Brault AC, Savage HM, Duggal NK, Eisen RJ, Staples JE. Heartland virus epidemiology, vector association, and disease potential. Viruses. 2018;10(9):498.
Article
Google Scholar
de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, et al. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front Cell Infect Microbiol. 2017;7:114.
Google Scholar
Ng JCK, Falk BW. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol. 2006;44:183–212.
Article
CAS
Google Scholar
Whitfield AE, Falk BW, Rotenberg D. Insect vector-mediated transmission of plant viruses. Virology. 2015;479–480:278–89.
Article
Google Scholar
Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and viral traits predict zoonotic spillover from mammals. Nature. 2017;546(7660):646–50.
Article
CAS
Google Scholar
Weaver SC, Charlier C, Vasilakis N, Lecuit M. Zika, Chikungunya, and Other Emerging Vector-Borne Viral Diseases. Annu Rev Med. 2018;69:395–408.
Article
CAS
Google Scholar
World Health Organization. Global vector control response: an integrated approach for the control of vector-borne diseases. 2017. Available from: https://apps.who.int/gb/ebwha/pdf_files/WHA70/A70_R16-en.pdf?ua=1
Google Scholar
Rocklöv J, Dubrow R. Climate change: an enduring challenge for vector-borne disease prevention and control. Nat Immunol. 2020;21(5):479–83.
Article
Google Scholar
Sutherst RW. Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev. 2004;17(1):136–73.
Article
Google Scholar
Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis. 2020;14(1):e0007831.
Article
CAS
Google Scholar
Jackson BT, Brewster CC, Paulson SL. La Crosse virus infection alters blood feeding behavior in Aedes triseriatus and Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2012;49(6):1424–9.
Article
Google Scholar
Maciel-de-Freitas R, Koella JC, Lourenço-de-Oliveira R. Lower survival rate, longevity and fecundity of Aedes aegypti (Diptera: Culicidae) females orally challenged with dengue virus serotype 2. Trans R Soc Trop Med Hyg. 2011;105(8):452–8.
Article
CAS
Google Scholar
Moncayo AC, Edman JD, Turell MJ. Effect of eastern equine encephalomyelitis virus on the survival of Aedes albopictus, Anopheles quadrimaculatus, and Coquillettidia perturbans (Diptera: Culicidae). J Med Entomol. 2000;37(5):701–6.
Article
CAS
Google Scholar
Neelakanta G, Sultana H, Fish D, Anderson JF, Fikrig E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J Clin Invest. 2010;120(9):3179–90.
Article
CAS
Google Scholar
Cime-Castillo J, Delannoy P, Mendoza-Hernández G, Monroy-Martínez V, Harduin-Lepers A, Lanz-Mendoza H, et al. Sialic acid expression in the mosquito Aedes aegypti and its possible role in dengue virus-vector interactions. Biomed Res Int. 2015;2015:504187.
Article
Google Scholar
Göertz GP, van Bree JWM, Hiralal A, Fernhout BM, Steffens C, Boeren S, et al. Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A. 2019;116(38):19136–44.
Article
Google Scholar
Schnettler E, Tykalová H, Watson M, Sharma M, Sterken MG, Obbard DJ, et al. Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res. 2014;42(14):9436–46.
Article
CAS
Google Scholar
Luplertlop N, Surasombatpattana P, Patramool S, Dumas E, Wasinpiyamongkol L, Saune L, et al. Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following Infection with Dengue Virus. PLoS Pathog. 2011;7(1):e1001252.
Article
CAS
Google Scholar
Zink SD, Van Slyke GA, Palumbo MJ, Kramer LD, Ciota AT. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens. Viruses. 2015;7(10):5619–31.
Article
CAS
Google Scholar
Huang Y-JS, Higgs S, Vanlandingham DL. Arbovirus-Mosquito Vector-Host Interactions and the Impact on Transmission and Disease Pathogenesis of Arboviruses. Front Microbiol. 2019;10:22.
Article
Google Scholar
Goenaga S, Kenney JL, Duggal NK, Delorey M, Ebel GD, Zhang B, et al. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes. Viruses. 2015;7(11):5801–12.
Article
CAS
Google Scholar
Göertz GP, Vogels CBF, Geertsema C, Koenraadt CJM, Pijlman GP. Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of Aedes aegypti. PLoS Negl Trop Dis. 2017;11(6):e0005654.
Article
Google Scholar
Batovska J, Mee PT, Lynch SE, Sawbridge TI, Rodoni BC. Sensitivity and specificity of metatranscriptomics as an arbovirus surveillance tool. Sci Rep. 2019;9(1):19398.
Article
CAS
Google Scholar
Batson J, Dudas G, Haas-Stapleton E, Kistler AL, Li LM, Logan P, et al. Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. Elife. 2021;10. https://doi.org/10.7554/eLife.68353.
Ciota AT. The role of co-infection and swarm dynamics in arbovirus transmission. Virus Res. 2019;265:88–93.
Article
CAS
Google Scholar
Vogels CBF, Rückert C, Cavany SM, Perkins TA, Ebel GD, Grubaugh ND. Arbovirus coinfection and co-transmission: A neglected public health concern? PLoS Biol. 2019;17(1):e3000130.
Article
Google Scholar
Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, et al. Communication between viruses guides lysis-lysogeny decisions. Nature. 2017;541(7638):488–93.
Article
CAS
Google Scholar
Ferguson NM, Galvani AP, Bush RM. Ecological and immunological determinants of influenza evolution. Nature. 2003;422(6930):428–33.
Article
CAS
Google Scholar
Nickbakhsh S, Mair C, Matthews L, Reeve R, Johnson PCD, Thorburn F, et al. Virus-virus interactions impact the population dynamics of influenza and the common cold. Proc Natl Acad Sci U S A. 2019. https://doi.org/10.1073/pnas.1911083116.
Alcaide C, Rabadán MP, Moreno-Pérez MG, Gómez P. Implications of mixed viral infections on plant disease ecology and evolution. Adv Virus Res. 2020;106:145–69.
Article
CAS
Google Scholar
Díaz-Muñoz SL. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments. Virus Evol. 2017;3(1):vex011.
Article
Google Scholar
Sanjuán R, Illingworth CJR, Geoghegan JL, Iranzo J, Zwart MP, Ciota AT, et al. Five challenges in the field of viral diversity and evolution. 2021; Available from: https://aspace.repository.cam.ac.uk/bitstream/handle/1810/322603/fviro-01-684949.pdf?sequence=2&isAllowed=y
Book
Google Scholar
Wilson AJ, Morgan ER, Booth M, Norman R, Perkins SE, Hauffe HC, et al. What is a vector? Philos Trans R Soc Lond Ser B Biol Sci. 2017;372(1719). https://doi.org/10.1098/rstb.2016.0085.
McMenamin AJ, Genersch E. Honey bee colony losses and associated viruses. Curr Opini Insect Sci. 2015;8:121–9.
Article
Google Scholar
Steinhauer N, Kulhanek K, Antúnez K, Human H, Chantawannakul P, Chauzat MP, et al. Drivers of colony losses. Curr Opin Insect Sci. 2018;26:142–8.
Article
Google Scholar
Carreck NL, Ball BV, Martin SJ. Honey bee colony collapse and changes in viral prevalence associated with Varroa destructor. J Apic Res. 2010;49(1):93–4.
Article
Google Scholar
Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, et al. Global honey bee viral landscape altered by a parasitic mite. Science. 2012;336(6086):1304–6.
Article
CAS
Google Scholar
Yañez O, Chávez-Galarza J, Tellgren-Roth C, Pinto MA, Neumann P, de Miranda JR. The honeybee (Apis mellifera) developmental state shapes the genetic composition of the deformed wing virus-A quasispecies during serial transmission. Sci Rep. 2020;10(1):5956.
Article
Google Scholar
Nganso BT, Sela N, Soroker V. A genome-wide screening for RNAi pathway proteins in Acari. BMC Genomics. 2020;21:791.
Article
CAS
Google Scholar
Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27(2):209–20.
CAS
Google Scholar
Rosche KL, Sidak-Loftis LC, Hurtado J, Fisk EA, Shaw DK. Arthropods Under Pressure: Stress Responses and Immunity at the Pathogen-Vector Interface. Front Immunol. 2021;11:629777.
Article
Google Scholar
Blair CD, Olson KE. The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses. 2015;7(2):820–43.
Article
CAS
Google Scholar
Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559 Available from: http://www.biomedcentral.com/1471-2105/9/559.
Article
Google Scholar
Deshoux M, Monsion B, Uzest M. Insect cuticular proteins and their role in transmission of phytoviruses. Curr Opin Virol. 2018;33:137–43.
Article
CAS
Google Scholar
Baxter RHG, Contet A, Krueger K. Arthropod Innate Immune Systems and Vector-Borne Diseases. Biochemistry. 2017;56(7):907–18.
Article
CAS
Google Scholar
Hurd H. Manipulation of medically important insect vectors by their parasites. Annu Rev Entomol. 2003;48:141–61.
Article
CAS
Google Scholar
Targett GAT. Parasites, arthropod vectors, and immune responses. Parasite Immunol. 2006;28(4):117–9.
Article
CAS
Google Scholar
Benjeddou M, Leat N, Allsopp M, Davison S. Detection of acute bee paralysis virus and black queen cell virus from honeybees by reverse transcriptase pcr. Appl Environ Microbiol. 2001;67(5):2384–7.
Article
CAS
Google Scholar
Daughenbaugh KF, Martin M, Brutscher LM, Cavigli I, Garcia E, Lavin M, et al. Honey bee infecting Lake Sinai viruses. Viruses. 2015;7(6):3285–309.
Article
CAS
Google Scholar
Kevill JL, Highfield A, Mordecai GJ, Martin SJ, Schroeder DC. ABC Assay: Method Development and Application to Quantify the Role of Three DWV Master Variants in Overwinter Colony Losses of European Honey Bees. Viruses. 2017;9(11). https://doi.org/10.3390/v9110314.
Chen G, Wang S, Jia S, Feng Y, Hu F, Chen Y, et al. A New Strain of Virus Discovered in China Specific to the Parasitic Mite Varroa destructor Poses a Potential Threat to Honey Bees. Viruses. 2021;13(4):679.
Article
CAS
Google Scholar
Levin S, Galbraith D, Sela N, Erez T, Grozinger CM, Chejanovsky N. Presence of Apis rhabdovirus-1 in populations of pollinators and their parasites from two continents. Front Microbiol. 2017;8:2482.
Article
Google Scholar
Levin S, Sela N, Chejanovsky N. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor. Sci Rep. 2016;6:37710.
Article
CAS
Google Scholar
Posada-Florez F, Childers AK, Heerman MC, Egekwu NI, Cook SC, Chen Y, et al. Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative manner. Sci Rep. 2019;9(1):12445.
Article
Google Scholar
Gisder S, Genersch E. Direct Evidence for Infection of Varroa destructor Mites with the Bee-Pathogenic Deformed Wing Virus Variant B - but Not Variant A - via Fluorescence-in situ-Hybridization Analysis. J Virol. 2020. https://doi.org/10.1128/JVI.01786-20.
Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38(5):916–31.
Article
CAS
Google Scholar
Geoghegan JL, Duchêne S, Holmes EC. Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog. 2017;13(2):e1006215.
Article
Google Scholar
Ricklefs RE, Outlaw DC, Svensson-Coelho M, Medeiros MCI, Ellis VA, Latta S. Species formation by host shifting in avian malaria parasites. Proc Natl Acad Sci U S A. 2014;111(41):14816–21.
Article
CAS
Google Scholar
Williams PD, Kamel SJ. The evolution of pathogen virulence: Effects of transitions between host types. J Theor Biol. 2018;438:1–8.
Article
Google Scholar
Martin SJ, Brettell LE. Deformed wing virus in honeybees and other insects. Annu Rev Virol. 2019;6(1). https://doi.org/10.1146/annurev-virology-092818-.
Norton AM, Remnant EJ, Tom J, Buchmann G, Blacquiere T, Beekman M. Adaptation to vector-based transmission in a honey bee virus. J Anim Ecol. 2021. https://doi.org/10.1111/1365-2656.13493.
Domingo E. Chapter 6 - Virus Population Dynamics Examined with Experimental Model Systems. In: Domingo E, editor. Virus as Populations. Boston: Academic Press; 2016. p. 197–225.
Chapter
Google Scholar
Abrao EP, da Fonseca BAL. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus. Vector Borne Zoonotic Dis. 2016;16(2):124–30.
Article
Google Scholar
Pepin KM, Lambeth K, Hanley KA. Asymmetric competitive suppression between strains of dengue virus. BMC Microbiol. 2008;8:28.
Article
Google Scholar
Leeks A, Segredo-Otero EA, Sanjuán R, West SA. Beneficial coinfection can promote within-host viral diversity. Virus Evol. 2018;4(2):vey028.
Article
Google Scholar
Levin BR, Bull JJ. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 1994;2(3):76–81.
Article
CAS
Google Scholar
Ciota AT, Ehrbar DJ, Van Slyke GA, Willsey GG, Kramer LD. Cooperative interactions in the West Nile virus mutant swarm. BMC Evol Biol. 2012;12:58.
Article
CAS
Google Scholar
Shirogane Y, Watanabe S, Yanagi Y. Cooperation between different RNA virus genomes produces a new phenotype. Nat Commun. 2012;3:1235.
Article
Google Scholar
Shirogane Y, Watanabe S, Yanagi Y. Cooperative Interaction Within RNA Virus Mutant Spectra. In: Domingo E, Schuster P, editors. Quasispecies: From Theory to Experimental Systems. Cham: Springer International Publishing; 2016. p. 219–29.
Google Scholar
Aaskov J, Buzacott K, Thu HM, Lowry K, Holmes EC. Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes. Science. 2006;311(5758):236–8.
Article
CAS
Google Scholar
Hegde S, Rasgon JL, Hughes GL. The microbiome modulates arbovirus transmission in mosquitoes. Curr Opin Virol. 2015;15:97–102.
Article
CAS
Google Scholar
Rainey SM, Shah P, Kohl A, Dietrich I. Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges. J Gen Virol. 2014;95(Pt 3):517–30.
Article
CAS
Google Scholar
Team RC. R: A language and environment for statistical computing. 2013; Available from: https://www.R-project.org/
Google Scholar
Eliash N. varroa-virus-networks. 2021. Available from: https://github.com/nurit-eliash/varroa-virus-networks
Google Scholar
Techer MA, Rane RV, Grau ML, Roberts JMK, Sullivan ST, Liachko I, et al. Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites. Commun Biol. 2019;2(1):357.
Article
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.
Article
CAS
Google Scholar
Kraberger S, Visnovsky GA, van Toor RF, Male MF, Waits K, Fontenele RS, et al. Genome Sequences of Two Single-Stranded DNA Viruses Identified in Varroa destructor. Genome Announc. 2018;6(9). https://doi.org/10.1128/genomeA.00107-18.
Kraberger S, Cook CN, Schmidlin K, Fontenele RS, Bautista J, Smith B, et al. Diverse single-stranded DNA viruses associated with honey bees (Apis mellifera). Infect Genet Evol. 2019;71:179–88.
Article
CAS
Google Scholar
Brettell LE, Schroeder DC, Martin SJ. RNAseq analysis reveals virus diversity within hawaiian apiary insect communities. Viruses. 2019;11(5). https://doi.org/10.3390/v11050397.
Remnant EJ, Shi M, Buchmann G, Blacquière T, Holmes EC, Beekman M, et al. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J Virol. 2017;91(16):1–19.
Article
Google Scholar
Cornman RS, Boncristiani H, Dainat B, Chen Y, VanEngelsdorp D, Weaver D, et al. Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing. BMC Genomics. 2013;14(1):154.
Article
CAS
Google Scholar
Langfelder P, Horvath S. Tutorials for WGCNA R package. 2016. Available from: https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/ [cited 20 Jul 2021]
Google Scholar
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B Stat Methodol. 1995;57(1):289–300.
Google Scholar
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23(2):257–8.
Article
CAS
Google Scholar
Campbell EM, Budge GE, Bowman AS. Gene-knockdown in the honey bee mite Varroa destructor by a non-invasive approach: studies on a glutathione S-transferase. Parasit Vectors. 2010;3:73.
Article
Google Scholar
Garbian Y, Maori E, Kalev H, Shafir S, Sela I. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population. PLoS Pathog. 2012;8(12):e1003035.
Article
CAS
Google Scholar
Nganso BT, Mani K, Eliash N, Rafaeli A, Soroker V. Towards disrupting Varroa -honey bee chemosensing: A focus on a Niemann-Pick type C2 transcript. Insect Mol Biol. 2021. https://doi.org/10.1111/imb.12722.
Singh NK, Eliash N, Stein I, Kamer Y, Ilia Z, Rafaeli A, et al. Identification and gene-silencing of a putative odorant receptor transcription factor in Varroa destructor: possible role in olfaction. Insect Mol Biol. 2016;25(2):181–90.
Article
CAS
Google Scholar
Campbell EM, Budge GE, Watkins M, Bowman AS. Transcriptome analysis of the synganglion from the honey bee mite, Varroa destructor and RNAi knockdown of neural peptide targets. Insect Biochem Mol Biol. 2016;70:116–26.
Article
CAS
Google Scholar
Hasegawa N, Techer M, Mikheyev AS. A toolkit for studying Varroa genomics and transcriptomics: preservation, extraction, and sequencing library preparation. BMC Genomics. 2021;22(1):54.
Article
CAS
Google Scholar
de Miranda JR, Bailey L, Ball BV, Blanchard P, Budge GE, Chejanovsky N, et al. Standard methods for virus research in Apis mellifera. J Apic Res. 2013;52(4):1–56.
Article
Google Scholar
Gisder S, Möckel N, Eisenhardt D, Genersch E. In vivo evolution of viral virulence: switching of deformed wing virus between hosts results in virulence changes and sequence shifts. Environ Microbiol. 2018;20(12):4612–28.
Article
CAS
Google Scholar
Altschul SF, Gish W, Miller WT, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
Google Scholar
Campbell EM, McIntosh CH, Bowman AS. A Toolbox for Quantitative Gene Expression in Varroa destructor: RNA Degradation in Field Samples and Systematic Analysis of Reference Gene Stability. PLoS One. 2016;11(5):e0155640.
Article
Google Scholar