Packard A. Cephalopods and fish: the limits of convergence. Biol Rev. 1972;47:241–307.
Article
CAS
Google Scholar
Zhang Y, Mao F, Mu H, Huang M, Bao Y, Wang L, et al. The genome of Nautilus pompilius illuminates eye evolution and biomineralization. Nat Ecol Evol. 2021. https://doi.org/10.1038/s41559-021-01448-6.
Ward P, Dooley F, Jeff G. Nautilus: biology , systematics, and paleobiology as viewed from 2015. Swiss J Palaeontol. 2016;135:17–33.
Article
Google Scholar
Mutvei H, Zhang YB, Dunca E. Late Cambrian plectronocerid nautiloids and their role in cephalopod evolution. Palaeontology. 2007;50:1327–33.
Article
Google Scholar
Young JZ. The central nervous system of Nautilus. Philos Trans R Soc London Ser B, Biol. 1965;249:1–25.
Article
Google Scholar
Li F, Bian L, Ge J, Han F, Liu Z, Li X, et al. Chromosome-level genome assembly of the East Asian common octopus (Octopus sinensis) using PacBio sequencing and Hi-C technology. Mol Ecol Resour. 2020;20:1572–82.
Article
CAS
Google Scholar
Kim BM, Kang S, Ahn DH, Jung SH, Rhee H, Yoo JS, et al. The genome of common long-arm octopus Octopus minor. Gigascience. 2018;7:1–7.
Google Scholar
Zarrella I, Herten K, Maes GE, Tai S, Yang M, Seuntjens E, et al. The survey and reference assisted assembly of the Octopus vulgaris genome. Sci Data. 2019;6:1–8.
Article
Google Scholar
Whitelaw BL, Cooke IR, Finn J, Da Fonseca RR, Ritschard EA, Gilbert MTP, et al. Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion, and loss. Gigascience. 2020;9:1–15.
Article
CAS
Google Scholar
Belcaid M, Casaburi G, McAnulty SJ, Schmidbaur H, Suria AM, Moriano-Gutierrez S, et al. Symbiotic organs shaped by distinct modes of genome evolution in cephalopods. Proc Natl Acad Sci U S A. 2019;116:3030–5.
Article
CAS
Google Scholar
Da Fonseca RR, Couto A, Machado AM, Brejova B, Albertin CB, Silva F, et al. A draft genome sequence of the elusive giant squid, Architeuthis dux. Gigascience. 2020;9:1–12.
CAS
Google Scholar
Huang Z, Huang W, Liu X, Han Z, Liu G, Boamah GA, et al. Genomic insights into the adaptation and evolution of the nautilus, an ancient but evolving “living fossil”. Mol Ecol Resour. 2022;22:15–27.
Article
Google Scholar
Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, et al. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature. 2015;524:220–4.
Article
CAS
Google Scholar
Hochner B, Glanzman DL. Evolution of highly diverse forms of behavior in molluscs. Curr Biol. 2016;26:R965–71.
Article
CAS
Google Scholar
Vitti JJ. Cephalopod cognition in an evolutionary context: implications for ethology. Biosemiotics. 2013;6:393–401.
Article
Google Scholar
Budelmann, B. U. The cephalopod nervous system: What evolution has made of the molluscan design. in The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach: With a Coda written by T.H. Bullock. (Breidbach, O. & Kutsch, W. editors). Birkhäuser; 1995. p. 115–138.
Shigeno S, Andrews PLR, Ponte G, Fiorito G. Cephalopod brains: an overview of current knowledge to facilitate comparison with vertebrates. Front Physiol. 2018;9:1–16.
Article
Google Scholar
Jung SH, Song HY, Hyun YS, Kim YC, Whang I, Choi TY, et al. A brain Atlas of the long arm Octopus, Octopus minor. Exp Neurobiol. 2018;27:257–66.
Article
Google Scholar
Chung WS, Kurniawan ND, Marshall NJ. Comparative brain structure and visual processing in octopus from different habitats. Curr Biol. 2022;32(1):97–11.
Yamazaki A, Yoshida M, Uematsu K. Post-hatching development of the brain in Octopus ocellatus. Zool Sci. 2002;19:763–71.
Article
Google Scholar
Gutnick T, Zullo L, Hochner B, Kuba MJ. Use of peripheral sensory information for central nervous control of arm movement by Octopus vulgaris. Curr Biol. 2020;30:4322–4327.e3.
Article
CAS
Google Scholar
Hochner B, Shomrat T, Fiorito G. The Octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull. 2006;210:308–17.
Article
Google Scholar
Hochner B. Functional and comparative assessments of the octopus learning and memory system. Front Biosci - Sch. 2010;2S:764–71.
Article
Google Scholar
Wang JH, Zheng XD. Comparison of the genetic relationship between nine Cephalopod species based on cluster analysis of karyotype evolutionary distance. Comp Cytogenet. 2017;11:477–94.
Article
Google Scholar
Adachi K, Ohnishi K, Kuramochi T, Yoshinaga T, Okumura SI. Molecular cytogenetic study in Octopus (Amphioctopus) areolatus from Japan. Fish Sci. 2014;80:445–50.
Article
CAS
Google Scholar
Vitturi R, Rasotto MB, Farinella-Ferruzza N. The chromosomes of 16 molluscan species. Bolletino di Zool. 1982;49:61–71.
Article
Google Scholar
Bonnaud L, Ozouf-Costaz C, Boucher-Rodoni R. A molecular and karyological approach to the taxonomy of Nautilus. Comptes Rendus - Biol. 2004;327:133–8.
Article
CAS
Google Scholar
Gold DA, Katsuki T, Li Y, Yan X, Regulski M, Ibberson D, et al. The genome of the jellyfish Aurelia and the evolution of animal complexity. Nat Ecol Evol. 2019;3:96–104.
Article
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.
Article
CAS
Google Scholar
Sonawane AR, Platig J, Fagny M, Chen CY, Paulson JN, Lopes-Ramos CM, et al. Understanding Tissue-Specific Gene Regulation. Cell Rep. 2017;21:1077–88.
Article
CAS
Google Scholar
Weihe E, Tao-Cheng JH, Schäfer MKH, Erickson JD, Eiden LE. Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc Natl Acad Sci U S A. 1996;93:3547–52.
Article
CAS
Google Scholar
Styfhals R, Zolotarov G, Hulselmans G, Spanier KI, Poovathingal S, Elagoz AM, et al. Cell type diversity in a developing octopus brain. Nat Commun. 2022;13(1):7392.
Gavriouchkina D, Tan Y, Ziadi-künzli F, Hasegawa Y, Zhang L, Sugimoto C, et al. A single-cell atlas of bobtail squid visual and nervous system highlights molecular principles of convergent evolution. 2022.
Book
Google Scholar
Duruz J, Sprecher M, Kaldun J, Alsoudy A, Tschanz-Lischer H, van Geest G, Sprecher S. Molecular characterization of cell types in the squid Loligo vulgaris. bioRxiv. 2022:2022.03.28.485983.
Hallinan NM, Lindberg DR. Comparative analysis of chromosome counts infers three paleopolyploidies in the mollusca. Genome Biol Evol. 2011;3:1150–63.
Article
Google Scholar
Masa-aki Y, Ishikura Y, Moritaki T, Shoguchi E, Shimizu KK, Sese J, et al. Genome structure analysis of molluscs revealed whole genome duplication and lineage specific repeat variation. Gene. 2011;483:63–71.
Article
Google Scholar
Lee PN, Callaerts P, De Couet HG, Martindale MQ. Cephalopod Hox genes and the origin of morphological novelties. Nature. 2003;424:1061–5.
Article
CAS
Google Scholar
Wang S, Zhang J, Jiao W, Li J, Xun X, Sun Y, et al. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat Ecol Evol. 2017;1:1–12.
Article
Google Scholar
Albertin CB, Medina-Ruiz S, Mitros T, Schmidbaur H, Sanchez G, Wang ZY, et al. Genome and transcriptome mechanisms driving cephalopod evolution. Nat Commun 2022;13:2427.
Wang ZY, Ragsdale CW. Cadherin genes and evolutionary novelties in the octopus. Semin Cell Dev Biol. 2017;69:151–7.
Article
CAS
Google Scholar
Ritschard EA, Fitak RR, Simakov O, Johnsen S. Genomic signatures of G-protein-coupled receptor expansions reveal functional transitions in the evolution of cephalopod signal transduction. Proc Biol Sci. 2019;286(1897):20182929.
Schmidbaur H, Kawaguchi A, Clarence T, Fu X, Hoang OP, Zimmermann B, et al. Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization. Nat Commun. 2022;13:1–11.
Article
Google Scholar
Chen X, Zhang J. The genomic landscape of position effects on protein expression level and noise in yeast. Cell Syst. 2016;2:347–54.
Article
CAS
Google Scholar
Schreiner D, Weiner JA. Combinatorial homophilic interaction between γ-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci U S A. 2010;107:14893–8.
Article
CAS
Google Scholar
Jiang D, Zheng X, Qian Y, Zhang Q. Development of Amphioctopus fangsiao (Mollusca: Cephalopoda) from eggs to hatchlings: indications for the embryonic developmental management. Mar Life Sci Technol. 2020;2:24–30.
Article
Google Scholar
Arseneau JR, Steeves R, Laflamme M. Modified low-salt CTAB extraction of high-quality DNA from contaminant-rich tissues. Mol Ecol Resour. 2017;17:686–93.
Article
CAS
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation Sergey. Genome Res. 2016;25:1–2.
Google Scholar
Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020;17:155–8.
Article
CAS
Google Scholar
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27(5):737–46.
Article
CAS
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9.
Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80.
Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
Google Scholar
Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015;16:259.
Article
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95–8.
Article
CAS
Google Scholar
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–5.
Article
CAS
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80.
Article
CAS
Google Scholar
Xu Z, Wang H. LTR-FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35(SUPPL.2):265–8.
Article
Google Scholar
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19 SUPPL. 2:215–25.
Google Scholar
Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics. 2004;20:2878–9.
Article
CAS
Google Scholar
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;9:1–9.
Google Scholar
Alioto T, Blanco E, Parra G, Guigó R. Using geneid to identify genes. Curr Protoc Bioinformatics. 2018;64:1–32.
Article
Google Scholar
Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 1997;268:78–94.
Article
CAS
Google Scholar
Keilwagen J, Wenk M, Erickson JL, Schattat MH, Grau J, Hartung F. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 2016;44:1–11.
Article
Google Scholar
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67.
Article
CAS
Google Scholar
Campbell MA, Haas BJ, Hamilton JP, Mount SM, Robin CR. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics. 2006;7:1–17.
Article
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9:1–22.
Article
Google Scholar
Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000;28:45–8.
Article
CAS
Google Scholar
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:1–14.
Article
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: Tool for the unification of biology. Nat Genet. 2000;25:25–9.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
Google Scholar
Lowe TM, Eddy SR. TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1996;25:955–64.
Article
Google Scholar
She R, Chu JSC, Wang K, Pei J, Chen N. genBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 2009;19:143–9.
Article
CAS
Google Scholar
Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res. 2004;14:988–95.
Article
CAS
Google Scholar
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation(China). 2021;2:100141.
CAS
Google Scholar
Liu R, Wang K, Liu J, Xu W, Zhou Y, Zhu C, et al. De novo genome assembly of limpet Bathyacmaea lactea (gastropoda: Pectinodontidae): The first reference genome of a deep-sea gastropod endemic to cold seeps. Genome Biol Evol. 2021;12:905–10.
Article
Google Scholar
Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, Hellsten U, et al. Insights into bilaterian evolution from three spiralian genomes. Nature. 2013;493:526–31.
Article
CAS
Google Scholar
Sun J, Chen C, Miyamoto N, Li R, Sigwart JD, Xu T, et al. The Scaly-foot Snail genome and implications for the origins of biomineralised armour. Nat Commun. 2020;11(1):1657.
Sun J, Mu H, Ip JCH, Li R, Xu T, Accorsi A, et al. Signatures of divergence, invasiveness, and terrestrialization revealed by four apple snail genomes. Mol Biol Evol. 2019;36:1507–20.
Article
CAS
Google Scholar
Adema CM, Hillier LW, Jones CS, Loker ES, Knight M, Minx P, et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat Commun. 2017;8:15451.
Cai H, Li Q, Fang X, Li J, Curtis NE, Altenburger A, et al. Data descriptor: A draft genome assembly of the solar-powered sea slug Elysia chlorotica. Sci Data. 2019;6:1–13.
Article
Google Scholar
Li C, Liu X, Liu B, Ma B, Liu F, Liu G, et al. Draft genome of the Peruvian scallop Argopecten purpuratus. Gigascience. 2018;7:1–6.
Article
Google Scholar
Kenny NJ, McCarthy SA, Dudchenko O, James K, Betteridge E, Corton C, et al. The gene-rich genome of the scallop Pecten maximus. Gigascience. 2020;9:1–13.
Article
CAS
Google Scholar
Bai CM, Xin LS, Rosani U, Wu B, Wang QC, Duan XK, et al. Chromosomal-level assembly of the blood clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C. Gigascience. 2019;8:1–8.
Article
CAS
Google Scholar
Wang J, Zhang G, Fang X, Guo X, Li L, Luo R, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490:49–54.
Article
Google Scholar
Powell D, Subramanian S, Suwansa-Ard S, Zhao M, O’Connor W, Raftos D, et al. The genome of the oyster Saccostrea offers insight into the environmental resilience of bivalves. DNA Res. 2018;25:655–65.
Article
CAS
Google Scholar
Yang JL, Feng DD, Liu J, Xu JK, Chen K, Li YF, et al. Chromosome-level genome assembly of the hard-shelled mussel Mytilus coruscus, a widely distributed species from the temperate areas of East Asia. Gigascience. 2021;10:1–13.
Article
Google Scholar
Thai BT, Lee YP, Gan HM, Austin CM, Croft LJ, Trieu TA, et al. Whole Genome Assembly of the Snout Otter Clam, Lutraria rhynchaena, Using Nanopore and Illumina Data, Benchmarked Against Bivalve Genome Assemblies. Front Genet. 2019;10:1–8.
Article
Google Scholar
Varney RM, Speiser DI, McDougall C, Degnan BM, Kocot KM. The Iron-Responsive Genome of the Chiton Acanthopleura granulata. Genome Biol Evol. 2021;13:1–15.
Article
CAS
Google Scholar
Luo YJ, Kanda M, Koyanagi R, Hisata K, Akiyama T, Sakamoto H, et al. Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads. Nat Ecol Evol. 2018;2:141–51.
Article
Google Scholar
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238.
Edgar RC. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:1–19.
Article
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
Article
Google Scholar
Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, et al. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 2020;20:348–55.
Article
Google Scholar
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol. 2020;37:1530–4.
Article
CAS
Google Scholar
Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: A Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25:2286–8.
Article
CAS
Google Scholar
Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Article
CAS
Google Scholar
Benton M, Donoghue PCJ, Asher RJ. Calibrating and constraining the molecular clock. In: Hedges SB, Kumar S, editors. The Timetree of Life: Oxford University Press; 2009. p. 35–86.
Google Scholar
Benton MJ, Donoghue PCJ, Asher RJ, Friedman M, Near TJ, Vinther J. Constraints on the timescale of animal evolutionary history. Palaeontol Electron. 2015;18:1–107.
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.
Article
Google Scholar
Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:1–14.
Article
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
Google Scholar
Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
Article
CAS
Google Scholar
Zhang Z, Xiao J, Wu J, Zhang H, Liu G, Wang X, et al. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem Biophys Res Commun. 2012;419:779–81.
Article
CAS
Google Scholar
Jiang D, Liu Q, Sun J, Liu S, Fan G, Wang L, et al. The gold-ringed octopus (Amphioctopus fangsiao) genome and cerebral single-nucleus transcriptomes provide insights into the evolution of karyotype and neural novelties. http://ncbi.nlm.nih.gov/bioproject/PRJNA762647. (2021).
Jiang D, Liu Q, Sun J, Liu S, Fan G, Wang L, et al. The gold-ringed octopus (Amphioctopus fangsiao) genome and cerebral single-nucleus transcriptomes provide insights into the evolution of karyotype and neural novelties. https://figshare.com/s/fa09f5dadcd966f020f3. (2022).
Jiang D, Liu Q, Sun J, Liu S, Fan G, Wang L, et al. The gold-ringed octopus (Amphioctopus fangsiao) genome and cerebral single-nucleus transcriptomes provide insights into the evolution of karyotype and neural novelties. https://db.cngb.org/search/project/CNP0002082/. (2022).