Roux F, Voisin D, Badet T, Balagué C, Barlet X, Huard-Chauveau C, et al. Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol. 2014;15:427–32.
Article
Google Scholar
Sucher J, Mbengue M, Dresen A, Barascud M, Didelon M, Barbacci A, et al. Phylotranscriptomics of the Pentapetalae reveals frequent regulatory variation in plant local responses to the fungal pathogen Sclerotinia sclerotiorum. Plant Cell. 2020;32:1820–44.
Delplace F, Huard-Chauveau C, Dubiella U, Khafif M, Alvarez E, Langin G, et al. Robustness of plant quantitative disease resistance is provided by a decentralized immune network. Proc Natl Acad Sci U S A. 2020;117:18099–109.
Article
CAS
Google Scholar
Fichman Y, Mittler R. Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? Plant J. 2020;102:887–96.
Article
CAS
Google Scholar
Zhou F, Emonet A, Dénervaud Tendon V, Marhavy P, Wu D, Lahaye T, et al. Co-incidence of damage and microbial patterns controls localized immune responses in roots. Cell. 2020;180:440–453.e18.
Article
CAS
Google Scholar
Peyraud R, Mbengue M, Barbacci A, Raffaele S. Intercellular cooperation in a fungal plant pathogen facilitates host colonization. Proc Natl Acad Sci U S A. 2019;116(8):3193–201.
Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I. Calcium transport across plant membranes: mechanisms and functions. New Phytol. 2018;220:49–69.
Article
CAS
Google Scholar
Hamant O, Moulia B. How do plants read their own shapes? New Phytol. 2016;212:333–7.
Article
CAS
Google Scholar
Moulia B, Douady S, Hamant O. Fluctuations shape plants through proprioception. Science (80- ). 2021;372:eabc6868.
Article
CAS
Google Scholar
Hamant O, Haswell ES. Life behind the wall: sensing mechanical cues in plants. BMC Biol. 2017;15:1–9.
Article
Google Scholar
Tran D, Girault T, Guichard M, Thomine S, Leblanc-Fournier N, Moulia B, et al. Cellular transduction of mechanical oscillations in plants by the plasma-membrane mechanosensitive channel MSL10. Proc Natl Acad Sci U S A. 2021;118:e1919402118.
Landrein B, Hamant O. How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. Plant J. 2013;75:324–38.
Article
CAS
Google Scholar
Hamant O, Inoue D, Bouchez D, Dumais J, Mjolsness E. Are microtubules tension sensors? Nat Commun. 2019;10:2360.
Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, Bokov P, et al. Developmental patterning by mechanical signals in Arabidopsis. Science. 2008;322:1650–5.
Article
CAS
Google Scholar
Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, et al. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. Elife. 2014;3:e01967.
Louveaux M, Julien J-D, Mirabet V, Boudaoud A, Hamant O. Cell division plane orientation based on tensile stress in Arabidopsis thaliana. Proc Natl Acad Sci. 2016;113(30):201600677.
Jacques E, Verbelen J-P, Vissenberg K. Mechanical stress in Arabidopsis leaves orients microtubules in a ‘continuous’ supracellular pattern. BMC Plant Biol. 2013;13:163.
Article
Google Scholar
Vaahtera L, Schulz J, Hamann T. Cell wall integrity maintenance during plant development and interaction with the environment. Nat Plants. 2019;5:924–32.
Article
Google Scholar
Bacete L, Hamann T. The role of mechanoperception in plant cell wall integrity maintenance. Plants. 2020;9:574.
Article
CAS
Google Scholar
Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, et al. The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal. 2018;11:eaao3070.
Corwin JA, Kliebenstein DJ. Quantitative resistance: more than just perception of a pathogen. Plant Cell. 2017;29:655–65.
Article
Google Scholar
Peyraud R, Mbengue M, Barbacci A, Raffaele S. Intercellular cooperation in a fungal plant pathogen facilitates host colonization. Proc Natl Acad Sci U S A. 2019;116:3193–201.
Article
CAS
Google Scholar
Boudaoud A. An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci. 2010;15:353–60.
Article
CAS
Google Scholar
Barbacci A, Diener J, Hémon P, Adam B, Donès N, Reveret L, et al. A robust videogrametric method for the velocimetry of wind-induced motion in trees. Agric For Meteorol. 2014;184:220–9.
Article
Google Scholar
Guimarães RL, Stotz HU. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol. 2004;136:3703–11.
Article
Google Scholar
Louveaux M, Julien JD, Mirabet V, Boudaoud A, Hamant O. Cell division plane orientation based on tensile stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2016;113:E4294–303.
Article
CAS
Google Scholar
Dumais J, Forterre Y. “Vegetable dynamicks”: the role of water in plant movements. Annu Rev Fluid Mech. 2012;44:453–78.
Article
Google Scholar
Barbacci A, Navaud O, Mbengue M, Barascud M, Godiard L, Khafif M, et al. Rapid identification of an Arabidopsis NLR gene as a candidate conferring susceptibility to Sclerotinia sclerotiorum using time-resolved automated phenotyping. Plant J. 2020;103(2):1–15.
Phillips R. Biology by the numbers. Boca Raton: CRC press; 2008.
Book
Google Scholar
Forterre Y. Slow, fast and furious: understanding the physics of plant movements. J Exp Bot. 2013;64:4745–60.
Article
CAS
Google Scholar
Forterre Y. Basic soft matter for plants. Soft Matte: Royal Society of Chemistry; 2023.
Google Scholar
Gu Y, Deng Z, Paredez AR, DeBolt S, Wang Z-Y, Somerville C. Prefoldin 6 is required for normal microtubule dynamics and organization in Arabidopsis. Proc Natl Acad Sci U S A. 2008;105:18064–9.
Article
CAS
Google Scholar
Ge SX, Son EW, Yao R. iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics. 2018;19:1–24.
Article
Google Scholar
van Moerkercke A, Duncan O, Zander M, Simura J, Broda M, Vanden BR, et al. A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proc Natl Acad Sci U S A. 2019;116:23345–56.
Article
Google Scholar
Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–9.
Article
CAS
Google Scholar
Takatani S, Verger S, Okamoto T, Takahashi T, Hamant O, Motose H. Microtubule response to tensile stress is curbed by NEK6 to buffer growth variation in the Arabidopsis hypocotyl. Curr Biol. 2020;30:1491–1503.e2.
Article
CAS
Google Scholar
Wightman R, Chomicki G, Kumar M, Carr P, Turner SR. SPIRAL2 determines plant microtubule organization by modulating microtubule severing. Curr Biol. 2013;23:1902–7.
Article
CAS
Google Scholar
Eng RC, Schneider R, Matz TW, Carter R, Ehrhardt DW, Jönsson H, et al. KATANIN and CLASP function at different spatial scales to mediate microtubule response to mechanical stress in Arabidopsis cotyledons. Curr Biol. 2021;31:3262–3274.e6.
Article
CAS
Google Scholar
Ishida T, Kaneko Y, Iwano M, Hashimoto T. Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2007;104:8544–9.
Article
CAS
Google Scholar
Zhu M, Chen W, Mirabet V, Hong L, Bovio S, Strauss S, et al. Robust organ size requires robust timing of initiation orchestrated by focused auxin and cytokinin signalling. Nat Plants. 2020;6:686–98.
Article
CAS
Google Scholar
Mulema JMK, Denby KJ. Spatial and temporal transcriptomic analysis of the Arabidopsis thaliana–Botrytis cinerea interaction. Mol Biol Rep. 2012;39:4039–49.
Article
CAS
Google Scholar
Bichet A, Desnos T, Turner S, Grandjean O, Höfte H. BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J. 2001;25:137–48.
Article
CAS
Google Scholar
Malivert A, Erguvan Ö, Chevallier A, Dehem A, Friaud R, Liu M, et al. FERONIA and microtubules independently contribute to mechanical integrity in the Arabidopsis shoot. PLoS Biol. 2021;19:e3001454.
Article
CAS
Google Scholar
Li T, Yan A, Bhatia N, Altinok A, Afik E, Durand-Smet P, et al. Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche. Nat Commun. 2019;10:1–9.
Google Scholar
Song P, Jia Q, Chen L, Jin X, Xiao X, Li L, et al. Involvement of Arabidopsis phospholipase D δ in regulation of ROS-mediated microtubule organization and stomatal movement upon heat shock. J Exp Bot. 2020;71:6555–70.
Article
CAS
Google Scholar
Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo AJ, et al. Glutamate triggers long-distance, calcium-based plant defense signaling. Science (80- ). 2018;361:1112–5.
Article
CAS
Google Scholar
Bleau JR, Spoel SH. Selective redox signaling shapes plant-pathogen interactions. Plant Physiol. 2021;186:53–65.
Article
CAS
Google Scholar
Tang L, Yang G, Ma M, Liu X, Li B, Xie J, et al. An effector of a necrotrophic fungal pathogen targets the calcium-sensing receptor in chloroplasts to inhibit host resistance. Mol Plant Pathol. 2020;21:686–701.
Article
CAS
Google Scholar
Bhandari DD, Brandizzi F. Endomembranes and cytoskeleton : moving targets in immunity. Curr Opin Plant Biol. 2020;58:1–9.
Article
Google Scholar
Brenya E, Chen ZH, Tissue D, Papanicolaou A, Cazzonelli CI. Prior exposure of Arabidopsis seedlings to mechanical stress heightens jasmonic acid-mediated defense against necrotrophic pathogens. BMC Plant Biol. 2020;20:548.
Article
CAS
Google Scholar
Benikhlef L, L’Haridon F, Abou-Mansour E, Serrano M, Binda M, Costa A, et al. Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance. BMC Plant Biol. 2013;13:133.
Article
Google Scholar
Chehab EW, Yao C, Henderson Z, Kim S, Braam J. Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr Biol. 2012;22:701–6.
Article
CAS
Google Scholar
Matsumura M, Nomoto M, Itaya T, Aratani Y, Matsuura T, Hayashi Y, et al. Mechanosensory trichome cells evoke a mechanical stimuli-induced immune response in plants. Nat Commun. 2022;13:1–15.
Article
Google Scholar
Iida H. Mugifumi, a beneficial farm work of adding mechanical stress by treading to wheat and barley seedlings. Front. Plant Sci. 2014;5(SEP):453.
Google Scholar
Ghosh R, Barbacci A, Leblanc-Fournier N. Mechanostimulation: a promising alternative for sustainable agriculture practices. J Exp Bot. 2021. https://doi.org/10.1093/jxb/erab036.
Coutand C, Moulia B. Biomechanical study of the effect of a controlled bending on tomato stem elongation: local strain sensing and spatial integration of the signal. J Exp Bot. 2000;51:1825–42.
Article
CAS
Google Scholar
Moulia B, Coutand C, Julien J-L, et al. Front Plant Sci. 2015;6(February):52.
Google Scholar
Jaffe MJ. Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta. 1973;114:143–57.
Article
CAS
Google Scholar
Rui Y, Dinneny JR. A wall with integrity: surveillance and maintenance of the plant cell wall under stress. New Phytol. 2020;225:1428–39.
Article
Google Scholar
Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet. 2010;11:539–48.
Article
CAS
Google Scholar
Patel H, Ewels P, Peltzer A, Hammarén R, Botvinnik O, Sturm G, et al. nf-core/rnaseq: nf-core/rnaseq v3.0 - Silver Shark. 2020.
Google Scholar
Marc J, Granger CL, Brincat J, Fisher DD, Kao TH, McCubbin AG, et al. A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell. 1998;10:1927–39.
CAS
Google Scholar
Boudaoud A, Burian A, Borowska-Wykrȩt D, Uyttewaal M, Wrzalik R, Kwiatkowska D, et al. FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nat Protoc. 2014;9:457–63.
Article
CAS
Google Scholar
Shi J, Tomasi C. Good Features to Track. In: IEEE conference on computer vision and pattern recognition; 1994.
Google Scholar
Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array programming with NumPy. Nature. 2020;585:357–62.
Article
CAS
Google Scholar
Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007;9:90–5.
Article
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. 2021.
Google Scholar
Wickham H. Ggplot2; 2009. p. 9–27.
Google Scholar
Laboratoire des Interactions Plantes-Microorganismes. Pathogen-derived mechanical cues potentiate the spatio-temporal implementation of plant defense. Sequence Read Arch. https://identifiers.org/insdc.sra:SRP400889.