McMahon AP, Ingham PW, Tabin CJ: Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol. 2003, 53: 1-114. full_text.
Article
CAS
PubMed
Google Scholar
Jiang J, Hui CC: Hedgehog signaling in development and cancer. Dev Cell. 2008, 15 (6): 801-812. 10.1016/j.devcel.2008.11.010.
Article
CAS
PubMed
Google Scholar
Ingham PW, McMahon AP: Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001, 15 (23): 3059-3087. 10.1101/gad.938601.
Article
CAS
PubMed
Google Scholar
Monnier V, Ho KS, Sanial M, Scott MP, Plessis A: Hedgehog signal transduction proteins: contacts of the Fused kinase and Ci transcription factor with the kinesin-related protein Costal2. BMC Dev Biol. 2002, 2: 4-10.1186/1471-213X-2-4.
Article
PubMed Central
PubMed
Google Scholar
Zhang W, Zhao Y, Tong C, Wang G, Wang B, Jia J, Jiang J: Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev Cell. 2005, 8 (2): 267-278. 10.1016/j.devcel.2005.01.001.
Article
CAS
PubMed
Google Scholar
Ruel L, Gallet A, Raisin S, Truchi A, Staccini-Lavenant L, Cervantes A, Therond PP: Phosphorylation of the atypical kinesin Costal2 by the kinase Fused induces the partial disassembly of the Smoothened-Fused-Costal2-Cubitus interruptus complex in Hedgehog signalling. Development. 2007, 134 (20): 3677-3689. 10.1242/dev.011577.
Article
CAS
PubMed
Google Scholar
Chen MH, Gao N, Kawakami T, Chuang PT: Mice deficient in the fused homolog do not exhibit phenotypes indicative of perturbed hedgehog signaling during embryonic development. Mol Cell Biol. 2005, 25 (16): 7042-7053. 10.1128/MCB.25.16.7042-7053.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen MH, Wilson CW, Li YJ, Law KK, Lu CS, Gacayan R, Zhang X, Hui CC, Chuang PT: Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev. 2009, 23 (16): 1910-1928. 10.1101/gad.1794109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Varjosalo M, Li SP, Taipale J: Divergence of hedgehog signal transduction mechanism between Drosophila and mammals. Dev Cell. 2006, 10 (2): 177-186. 10.1016/j.devcel.2005.12.014.
Article
CAS
PubMed
Google Scholar
Huangfu D, Anderson KV: Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development. 2006, 133 (1): 3-14. 10.1242/dev.02169.
Article
CAS
PubMed
Google Scholar
Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK: Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 2005, 1 (4): e53-10.1371/journal.pgen.0010053.
Article
PubMed Central
PubMed
Google Scholar
Wolff C, Roy S, Ingham PW: Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol. 2003, 13 (14): 1169-1181. 10.1016/S0960-9822(03)00461-5.
Article
CAS
PubMed
Google Scholar
Tay SY, Ingham PW, Roy S: A homologue of the Drosophila kinesin-like protein Costal2 regulates Hedgehog signal transduction in the vertebrate embryo. Development. 2005, 132 (4): 625-634. 10.1242/dev.01606.
Article
CAS
PubMed
Google Scholar
Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF: Vertebrate Smoothened functions at the primary cilium. Nature. 2005, 437 (7061): 1018-1021. 10.1038/nature04117.
Article
CAS
PubMed
Google Scholar
Aanstad P, Santos N, Corbit KC, Scherz PJ, le Trinh A, Salvenmoser W, Huisken J, Reiter JF, Stainier DY: The extracellular domain of Smoothened regulates ciliary localization and is required for high-level Hh signaling. Curr Biol. 2009, 19 (12): 1034-1039. 10.1016/j.cub.2009.04.053.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lunt SC, Haynes T, Perkins BD: Zebrafish ift57, ift88, and ift172 intraflagellar transport mutants disrupt cilia but do not affect hedgehog signaling. Dev Dyn. 2009, 238 (7): 1744-1759. 10.1002/dvdy.21999.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV: Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 2003, 426 (6962): 83-87. 10.1038/nature02061.
Article
CAS
PubMed
Google Scholar
Liu A, Wang B, Niswander LA: Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development. 2005, 132 (13): 3103-3111. 10.1242/dev.01894.
Article
CAS
PubMed
Google Scholar
Sekimizu K, Nishioka N, Sasaki H, Takeda H, Karlstrom RO, Kawakami A: The zebrafish iguana locus encodes Dzip1, a novel zinc-finger protein required for proper regulation of Hedgehog signaling. Development. 2004, 131 (11): 2521-2532. 10.1242/dev.01059.
Article
CAS
PubMed
Google Scholar
Wolff C, Roy S, Lewis KE, Schauerte H, Joerg-Rauch G, Kirn A, Weiler C, Geisler R, Haffter P, Ingham PW: iguana encodes a novel zinc-finger protein with coiled-coil domains essential for Hedgehog signal transduction in the zebrafish embryo. Genes Dev. 2004, 18 (13): 1565-1576. 10.1101/gad.296004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Karlstrom RO, Talbot WS, Schier AF: Comparative synteny cloning of zebrafish you-too: mutations in the Hedgehog target gli2 affect ventral forebrain patterning. Genes Dev. 1999, 13 (4): 388-393. 10.1101/gad.13.4.388.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG: A highly efficient Escherichia c oli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics. 2001, 73 (1): 56-65. 10.1006/geno.2000.6451.
Article
CAS
PubMed
Google Scholar
Devoto SH, Melancon E, Eisen JS, Westerfield M: Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development. 1996, 122 (11): 3371-3380.
CAS
PubMed
Google Scholar
Barresi MJ, Stickney HL, Devoto SH: The zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity. Development. 2000, 127 (10): 2189-2199.
CAS
PubMed
Google Scholar
Koudijs MJ, den Broeder MJ, Groot E, van Eeden FJ: Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway. BMC Dev Biol. 2008, 8: 15-10.1186/1471-213X-8-15.
Article
PubMed Central
PubMed
Google Scholar
Chen W, Burgess S, Hopkins N: Analysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity. Development. 2001, 128 (12): 2385-2396.
CAS
PubMed
Google Scholar
Varga ZM, Amores A, Lewis KE, Yan YL, Postlethwait JH, Eisen JS, Westerfield M: Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. Development. 2001, 128 (18): 3497-3509.
CAS
PubMed
Google Scholar
Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA: Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development. 2005, 132 (8): 1907-1921. 10.1242/dev.01772.
Article
CAS
PubMed
Google Scholar
Colantonio JR, Vermot J, Wu D, Langenbacher AD, Fraser S, Chen JN, Hill KL: The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature. 2009, 457 (7226): 205-209. 10.1038/nature07520.
Article
CAS
PubMed
Google Scholar
Pathak N, Obara T, Mangos S, Liu Y, Drummond IA: The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol Biol. 2007, 18 (11): 4353-4364.
CAS
Google Scholar
McEwen DP, Jenkins PM, Martens JR: Olfactory cilia: our direct neuronal connection to the external world. Curr Top Dev Biol. 2008, 85: 333-370. full_text.
Article
CAS
PubMed
Google Scholar
Yu X, Ng CP, Habacher H, Roy S: Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet. 2008, 40 (12): 1445-1453. 10.1038/ng.263.
Article
CAS
PubMed
Google Scholar
Cheung HO, Zhang X, Ribeiro A, Mo R, Makino S, Puviindran V, Law KK, Briscoe J, Hui CC: The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal. 2009, 2 (76): ra29-10.1126/scisignal.2000405.
Article
PubMed
Google Scholar
Liem KF, He M, Ocbina PJ, Anderson KV: Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc Natl Acad Sci USA. 2009
Google Scholar
Endoh-Yamagami S, Evangelista M, Wilson D, Wen X, Theunissen JW, Phamluong K, Davis M, Scales SJ, Solloway MJ, de Sauvage FJ, Peterson AS: The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol. 2009, 19 (15): 1320-1326. 10.1016/j.cub.2009.06.046.
Article
CAS
PubMed
Google Scholar
Huang P, Schier AF: Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development. 2009, 136 (18): 3089-3098. 10.1242/dev.041343.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rink JC, Gurley KA, Elliott SA, Sanchez Alvarado A: Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science. 2009, 326 (5958): 1406-1410. 10.1126/science.1178712.
Article
PubMed Central
CAS
PubMed
Google Scholar
Glazer AM, Wilkinson AW, Backer CB, Lapan SW, Gutzman JH, Cheeseman IM, Reddien PW: The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis. Dev Biol. 337 (1): 148-156. 10.1016/j.ydbio.2009.10.025.
Tay SY, Yu X, Wong KN, Panse P, Ng CP, Roy S: The iguana/DZIP1 protein is a novel component of the ciliogenic pathway essential for axonemal biogenesis. Dev Dyn. 239 (2): 527-534. 10.1002/dvdy.22199.
Gerdes JM, Liu Y, Zaghloul NA, Leitch CC, Lawson SS, Kato M, Beachy PA, Beales PL, DeMartino GN, Fisher S: Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet. 2007, 39 (11): 1350-1360. 10.1038/ng.2007.12.
Article
CAS
PubMed
Google Scholar
Ou Y, Ruan Y, Cheng M, Moser JJ, Rattner JB, Hoorn van der FA: Adenylate cyclase regulates elongation of mammalian primary cilia. Exp Cell Res. 2009, 315 (16): 2802-2817. 10.1016/j.yexcr.2009.06.028.
Article
PubMed Central
CAS
PubMed
Google Scholar
Besschetnova TY, Kolpakova-Hart E, Guan Y, Zhou J, Olsen BR, Shah JV: Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr Biol. 20 (2): 182-187. 10.1016/j.cub.2009.11.072.
Jurczyk A, Gromley A, Redick S, San Agustin J, Witman G, Pazour GJ, Peters DJ, Doxsey S: Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. J Cell Biol. 2004, 166 (5): 637-643. 10.1083/jcb.200405023.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yin Y, Bangs F, Paton IR, Prescott A, James J, Davey MG, Whitley P, Genikhovich G, Technau U, Burt DW, Tickle C: The Talpid3 gene (KIAA0586) encodes a centrosomal protein that is essential for primary cilia formation. Development. 2009, 136 (4): 655-664. 10.1242/dev.028464.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lewis KE, Drossopoulou G, Paton IR, Morrice DR, Robertson KE, Burt DW, Ingham PW, Tickle C: Expression of ptc and gli genes in talpid3 suggests bifurcation in Shh pathway. Development. 1999, 126 (11): 2397-2407.
CAS
PubMed
Google Scholar
Chen JN, van Eeden FJ, Warren KS, Chin A, Nusslein-Volhard C, Haffter P, Fishman MC: Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development. 1997, 124 (21): 4373-4382.
CAS
PubMed
Google Scholar
Bajoghli B, Aghaallaei N, Heimbucher T, Czerny T: An artificial promoter construct for heat-inducible misexpression during fish embryogenesis. Dev Biol. 2004, 271 (2): 416-430. 10.1016/j.ydbio.2004.04.006.
Article
CAS
PubMed
Google Scholar
Oxtoby E, Jowett T: Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res. 1993, 21 (5): 1087-1095. 10.1093/nar/21.5.1087.
Article
PubMed Central
CAS
PubMed
Google Scholar