Salinas S, Brown SC, Mangel M, Munch S. Non-genetic inheritance and changing environments. Non-Genet Inherit. 2013;1:38–50.
Article
Google Scholar
Bohacek J, Mansuy IM. Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat Rev Genet. 2015;16:641.
Article
CAS
PubMed
Google Scholar
O’Dea RE, Noble DWA, Johnson SL, Hesselson D, Nakagawa S. The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps. Environ Epigenet. 2016;2:dvv014.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dias BG, Ressler KJ. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci. 2013;17:89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17:667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science. 2014;345:1255903.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burton T, Metcalfe NB. Can environmental conditions experienced in early life influence future generations? Proc R Soc B Biol Sci. 2014;281:20140311.
Article
Google Scholar
Bonduriansky R. Rethinking heredity, again. Trends Ecol Evol. 2012;27:330–6.
Article
CAS
PubMed
Google Scholar
Bonduriansky R, Day T. Nongenetic inheritance and its evolutionary implications. Annu Rev Ecol Evol Syst. 2008;40:103–25.
Article
Google Scholar
Auge G, Leverett LD, Edwards B, Donohue K. Adjusting phenotypes via within- and across-generational plasticity. New Phytol. 2017;216(2):343–9.
Article
PubMed
Google Scholar
Jablonka E, Lamb MJ. The inheritance of acquired epigenetic variations. Int J Epidemiol. 2015;44:1094–103.
Article
PubMed
Google Scholar
Jablonka E, Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol. 2009;84:131–76.
Article
PubMed
Google Scholar
Emborski C, Mikheyev AS. Ancestral diet transgenerationally influences offspring in a parent-of-origin and sex-specific manner. Philos Trans R Soc B Biol Sci. 2019;374:20180181.
Article
CAS
Google Scholar
Akhter A, Rahaman M, Suzuki R, Murono Y, Tokumoto T. Next-generation and further transgenerational effects of bisphenol A on zebrafish reproductive tissues. Heliyon. 2018;4:e00788.
Article
PubMed
PubMed Central
Google Scholar
Vogt G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. Environ Epigenet. 2017;3:dvx002.
Article
PubMed
PubMed Central
Google Scholar
Marshall DJ. Transgenerational plasticity in the sea: context-dependent maternal effects across the life history. Ecology. 2008;89:418–27.
Article
PubMed
Google Scholar
Herman J, Sultan S. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. Front Plant Sci. 2011;2:102.
Article
PubMed
PubMed Central
Google Scholar
Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitán-Espitia JD. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos Trans R Soc B Biol Sci. 2019;374:20180174.
Article
Google Scholar
Kishimoto S, Uno M, Okabe E, Nono M, Nishida E. Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans. Nat Commun. 2017;8:14031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weyrich A, Lenz D, Fickel J. Environmental change-dependent inherited epigenetic response. Genes. 2018;10:4.
Article
PubMed Central
CAS
Google Scholar
Allan BJM, Miller GM, McCormick MI, Domenici P, Munday PL. Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proc R Soc B Biol Sci. 2014;281:20132179.
Article
Google Scholar
Shi D, Zhao C, Chen Y, Ding J, Zhang L, Chang Y. Transcriptomes shed light on transgenerational and developmental effects of ocean warming on embryos of the sea urchin Strongylocentrotus intermedius. Sci Rep. 2020;10:7931.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee YH, Jeong C-B, Wang M, Hagiwara A, Lee J-S. Transgenerational acclimation to changes in ocean acidification in marine invertebrates. Mar Pollut Bull. 2020;153:111006.
Article
CAS
PubMed
Google Scholar
Maboloc EA, Chan KYK. Parental whole life cycle exposure modulates progeny responses to ocean acidification in slipper limpets. Glob Chang Biol. 2021;27:3272–81.
Article
CAS
PubMed
Google Scholar
Ho DH, Burggren WW. Parental hypoxic exposure confers offspring hypoxia resistance in zebrafish (Danio rerio). J Exp Biol. 2012;215:4208.
CAS
PubMed
Google Scholar
Heckwolf MJ, Meyer BS, Häsler R, Höppner MP, Eizaguirre C, Reusch TBH. Two different epigenetic information channels in wild three-spined sticklebacks are involved in salinity adaptation. Sci Adv. 2020;6:eaaz1138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heckwolf MJ, Meyer BS, Döring T, Eizaguirre C, Reusch TBH. Transgenerational plasticity and selection shape the adaptive potential of sticklebacks to salinity change. Evol Appl. 2018;11:1873–85.
Article
PubMed
PubMed Central
Google Scholar
Griffiths JS, Johnson KM, Sirovy KA, Yeats MS, Pan FTC, La Peyre JF, et al. Transgenerational plasticity and the capacity to adapt to low salinity in the eastern oyster, Crassostrea virginica. Proc R Soc B Biol Sci. 2021;288:20203118.
Article
Google Scholar
Donelson JM, McCormick MI, Booth DJ, Munday PL. Reproductive acclimation to increased water temperature in a tropical reef fish. PLoS One. 2014;9:e97223.
Article
PubMed
PubMed Central
CAS
Google Scholar
Donelson JM, Munday PL, McCormick MI, Pitcher CR. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat Clim Chang. 2012;2:30–2.
Article
Google Scholar
Veilleux HD, Ryu T, Donelson JM, van Herwerden L, Seridi L, Ghosheh Y, et al. Molecular processes of transgenerational acclimation to a warming ocean. Nat Clim Chang. 2015;5:1074.
Article
CAS
Google Scholar
Salinas S, Munch SB. Thermal legacies: transgenerational effects of temperature on growth in a vertebrate. Ecol Lett. 2012;15:159–63.
Article
PubMed
Google Scholar
Ryu T, Veilleux HD, Donelson JM, Munday PL, Ravasi T. The epigenetic landscape of transgenerational acclimation to ocean warming. Nat Clim Chang. 2018;8:504–9.
Article
Google Scholar
Rivera HE, Chen C-Y, Gibson MC, Tarrant AM. Plasticity in parental effects confers rapid larval thermal tolerance in the estuarine anemone Nematostella vectensis. J Exp Biol. 2021;224:jeb236745.
Article
PubMed
Google Scholar
Bernal MA, Donelson JM, Veilleux HD, Ryu T, Munday PL, Ravasi T. Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish. Mol Ecol. 2018;27:4516–28.
Article
CAS
PubMed
Google Scholar
Guillaume AS, Monro K, Marshall DJ. Transgenerational plasticity and environmental stress: do paternal effects act as a conduit or a buffer? Funct Ecol. 2016;30:1175–84.
Article
Google Scholar
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol. 2020;18:183.
Article
PubMed
PubMed Central
Google Scholar
Strader ME, Wong JM, Kozal LC, Leach TS, Hofmann GE. Parental environments alter DNA methylation in offspring of the purple sea urchin, Strongylocentrotus purpuratus. J Exp Mar Biol Ecol. 2019;517:54–64.
Article
Google Scholar
Diaz RJ, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science. 2008;321:926.
Article
CAS
PubMed
Google Scholar
Wang SY, Lau K, Lai K-P, Zhang J-W, Tse AC-K, Li J-W, et al. Hypoxia causes transgenerational impairments in reproduction of fish. Nat Commun. 2016;7:12114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long Y, Yan J, Song G, Li X, Li X, Li Q, et al. Transcriptional events co-regulated by hypoxia and cold stresses in zebrafish larvae. BMC Genomics. 2015;16:385.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saxena DK. Effect of hypoxia by intermittent altitude exposure on semen characteristics and testicular morphology of male rhesus monkeys. Int J Biometeorol. 1995;38:137–40.
Article
CAS
PubMed
Google Scholar
Okumura A, Fuse H, Kawauchi Y, Mizuno I, Akashi T. Changes in male reproductive function after high altitude mountaineering. High Alt Med Biol. 2003;4:349–53.
Article
PubMed
Google Scholar
Wu RSS, Zhou BS, Randall DJ, Woo NYS, Lam PKS. Aquatic hypoxia is an endocrine disruptor and impairs fish reproduction. Environ Sci Technol. 2003;37:1137–41.
Article
CAS
PubMed
Google Scholar
Roesner A, Hankeln T, Burmester T. Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J Exp Biol. 2006;209:2129.
Article
CAS
PubMed
Google Scholar
Jenny J-P, Francus P, Normandeau A, Lapointe F, Perga M-E, Ojala A, et al. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob Chang Biol. 2016;22:1481–9.
Article
PubMed
Google Scholar
Wu RSS. Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull. 2002;45:35–45.
Article
CAS
PubMed
Google Scholar
Townhill BL, Pinnegar JK, Righton DA, Metcalfe JD. Fisheries, low oxygen and climate change: how much do we really know? J Fish Biol. 2017;90:723–50.
Article
CAS
PubMed
Google Scholar
Lai KP, Wang SY, Li JW, Tong Y, Chan TF, Jin N, et al. Hypoxia causes transgenerational impairment of ovarian development and hatching success in fish. Environ Sci Technol. 2019;53:3917–28.
Article
CAS
PubMed
Google Scholar
Nikinmaa M. Oxygen-dependent cellular functions—why fishes and their aquatic environment are a prime choice of study. Comp Biochem Physiol A Mol Integr Physiol. 2002;133:1–16.
Article
PubMed
Google Scholar
Richards JG. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J Exp Biol. 2011;214:191.
Article
PubMed
Google Scholar
Alexander TJ, Vonlanthen P, Seehausen O. Does eutrophication-driven evolution change aquatic ecosystems? Philos Trans R Soc B Biol Sci. 2017;372:20160041.
Article
Google Scholar
Jaspers RT, Testerink J, Della Gaspera B, Chanoine C, Bagowski CP, van der Laarse WJ. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia. Biol Open. 2014;3:718–27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tzaneva V, Bailey S, Perry SF. The interactive effects of hypoxemia, hyperoxia, and temperature on the gill morphology of goldfish (Carassius auratus). Am J Phys Regul Integr Comp Phys. 2011;300:R1344–51.
CAS
Google Scholar
Dhillon RS, Yao L, Matey V, Chen B-J, Zhang A-J, Cao Z-D, et al. Interspecific differences in hypoxia-induced gill remodeling in carp. Physiol Biochem Zool. 2013;86:727–39.
Article
PubMed
Google Scholar
Pelster B. Developmental plasticity in the cardiovascular system of fish, with special reference to the zebrafish. Comp Biochem Physiol A Mol Integr Physiol. 2002;133:547–53.
Article
PubMed
Google Scholar
van der Meer DLM, van den Thillart GEEJM, Witte F, de Bakker MAG, Besser J, Richardson MK, et al. Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1512–9.
Article
PubMed
CAS
Google Scholar
Gilmore KL, Doubleday ZA, Gillanders BM. Prolonged exposure to low oxygen improves hypoxia tolerance in a freshwater fish. Conserv Physiol. 2020;7:coz058.
Article
CAS
Google Scholar
Cook DG, Iftikar FI, Baker DW, Hickey AJR, Herbert NA. Low-O2 acclimation shifts the hypoxia avoidance behaviour of snapper (Pagrus auratus) with only subtle changes in aerobic and anaerobic function. J Exp Biol. 2013;216:369.
CAS
PubMed
Google Scholar
Carvan MJ III, Kalluvila TA, Klingler RH, Larson JK, Pickens M, Mora-Zamorano FX, et al. Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish. PLoS One. 2017;12:e0176155.
Article
PubMed
PubMed Central
CAS
Google Scholar
Potok ME, Nix DA, Parnell TJ, Cairns BR. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell. 2013;153:759–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang L, Zhang J, Wang J-J, Wang L, Zhang L, Li G, et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell. 2013;153:773–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortega-Recalde O, Day RC, Gemmell NJ, Hore TA. Zebrafish preserve global germline DNA methylation while sex-linked rDNA is amplified and demethylated during feminisation. Nat Commun. 2019;10:3053.
Article
PubMed
PubMed Central
CAS
Google Scholar
Skvortsova K, Tarbashevich K, Stehling M, Lister R, Irimia M, Raz E, et al. Retention of paternal DNA methylome in the developing zebrafish germline. Nat Commun. 2019;10:3054.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lamb SD, Chia JHZ, Johnson SL. Paternal exposure to a common herbicide alters the behavior and serotonergic system of zebrafish offspring. PLoS One. 2020;15:e0228357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ci W, Liu J. Programming and inheritance of parental DNA methylomes in vertebrates. Physiology. 2015;30:63–8.
Article
CAS
PubMed
Google Scholar
Peat JR, Dean W, Clark SJ, Krueger F, Smallwood SA, Ficz G, et al. Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation. Cell Rep. 2014;9:1990–2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardiner-Garden M, Frommer M. CpG Islands in vertebrate genomes. J Mol Biol. 1987;196:261–82.
Article
CAS
PubMed
Google Scholar
Long HK, Sims D, Heger A, Blackledge NP, Kutter C, Wright ML, et al. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. eLife. 2013;2:e00348.
Article
PubMed
PubMed Central
Google Scholar
Truebano M, Tills O, Collins M, Clarke C, Shipsides E, Wheatley C, et al. Short-term acclimation in adults does not predict offspring acclimation potential to hypoxia. Sci Rep. 2018;8:3174.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ganis JJ, Hsia N, Trompouki E, de Jong JLO, DiBiase A, Lambert JS, et al. Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR. Dev Biol. 2012;366:185–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwerte T, Überbacher D, Pelster B. Non-invasive imaging of blood cell concentration and blood distribution in zebrafish (Danio rerio) incubated in hypoxic conditions in vivo. J Exp Biol. 2003;206:1299.
Article
PubMed
Google Scholar
Rombough P, Drader H. Hemoglobin enhances oxygen uptake in larval zebrafish (Danio rerio) but only under conditions of extreme hypoxia. J Exp Biol. 2009;212:778.
Article
CAS
PubMed
Google Scholar
Tiedke J, Gerlach F, Mitz SA, Hankeln T, Burmester T. Ontogeny of globin expression in zebrafish (Danio rerio). J Comp Physiol B. 2011;181:1011–21.
Article
CAS
PubMed
Google Scholar
Rashid I, Nagpure NS, Srivastava P, Kumar R, Pathak AK, Singh M, et al. HRGFish: a database of hypoxia responsive genes in fishes. Sci Rep. 2017;7:42346.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valli A, Harris AL, Kessler BM. Hypoxia metabolism in ageing. Aging. 2015;7:465–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katschinski DM. Is there a molecular connection between hypoxia and aging? Exp Gerontol. 2006;45:482–4.
Article
CAS
Google Scholar
Zhang Y, Gou W, Ma J, Zhang H, Zhang Y, Zhang H. Genome methylation and regulatory functions for hypoxic adaptation in Tibetan chicken embryos. PeerJ. 2017;5:e3891.
Article
PubMed
PubMed Central
CAS
Google Scholar
Childebayeva A, Harman T, Weinstein J, Goodrich JM, Dolinoy DC, Day TA, et al. DNA methylation changes are associated with an incremental ascent to high altitude. Front Genet. 2019;10:1062.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tse AC-K, Li J-W, Wang SY, Chan T-F, Lai KP, Wu RS-S. Hypoxia alters testicular functions of marine medaka through microRNAs regulation. Aquat Toxicol. 2016;180:266–73.
Article
CAS
PubMed
Google Scholar
D’Urso A, Brickner JH. Mechanisms of epigenetic memory. Trends Genet. 2014;30:230–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johnson SL, Zellhuber-McMillan S, Gillum J, Dunleavy J, Evans JP, Nakagawa S, et al. Evidence that fertility trades off with early offspring fitness as males age. Proc R Soc B Biol Sci. 2018;285:20172174.
Article
Google Scholar
R Core Team. R. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.
Google Scholar
Cleasby IR, Nakagawa S. Neglected biological patterns in the residuals: A behavioural ecologist’s guide to co-operating with heteroscedasticity. Behav Ecol Sociobiol. 2011;65:2361–72.
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinforma Oxf Engl. 2014;30:923–30.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Google Scholar
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10:48.
Article
PubMed
PubMed Central
Google Scholar
Peat J, Ortega-Recalde O, Kardailsky O, Hore T. The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates. F1000Res. 2017;6:526.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miura F, Enomoto Y, Dairiki R, Ito T. Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res. 2012;40:e136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hahne F, Ivanek R. Visualizing Genomic Data Using Gviz and Bioconductor. In: Mathé E, Davis S, editors. Statistical Genomics: Methods and Protocols. New York: Springer New York; 2016. p. 335–51.
Chapter
Google Scholar
Feng H, Conneely KN, Wu H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 2014;42:e69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson SL, Hore TA, Ragsdale A, Dutoit L, Ortega-Recalde O. Paternal hypoxia exposure primes offspring for increased hypoxia resistance. Gene Expression Omnibus. 2020. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE160662
Google Scholar
Johnson SL, Ragsdale A, Nakagawa S. Paternal hypoxia exposure primes offspring for increased hypoxia resistance. Open Science Framework; 2020. https://doi.org/10.17605/osf.io/xpy8j.
Book
Google Scholar