Chin D, Means AR. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000;10:322–8.
Article
CAS
PubMed
Google Scholar
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim Biophys Acta. 2014;1843:398–435.
Article
CAS
PubMed
Google Scholar
Jensen HH, Brohus M, Nyegaard M, Overgaard MT. Human calmodulin mutations. Front Mol Neurosci. 2018;11:396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabarek Z. Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol. 2006;359:509–25.
Article
CAS
PubMed
Google Scholar
Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ. Three-dimensional structure of calmodulin. Nature. 1985;315:37–40.
Article
CAS
PubMed
Google Scholar
Zhang M, Tanaka T, Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat Struct Biol. 1995;2:758–67.
Article
CAS
PubMed
Google Scholar
Tidow H, Nissen P. Structural diversity of calmodulin binding to its target sites. FEBS J. 2013;280:5551–65.
Article
CAS
PubMed
Google Scholar
Crivici A, Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct. 1995;24:85–116.
Article
CAS
PubMed
Google Scholar
Ikura M, Ames JB. Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proc Natl Acad Sci. 2006;103:1159–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marshall CB, Nishikawa T, Osawa M, Stathopulos PB, Ikura M. Calmodulin and STIM proteins: two major calcium sensors in the cytoplasm and endoplasmic reticulum. Biochem Biophys Res Commun. 2015;460:5–21.
Article
CAS
PubMed
Google Scholar
Li Z, Zhang Y, Hedman AC, Ames JB, Sacks DB. Calmodulin lobes facilitate dimerization and activation of estrogen receptor-α *. J Biol Chem. 2017;292:4614–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. Biochim Biophys Acta. 2018;1865:507–21.
Article
CAS
Google Scholar
Bähler M, Rhoads A. Calmodulin signaling via the IQ motif. FEBS Lett. 2002;513:107–13.
Article
PubMed
Google Scholar
Van Eldik LJ, Watterson DM. Calmodulin and signal transduction. In: Calmodulin and Signal Transduction. San Diego: Academic Press; 1998.
Shen X, Valencia CA, Szostak J, Dong B, Liu R. Scanning the human proteome for calmodulin-binding proteins. Proc Natl Acad Sci. 2005;102:5969–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levin RM, Weiss B. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol. 1977;13:690–7.
CAS
PubMed
Google Scholar
Hidaka H, Sasaki Y, Tanaka T, Endo T, Ohno S, Fujii Y, et al. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci. 1981;78:4354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss B, Prozialeck WC, Wallace TL. Interaction of drugs with calmodulin. Biochem Pharmacol. 1982;31:2217–26.
Article
CAS
PubMed
Google Scholar
Gietzen K. Comparison of the calmodulin antagonists compound 48/80 and calmidazolium. Biochem J. 1983;216:611–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Norman JA, Ansell J, Stone GA, Wennogle LP, Wasley JW. CGS 9343B, a novel, potent, and selective inhibitor of calmodulin activity. Mol Pharmacol. 1987;31:535.
CAS
PubMed
Google Scholar
Veigl ML, Klevit RE, Sedwick WD. The uses and limitations of calmodulin antagonists. Pharmacol Ther. 1989;44:181–239.
Article
CAS
PubMed
Google Scholar
Audran E, Dagher R, Gioria S, Tsvetkov PO, Kulikova AA, Didier B, et al. A general framework to characterize inhibitors of calmodulin: use of calmodulin inhibitors to study the interaction between calmodulin and its calmodulin binding domains. Biochim Biophys Acta. 2013;1833:1720–31.
Article
CAS
PubMed
Google Scholar
Sengupta P, Ruano MJ, Tebar F, Golebiewska U, Zaitseva I, Enrich C, et al. Membrane-permeable calmodulin inhibitors (e.g. W-7/W-13) bind to membranes, changing the electrostatic surface potential. J Biol Chem. 2007;282:8474–86.
Article
CAS
PubMed
Google Scholar
Wong MH, Samal AB, Lee M, Vlach J, Novikov N, Niedziela-Majka A, et al. The KN-93 molecule inhibits calcium/calmodulin-dependent protein kinase II (CaMKII) activity by binding to Ca2+/CaM. J Mol Biol. 2019;431:1440–59.
Article
CAS
PubMed
Google Scholar
Cook WJ, Walter LJ, Walter MR. Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex. Biochemistry. 1994;33:15259–65.
Article
CAS
PubMed
Google Scholar
Vertessy BG, Harmat V, Böcskei Z, Náray-Szabó G, Orosz F, Ovádi J. Simultaneous binding of drugs with different chemical structures to Ca2+-calmodulin: crystallographic and spectroscopic studies. Biochemistry. 1998;37:15300–10.
Article
CAS
PubMed
Google Scholar
Osawa M, Swindells MB, Tanikawa J, Tanaka T, Mase T, Furuya T, et al. Solution structure of Calmodulin-W-7 complex: the basis of diversity in molecular recognition. J Mol Biol. 1998;276:165–76.
Article
CAS
PubMed
Google Scholar
Horváth I, Harmat V, Perczel A, Pálfi V, Nyitray L, Nagy A, et al. The structure of the complex of calmodulin with KAR-2. J Biol Chem. 2005;280:8266–74.
Article
PubMed
CAS
Google Scholar
Johnson CN, Pattanayek R, Potet F, Rebbeck RT, Blackwell DJ, Nikolaienko R, et al. The CaMKII inhibitor KN93-calmodulin interaction and implications for calmodulin tuning of NaV1.5 and RyR2 function. Cell Calcium. 2019;82:102063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milanesi L, Trevitt CR, Whitehead B, Hounslow AM, Tomas S, Hosszu LLP, et al. High-affinity tamoxifen analogues retain extensive positional disorder when bound to calmodulin. Magn Reson. 2021;2:629–42.
Article
CAS
Google Scholar
Gietzen K, Wüthrich A, Bader H. R 24571: A new powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated functions. Biochem Biophys Res Commun. 1981;101:418–25.
Article
CAS
PubMed
Google Scholar
Tuana BS, Maclennan DH. Calmidazolium and compound 48/80 inhibit calmodulin-dependent protein-phosphorylation and Atp-dependent Ca-2+ uptake but not Ca-2+-Atpase activity in skeletal-muscle sarcoplasmic-reticulum. J Biol Chem. 1984;259:6979–83.
Article
CAS
PubMed
Google Scholar
Dagher R, Briere C, Feve M, Zeniou M, Pigault C, Mazars C, et al. Calcium fingerprints induced by calmodulin interactors in eukaryotic cells. Biochim Biophys Acta. 2009;1793:1068–77.
Article
CAS
PubMed
Google Scholar
Lübker C, Seifert R. Effects of 39 compounds on calmodulin-regulated adenylyl cyclases AC1 and Bacillus anthracis edema factor. PLoS One. 2015;10:e0124017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Voegele A, Sadi M, O’Brien DP, Gehan P, Raoux-Barbot D, Davi M, et al. A high-affinity calmodulin-binding site in the CyaA toxin translocation domain is essential for invasion of eukaryotic cells. Adv Sci. 2021;8:2003630.
Article
CAS
Google Scholar
Durand D, Vives C, Cannella D, Perez J, Pebay-Peyroula E, Vachette P, et al. NADPH oxidase activator p67(phox) behaves in solution as a multidomain protein with semi-flexible linkers. J Struct Biol. 2010;169:45–53.
Article
CAS
PubMed
Google Scholar
Grant TD. Ab initio electron density determination directly from solution scattering data. Nat Methods. 2018;15:191–3.
Article
CAS
PubMed
Google Scholar
Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI. Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc. 2007;129:5656–64.
Article
CAS
PubMed
Google Scholar
Tria G, Mertens HDT, Kachala M, Svergun DI. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ. 2015;2:207–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chattopadhyaya R, Meador WE, Means AR, Quiocho FA. Calmodulin structure refined at 1.7 A resolution. J Mol Biol. 1992;228:1177–92.
Article
CAS
PubMed
Google Scholar
Moore BL, Kelley LA, Barber J, Murray JW, MacDonald JT. High-quality protein backbone reconstruction from alpha carbons using Gaussian mixture models. J Comput Chem. 2013;34:1881–9.
Article
CAS
PubMed
Google Scholar
Krivov GG, Shapovalov MV, Dunbrack RL. Improved prediction of protein side-chain conformations with SCWRL4. Proteins. 2009;77:778–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franke D, Petoukhov MV, Konarev PV, Panjkovich A, Tuukkanen A, Mertens HDT, et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr. 2017;50(Pt 4):1212–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51:2778–86.
Article
CAS
PubMed
Google Scholar
Reid DG, MacLachlan LK, Gajjar K, Voyle M, King RJ, England PJ. A proton nuclear magnetic resonance and molecular modeling study of calmidazolium (R24571) binding to calmodulin and skeletal muscle troponin C. J Biol Chem. 1990;265:9744–53.
Article
CAS
PubMed
Google Scholar
Karst JC, Ntsogo Enguene VY, Cannella SE, Subrini O, Hessel A, Debard S, et al. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J Biol Chem. 2014;289:30702–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cannella SE, Ntsogo Enguene VY, Davi M, Malosse C, Sotomayor Perez AC, Chamot-Rooke J, et al. Stability, structural and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis. Sci Rep. 2017;7:42065.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Brien DP, Cannella SE, Voegele A, Raoux-Barbot D, Davi M, Douche T, et al. Post-translational acylation controls the folding and functions of the CyaA RTX toxin. FASEB J. 2019;33:10065.
Article
PubMed
Google Scholar
O’Brien DP, Durand D, Voegele A, Hourdel V, Davi M, Chamot-Rooke J, et al. Calmodulin fishing with a structurally disordered bait triggers CyaA catalysis. PLoS Biol. 2017;15:e2004486.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barbato G, Ikura M, Kay LE, Pastor RW, Bax A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry. 1992;31:5269–78.
Article
CAS
PubMed
Google Scholar
Chou JJ, Li S, Klee CB, Bax A. Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol. 2001;8:990–7.
Article
CAS
PubMed
Google Scholar
Berjanskii MV, Wishart DS. A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc. 2005;127:14970–1.
Article
CAS
PubMed
Google Scholar
Gsponer J, Christodoulou J, Cavalli A, Bui JM, Richter B, Dobson CM, et al. A coupled equilibrium shift mechanism in calmodulin-mediated signal transduction. Structure. 2008;16:736–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meador WE, Means AR, Quiocho FA. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science. 1992;257:1251–5.
Article
CAS
PubMed
Google Scholar
Guo Q, Shen Y, Lee YS, Gibbs CS, Mrksich M, Tang WJ. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J. 2005;24:3190–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karst JC, Sotomayor Perez AC, Guijarro JI, Raynal B, Chenal A, Ladant D. Calmodulin-induced conformational and hydrodynamic changes in the catalytic domain of Bordetella pertussis adenylate cyclase toxin. Biochemistry. 2010;49:318–28.
Article
CAS
PubMed
Google Scholar
Black DJ, Tran QK, Persechini A. Monitoring the total available calmodulin concentration in intact cells over the physiological range in free Ca2+. Cell Calcium. 2004;35:415–25.
Article
CAS
PubMed
Google Scholar
Wu X, Bers DM. Free and bound intracellular calmodulin measurements in cardiac myocytes. Cell Calcium. 2007;41:353–64.
Article
CAS
PubMed
Google Scholar
Johnson CK, Harms GS. Tracking and localization of calmodulin in live cells. Biochim Biophys Acta. 2016;1863:2017–26.
Article
CAS
PubMed
Google Scholar
Sunagawa M, Kosugi T, Nakamura M, Sperelakis N. Pharmacological actions of calmidazolium, a calmodulin antagonist, in cardiovascular system. Cardiovasc Drug Rev. 2000;18:211–21.
Article
CAS
Google Scholar
Liao W-C, Huang C-C, Cheng H-H, Wang J-L, Lin K-L, Cheng J-S, et al. Effect of calmidazolium on [Ca2+]i and viability in human hepatoma cells. Arch Toxicol. 2009;83:61–8.
Article
CAS
PubMed
Google Scholar
Lee J, Kim MS, Kim MA, Jang YK. Calmidazolium chloride inhibits growth of murine embryonal carcinoma cells, a model of cancer stem-like cells. Toxicol in Vitro. 2016;35:86–92.
Article
CAS
PubMed
Google Scholar
Rochette-Egly C, Kedinger M, Haffen K. Modulation of HT-29 human colonic cancer cell differentiation with calmidazolium and 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1988;48:6173.
CAS
PubMed
Google Scholar
Nussinov R, Muratcioglu S, Tsai C-J, Jang H, Gursoy A, Keskin O. The key role of calmodulin in KRAS-driven adenocarcinomas. Mol Cancer Res. 2015;13:1265–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayes MP, Soto-Velasquez M, Fowler CA, Watts VJ, Roman DL. Identification of FDA-approved small molecules capable of disrupting the calmodulin–adenylyl cyclase 8 interaction through direct binding to calmodulin. ACS Chem Neurosci. 2018;9:346–57.
Article
CAS
PubMed
Google Scholar
Parvathaneni S, Li Z, Sacks DB. Calmodulin influences MAPK signaling by binding KSR1. J Biol Chem. 2021;296:100577.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okutachi S, Manoharan GB, Kiriazis A, Laurini C, Catillon M, McCormick F, et al. A covalent calmodulin inhibitor as a tool to study cellular mechanisms of K-Ras-driven stemness. Front Cell Dev Biol. 2021;9:665673.
Article
PubMed
PubMed Central
Google Scholar
Taylor AM, Macari ER, Chan IT, Blair MC, Doulatov S, Vo LT, et al. Calmodulin inhibitors improve erythropoiesis in Diamond-Blackfan anemia. Sci Transl Med. 2020;12:eabb5831.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai Y-Y, Su C-H, Tarn W-Y. p53 activation in genetic disorders: different routes to the same destination. Int J Mol Sci. 2021;22:9307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voegele A, Subrini O, Sapay N, Ladant D, Chenal A. Membrane-active properties of an amphitropic peptide from the CyaA toxin translocation region. Toxins. 2017;9:369.
Article
PubMed Central
CAS
Google Scholar
Vougier S, Mary J, Dautin N, Vinh J, Friguet B, Ladant D. Essential role of methionine residues in calmodulin binding to Bordetella pertussis adenylate cyclase, as probed by selective oxidation and repair by the peptide methionine sulfoxide reductases. J Biol Chem. 2004;279:30210–8.
Article
CAS
PubMed
Google Scholar
Sotomayor Perez AC, Karst JC, Davi M, Guijarro JI, Ladant D, Chenal A. Characterization of the regions involved in the calcium-induced folding of the intrinsically disordered RTX motifs from the bordetella pertussis adenylate cyclase toxin. J Mol Biol. 2010;397:534–49.
Article
PubMed
CAS
Google Scholar
Thureau A, Roblin P, Pérez J. BioSAXS on the SWING beamline at Synchrotron SOLEIL. J Appl Crystallogr. 2021;54:1698–710.
Article
CAS
Google Scholar
Trewhella J, Duff AP, Durand D, Gabel F, Guss JM, Hendrickson WA, et al. 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update. Acta Crystallogr D Struct Biol. 2017;73(Pt 9):710–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
David G, Pérez J. Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline. J Appl Crystallogr. 2009;42:892–900.
Article
CAS
Google Scholar
Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr. 2003;36:1277–82.
Article
CAS
Google Scholar
Hopkins JB, Gillilan RE, Skou S. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr. 2017;50:1545–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guinier A. Diffraction of X-rays of very small angles – application to the study of ultramicroscopic phenomenon. Ann Phys. 1939;12:161–237.
Article
CAS
Google Scholar
Brookes E, Vachette P, Rocco M, Perez J. US-SOMO HPLC-SAXS module: dealing with capillary fouling and extraction of pure component patterns from poorly resolved SEC-SAXS data. J Appl Crystallogr. 2016;49(Pt 5):1827–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brookes E, Rocco M. Recent advances in the UltraScan SOlution MOdeller (US-SOMO) hydrodynamic and small-angle scattering data analysis and simulation suite. Eur Biophys J. 2018;47:855–64.
Article
PubMed
Google Scholar
Svergun DI. Determination of the regularization parameter in indirect -transform methods using perceptual criteria. J Appl Crystallogr. 1992;25:495–503.
Article
CAS
Google Scholar
Svergun DI, Barberato C, Koch MHJ. CRYSOL - a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr. 1995;28:768–73.
Article
CAS
Google Scholar
Weber P, Pissis C, Navaza R, Mechaly AE, Saul F, Alzari PM, et al. High-throughput crystallization pipeline at the crystallography core facility of the Institut Pasteur. Molecules. 2019;24:4451.
Article
CAS
PubMed Central
Google Scholar
Vonrhein C, Flensburg C, Keller P, Sharff A, Smart O, Paciorek W, et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 4):293–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mccoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–32.
Article
PubMed
CAS
Google Scholar
Bricogne G, Blanc E, Brandl M, Flensburg C, Keller P, Paciorek W, Roversi P, Sharff A, Smart OS, Vonrhein C, Womack TO. BUSTER version 2.11.1. Cambridge: Global Phasing Ltd.; 2017. Following the guideline on this page:https://www.globalphasing.com/buster/wiki/index.cgi?BusterCite.
Liebschner D, Afonine PV, Moriarty NW, Poon BK, Sobolev OV, Terwilliger TC, et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr D Struct Biol. 2017;73:148–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012;68:352–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masson GR, Burke JE, Ahn NG, Anand GS, Borchers C, Brier S, et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods. 2019;16:595–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hourdel V, Volant S, O’Brien DP, Chenal A, Chamot-Rooke J, Dillies MA, et al. MEMHDX: an interactive tool to expedite the statistical validation and visualization of large HDX-MS datasets. Bioinformatics. 2016. https://doi.org/10.1093/bioinformatics/btw420.
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6:277–93.
Article
CAS
PubMed
Google Scholar
Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins. 2005;59:687–96.
Article
CAS
PubMed
Google Scholar
Kay LE, Keifer P, Saarinen T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc. 1992;114:10663–5.
Article
CAS
Google Scholar
Favier A, Brutscher B. NMRlib: user-friendly pulse sequence tools for Bruker NMR spectrometers. J Biomol NMR. 2019;73:199–211.
Article
CAS
PubMed
Google Scholar
Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR. 2009;44:213–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–637.
Article
CAS
PubMed
Google Scholar
Lee D, Hilty C, Wider G, Wuthrich K. Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson. 2006;178:72–6.
Article
CAS
PubMed
Google Scholar
Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 1994;33:5984–6003.
Article
CAS
PubMed
Google Scholar
Orthaber D, Bergmann A, Glatter O. SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J Appl Crystallogr. 2000;33:218–25.
Article
CAS
Google Scholar
Manalastas-Cantos K, Konarev PV, Hajizadeh NR, Kikhney AG, Petoukhov MV, Molodenskiy DS, et al. ATSAS 3.0 : expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr. 2021;54:343–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franke D, Jeffries CM, Svergun DI. Correlation Map, a goodness-of-fit test for one-dimensional X-ray scattering spectra. Nat Methods. 2015;12:419–22.
Article
CAS
PubMed
Google Scholar