Honegger K, de Bivort B. Stochasticity, individuality and behavior. Curr Biol. 2018;28(1):R8–12.
Article
CAS
Google Scholar
White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond. 1986;314(1165):1–340.
CAS
Google Scholar
Flavell SW, Gordus A. Dynamic functional connectivity in the static connectome of Caenorhabditis elegans. Curr Opin Neurobiol. 2022;73:102515.
Article
CAS
Google Scholar
Cassada RC, Russell RL. The dauerlarva, a post-embryonic nematode developmental elegans variant of the Caenorhabditis. Dev Biol. 1975;342(46):326–42.
Article
Google Scholar
Klass M, Hirsh D. Non-ageing developmental variant of Caenorhabditis elegans. Nature. 1976;260(5551):523–5.
Article
CAS
Google Scholar
Fielenbach N, Antebi A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 2008;22(16):2149–65.
Article
CAS
Google Scholar
Baugh LR, Hu PJ. Starvation responses throughout the Caenorhabditis elegans life cycle. Genetics. 2020;216(4):837–78.
Article
CAS
Google Scholar
Albert PS, Riddle DL. Developmental alterations in sensory neuroanatomy of the Caenorhabditis elegans dauer larva. J Comp Neurol. 1983;481:461–81.
Article
Google Scholar
Bhattacharya A, Aghayeva U, Berghoff EG, Hobert O. Plasticity of the electrical connectome of C. elegans. Cell. 2019;176(5):1174–1189.e16.
Article
CAS
Google Scholar
Britz S, Markert SM, Witvliet D, Steyer AM, Tröger S, Mulcahy B, et al. Structural analysis of the Caenorhabditis elegans dauer larval anterior sensilla by focused ion beam-scanning electron microscopy. Front Neuroanat. 2021;15:732520.
Article
CAS
Google Scholar
Lee IH, Procko C, Lu Y, Shaham S. Stress-induced neural plasticity mediated by glial GPCR REMO-1 promotes C. elegans adaptive behavior. Cell Rep. 2021;34(2):108607.
Article
CAS
Google Scholar
Schroeder NE, Androwski RJ, Rashid A, Lee H, Lee J, Barr MM. Dauer-specific dendrite arborization in C. elegans is regulated by KPC-1/Furin. Curr Biol. 2013;23(16):1527–35.
Article
CAS
Google Scholar
Barlow IL, Feriani L, Minga E, McDermott-Rouse A, O’Brien TJ, Liu Z, et al. Megapixel camera arrays enable high-resolution animal tracking in multiwell plates. Commun Biol. 2022;5(1):253.
Article
Google Scholar
Cermak N, Yu SK, Clark R, Huang YC, Baskoylu SN, Flavell SW. Whole-organism behavioral profiling reveals a role for dopamine in state dependent motor program coupling in C. Elegans. eLife. 2020;9:1–34.
Article
Google Scholar
Ramot D, Johnson BE, Berry TL, Carnell L, Goodman MB. The parallel worm tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE. 2008;3(5):6–12.
Article
Google Scholar
Stern S, Kirst C, Bargmann CI. Neuromodulatory control of long-term behavioral patterns and individuality across development. Cell. 2017;0(0):1–14.
Google Scholar
Yemini E, Jucikas T, Grundy LJ, Brown AEX, Schafer WR. A database of Caenorhabditis elegans behavioral phenotypes. Nat Methods. 2013;10(9):877–9.
Article
CAS
Google Scholar
Jolles JW. Broad-scale applications of the Raspberry Pi: a review and guide for biologists. Methods Ecol Evol. 2021;12(9):1562–79.
Article
Google Scholar
Dietz C, Rueden CT, Helfrich S, Dobson ETA, Horn M, Eglinger J, et al. Integration of the ImageJ Ecosystem in KNIME Analytics Platform. Front Comput Sci. 2020;2:8.
Article
Google Scholar
Pietzsch T, Preibisch S, Tomančák P, Saalfeld S. ImgLib2—generic image processing in Java. Bioinformatics. 2012;28(22):3009–11.
Article
CAS
Google Scholar
Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, et al. TrackMate: an open and extensible platform for single-particle tracking. Methods. 2017;115:80–90.
Article
CAS
Google Scholar
Friedrich Preusser. WormObserver. Available from: https://doi.org/10.5281/zenodo.7108431. Accessed 29 Nov 2022.
Gaglia MM, Kenyon C, Francisco S. Stimulation of movement in a quiescent, hibernation-like form of Caenorhabditis elegans by dopamine signaling. J Neurosci. 2009;29(22):7302–14.
Pradhan S, Quilez S, Homer K, Hendricks M. Environmental programming of adult foraging behavior in C. elegans. Curr Biol. 2019;29(17):2867–2879.e4.
Article
CAS
Google Scholar
Lee H, Choi M k, Lee D, Kim H s, Hwang H, Kim H, et al. Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat Neurosci. 2012;15(1):107–12.
Article
CAS
Google Scholar
Barriere A, Felix MA. Natural variation and population genetics of Caenorhabditis elegans. WormBook. 2005:1–19.
Félix MA, Duveau F. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biol. 2012;10(1):59.
Article
Google Scholar
Wolkow CA, Hall DH. The Dauer Muscle. In: WormAtlas; 2013. https://doi.org/10.3908/wormatlas.3.7.
Chapter
Google Scholar
Ben Arous J, Laffont S, Chatenay D. Molecular and sensory basis of a food related two-state behavior in C. elegans. PLoS ONE. 2009;4(10):1–8.
Article
Google Scholar
Brown AEX, Yemini EI, Grundy LJ, Jucikas T, Schafer WR. A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion. Proc Natl Acad Sci U S A. 2013;110(2):791–6.
Article
CAS
Google Scholar
Gyenes B, Brown AEX. Deriving shape-based features for C. elegans locomotion using dimensionality reduction methods. Front Behav Neurosci. 2016;10(AUG):1–9.
Google Scholar
Hums I, Riedl J, Mende F, Kato S, Kaplan HS, Latham R, et al. Regulation of two motor patterns enables the gradual adjustment of locomotion strategy in Caenorhabditis elegans. eLife. 2016;5(e14116):1–36.
Google Scholar
Kaplan HS, Thula OS, Khoss N, Zimmer M. Nested neuronal dynamics orchestrate a behavioral hierarchy across timescales. Neuron. 2019;105:1–15.
Schwarz RF, Branicky R, Grundy LJ, Schafer WR, Brown AEX. Changes in postural syntax characterize sensory modulation and natural variation of C. elegans locomotion. PLoS Comput Biol. 2015;11(8):1–16.
Article
Google Scholar
Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS. Dimensionality and dynamics in the behavior of C. elegans. PLoS Comput Biol. 2008;4(4):e1000028.
Article
Google Scholar
Gray JM, Hill JJ, Bargmann CI. A circuit for navigation in Caenorhabditis elegans; 2005.
Book
Google Scholar
Chalasani SH, Chronis N, Tsunozaki M, Gray JM, Ramot D, Goodman MB, et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature. 2007;450(7166):63–70.
Article
CAS
Google Scholar
Flavell SW, Pokala N, Macosko EZ, Albrecht DR, Larsch J, Bargmann CI. Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C . elegans. Cell. 2013;154(5):1023–35.
Article
CAS
Google Scholar
Laurent P, Soltesz Z, Nelson G, Chen C, Arellano-Carbajal F, Levy E, et al. Decoding a neural circuit controlling global animal state in C. Elegans. eLife. 2015;2015(4):1–39.
Google Scholar
Vidal B, Aghayeva U, Sun H, Wang C, Glenwinkel L, Bayer EA, et al. An atlas of Caenorhabditis elegans chemoreceptor expression. Vosshall L, editor. PLoS Biol. 2018;16(1):e2004218.
Article
Google Scholar
Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buchman AR, et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1 , a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev. 2001;15(6):672–86.
Article
CAS
Google Scholar
Cornils A, Gloeck M, Chen Z, Zhang Y, Alcedo J. Specific insulin-like peptides encode sensory information to regulate distinct developmental processes. Development. 2011;138(6):1183–93.
Article
CAS
Google Scholar
Li W, Kennedy SG, Ruvkun G. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev. 2003;17(7):844–58.
Article
CAS
Google Scholar
Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: Single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2(3):666–73.
Article
CAS
Google Scholar
Friedrich Preusser. Interactive Dauer exit gene expression visualization. Available from: https://www.bit.ly/dauer_exit. Accessed 29 Nov 2022.
Von Reuss SH, Bose N, Srinivasan J, Yim JJ, Judkins JC, Sternberg PW, et al. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J Am Chem Soc. 2012;134(3):1817–24.
Article
Google Scholar
Hung WL, Wang Y, Chitturi J, Zhen M. A Caenorhabditis elegans developmental decision requires insulin signaling-mediated neuron-intestine communication. Development. 2014;141(8):1767–79.
Article
CAS
Google Scholar
Golden JW, Riddle DL. A Caenorhabditis elegans dauer-inducing pheromone and an antagonistic component of the food supply. J Chem Ecol. 1984;10(8):1265–80.
Article
CAS
Google Scholar
Bhat US, Shahi N, Surendran S, Babu K. Neuropeptides and behaviors: how small peptides regulate nervous system function and behavioral outputs. Front Mol Neurosci. 2021;14:786471.
Article
CAS
Google Scholar
Matsunaga Y, Nakajima K, Gengyo-Ando K, Mitani S, Iwasaki T, Kawano T. A caenorhabditis elegans insulin-like peptide, INS-17: its physiological function and expression pattern. Biosci Biotechnol Biochem. 2012;76(11):2168–72.
Article
CAS
Google Scholar
Liu M, Kumar S, Sharma AK, Leifer AM. A high-throughput method to deliver targeted optogenetic stimulation to moving C. elegans populations. Sengupta P, editor. PLoS Biol. 2022;20(1):e3001524.
Article
CAS
Google Scholar
Hebert L, Ahamed T, Costa AC, O’Shaughnessy L, Stephens GJ. WormPose: image synthesis and convolutional networks for pose estimation in C. elegans. PLoS Comput Biol. 2021;17(4):1–20.
Article
Google Scholar
Javer A, Currie M, Lee CW, Hokanson J, Li K, Martineau CN, et al. An open-source platform for analyzing and sharing worm-behavior data. Nat Methods. 2018;15(9):645–6.
Article
CAS
Google Scholar
Frézal L, Félix MA. C. elegans outside the Petri dish. eLife. 2015;4:e05849.
Article
Google Scholar
Dixon SJ, Alexander M, Chan KKM, Roy PJ. Insulin-like signaling negatively regulates muscle arm extension through DAF-12 in Caenorhabditis elegans. Dev Biol. 2008;318(1):153–61.
Article
CAS
Google Scholar
Bringmann H. Agarose hydrogel microcompartments for imaging sleep- and wake-like behavior and nervous system development in Caenorhabditis elegans larvae. J Neurosci Methods. 2011;201(1):78–88.
Article
Google Scholar
Churgin MA, Jung SK, Yu CC, Chen X, Raizen DM, Fang-Yen C. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife. 2017;6:1–25.
Article
Google Scholar
Bargmann CI, Horvitz HR. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science. 1972;1991(251):1243–6.
Google Scholar
Kaplan REW, Webster AK, Chitrakar R, Dent JA, Baugh LR. Food perception without ingestion leads to metabolic changes and irreversible developmental arrest in C. elegans. BMC Biol. 2018;16(1):112.
Article
Google Scholar
Jékely G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci USA. 2013;110(21):8702–7.
Article
Google Scholar
Barrios A, Ghosh R, Fang C, Emmons SW, Barr MM. PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans. Nat Neurosci. 2012;15(12):1675–82.
Article
CAS
Google Scholar
Turek M, Besseling J, Spies JP, König S, Bringmann H. Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep. eLife. 2016;5:e12499.
Article
Google Scholar
Chai CM, Torkashvand M, Seyedolmohadesin M, Park H, Venkatachalam V, Sternberg PW. Interneuron control of C. elegans developmental decision-making. Curr Biol. 2022;32(10):2316–24.e4
Lee JS, Shih PY, Schaedel ON, Quintero-Cadena P, Rogers AK, Sternberg PW. FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system. Proc Natl Acad Sci. 2017;114(50):E10726–35.
Article
CAS
Google Scholar
Cheong MC, Artyukhin AB, You YJ, Avery L. An opioid-like system regulating feeding behavior in C. elegans. eLife. 2015;4:1–19.
Article
Google Scholar
Mylenko M, Boland S, Penkov S, Sampaio JL, Lombardot B, Vorkel D, et al. NAD+ is a food component that promotes exit from dauer diapause in Caenorhabditis elegans. PLoS ONE. 2016;11(12):1–17.
Article
Google Scholar
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 2017;357(6352):661–7.
Article
CAS
Google Scholar
Taylor SR, Santpere G, Weinreb A, Barrett A, Reilly MB, Xu C, et al. Molecular topography of an entire nervous system. Cell. 2021;184(16):4329–4347.e23.
Article
CAS
Google Scholar
Finger F, Ottens F, Springhorn A, Drexel T, Proksch L, Metz S, et al. Olfaction regulates organismal proteostasis and longevity via microRNA-dependent signalling. Nat Metab. 2019;1(3):350–9.
Article
CAS
Google Scholar
Holler K, Junker JP. RNA tomography for spatially resolved transcriptomics (tomo-seq). Methods Mol Biol. 2019;1920:129–41.
Article
CAS
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
Article
CAS
Google Scholar
Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47(8):e47.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
Google Scholar
Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2 -- an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000Research. 2020;9(ELIXIR):709.
Article
Google Scholar