Benedict T, Dulworth P, Nakhleh L: DGEN;: a test statistic for detection of general introgression scenarios. bioRxiv. 2018:348649.
Marques DA, Meier JI, Seehausen O. A combinatorial view on speciation and adaptive radiation. Trends Ecol Evol. 2019;34(6):531–44.
Article
PubMed
Google Scholar
Taylor H. Cyto-taxonomy and phylogeny of the Oleaceae. Brittonia. 1945;5(4):337–67.
Article
Google Scholar
Xu C, Dong W, Shi S, Cheng T, Li C, Liu Y, et al. Accelerating plant DNA barcode reference library construction using herbarium specimens: improved experimental techniques. Mol Ecol Resour. 2015;15(6):1366–74.
Article
CAS
PubMed
Google Scholar
Li J, Wang S, Jing Y, Wang L, Zhou S. A modified CTAB protocol for plant DNA extraction. Chin Bull Bot. 2013;48(1):72–8.
Article
CAS
Google Scholar
Dong W, Liu Y, Xu C, Gao Y, Yuan Q, Suo Z, et al. Chloroplast phylogenomic insights into the evolution of Distylium (Hamamelidaceae). BMC Genomics. 2021;22(1):293.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin J-J, Yu W-B, Yang J-B, Song Y, de Pamphilis CW, Yi T-S, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21(1):241.
Article
PubMed
PubMed Central
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.
Article
PubMed
PubMed Central
Google Scholar
Huang DI, Cronk QCB. Plann: a command-line application for annotating plastome sequences. Appl Plant Sci. 2015;3(8):1500026.
Article
Google Scholar
Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019;47(W1):W59–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Unver T, Wu Z, Sterck L, Turktas M, Lohaus R, Li Z, et al. Genome of wild olive and the evolution of oil biosynthesis. Proc Natl Acad Sci. 2017;114(44):E9413.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sollars ES, Harper AL, Kelly LJ, Sambles CM, Ramirez-Gonzalez RH, Swarbreck D, et al. Genome sequence and genetic diversity of European ash trees. Nature. 2017;541(7636):212–6.
Article
CAS
PubMed
Google Scholar
Li L-F, Cushman SA, He Y-X, Li Y. Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia. Horm. Res. 2020;7(1):130.
Google Scholar
Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLOS ONE. 2012;7(2):e30619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. Genome Project Data Processing S: The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H. Improving SNP discovery by base alignment quality. Bioinformatics. 2011;27(8):1157–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darling AE, Mau B. Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLOS ONE. 2010;5(6):e11147.
Article
PubMed
PubMed Central
CAS
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25(15):1972-1973.
Zhang D, Gao F, Jakovlic I, Zou H, Zhang J, Li WX, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 2020;20(1):348–55.
Article
PubMed
Google Scholar
Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962;2019:227–45.
Google Scholar
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238.
Article
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35(21):4453–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34(3):772-3.
Wang H-C, Susko E, Roger AJ. The relative importance of modeling site pattern heterogeneity versus partition-wise heterotachy in phylogenomic inference. Syst Biol. 2019;68(6):1003–19.
Article
PubMed
CAS
Google Scholar
Philippe H, Brinkmann H, Lavrov DV, Littlewood DT, Manuel M, Worheide G, et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 2011;9(3):e1000602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H-C, Minh BQ, Susko E, Roger AJ. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst Biol. 2018;67(2):216–35.
Article
CAS
PubMed
Google Scholar
Crotty SM, Minh BQ, Bean NG, Holland BR, Tuke J, Jermiin LS, et al. GHOST: recovering historical signal from heterotachously evolved sequence alignments. Syst Biol. 2020;69(2):249–64.
CAS
PubMed
Google Scholar
Rodrigue N, Lartillot N. Site-heterogeneous mutation-selection models within the PhyloBayes-MPI package. Bioinformatics. 2014;30(7):1020–1.
Article
CAS
PubMed
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–22.
Article
CAS
PubMed
Google Scholar
Smith SA, Moore MJ, Brown JW, Yang Y. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol Biol. 2015;15(1):150.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sayyari E, Mirarab S. Fast coalescent-based computation of local branch support from quartet frequencies. Mol Biol Evol. 2016;33(7):1654–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minh BQ, Hahn MW, Lanfear R. New methods to calculate concordance factors for phylogenomic datasets. Mol Biol Evol. 2020;37(9):2727–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith SA, O’Meara BC: treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 2012, 28(20):2689-2690.
Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the neandertal genome. Science. 2010;328(5979):710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin SH, Davey JW, Jiggins CD. Evaluating the use of ABBA–BABA statistics to locate introgressed loci. Mol Biol Evol. 2015;32(1):244–57.
Article
CAS
PubMed
Google Scholar
Than C, Ruths D, Nakhleh L. PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics. 2008;9:322.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61(6):1061–7.
Article
PubMed
Google Scholar
Sayyari E, Mirarab S. Testing for polytomies in phylogenetic species trees using quartet frequencies. Genes. 2018;9(3)132.
Li L-F, Cushman SA, He Y-X, Li Y. Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia. Horm Res. 2020;7(1):1-12. %* 2020 The Author(s) %U https://www.nature.com/articles/s41438-41020-00352-41437.
Xu S, Ding Y, Sun J, Zhang Z, Wu Z, Yang T, Shen F, Xue G: A high-quality genome assembly of Jasminum sambac provides insight into floral trait formation and Oleaceae genome evolution. Mol Ecol Resour. 2022, 22(2):724-739 %U https://onlinelibrary.wiley.com/doi/abs/710.1111/1755-0998.13497.
Sollars ESA, Harper AL, Kelly LJ, Sambles CM, Ramirez-Gonzalez RH, Swarbreck D, Kaithakottil G, Cooper ED, Uauy C, Havlickova L et al. Genome sequence and genetic diversity of European ash trees. Nature 2017; 541(7636):212-216 %U http://www.nature.com/articles/nature20786.
Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. Synteny and collinearity in plant genomes. Science 2008; 320(5875):486-488. %U https://www.science.org/doi/410.1126/science.1153917.
Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comp Biol. 2014;10(4):e1003537.
Article
CAS
Google Scholar
Call VB, Dilcher DL. Investigations of angiosperms from the Eocene of southeastern North America: samaras of Fraxinus wilcoxiana Berry. Rev. Palaeobot. Palynol. 1992;74(3):249–66.
Article
Google Scholar
Palamarev E. Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Syst Evol. 1989;162(1/4):93–107.
Article
Google Scholar
Muller J. Fossil pollen records of extant angiosperms. Bot Rev. 1981;47(1):1–142.
Article
Google Scholar
Terral JF, Badal E, Heinz C, Roiron P, Thiebault S, Figueiral I. A hydraulic conductivity model points to post-neogene survival of the mediterranean olive. Ecology. 2004;85(11):3158–65.
Article
Google Scholar
Rambaut A, Suchard M, Xie D, Drummond A. Tracer v1. 6. In.; 2014: Available from http://beast.bio.ed.ac.uk/Tracer.
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang ZH. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
Article
CAS
PubMed
Google Scholar
Barrett CF, Baker WJ, Comer JR, Conran JG, Lahmeyer SC, Leebens-Mack JH, et al. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol. 2016;209(2):855–70.
Article
PubMed
Google Scholar
Dong W, Li E, Liu Y, Xu C, Liu K, Cui X, et al. Genome skimming data for: Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family. NCBI BioProject. 2022. https://identifiers.org/bioproject:PRJNA820313.
Dong W, Li E, Liu Y, Xu C, Liu K, Cui X, et al. Genome skimming data for: Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family. NCBI BioProject; 2022. https://identifiers.org/bioproject:: PRJNA704245.