Lane N, Martin W: The energetics of genome complexity. Nature. 2010, 467: 929-934.
CAS
PubMed
Google Scholar
Cavalier-Smith T: The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Evol Microbiol. 2002, 52: 297-354.
CAS
PubMed
Google Scholar
Koonin EV: The Biological Big Bang model for the major transitions in evolution. Biol Direct. 2007, 2: 21-
PubMed Central
PubMed
Google Scholar
Margulis L: Origin of Eukaryotic Cells. 1970, Yale University Press, New Haven
Google Scholar
Margulis L: Symbiosis in Cell Evolution. 1981, W. H. Freeman, New York
Google Scholar
Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR: Mitochondrial origins. Proc Natl Acad Sci. 1985, 82: 4443-4447.
CAS
PubMed Central
PubMed
Google Scholar
Martin W: Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr Opin Microbiol. 2005, 8: 630-637.
CAS
PubMed
Google Scholar
Embley T, Martin W: Eukaryotic evolution, changes and challenges. Nature. 2006, 440: 623-630.
CAS
PubMed
Google Scholar
Jochimsen B, PeinemannSimon S, Volker H, Stuben D, Botz R, Stoffers P, Dando P, Thomm M: Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur-dependent crenarchaeote isolated from Milos, Greece. Extremophiles. 1997, 1: 67-73.
CAS
PubMed
Google Scholar
Miroshnichenko ML, Gongadze GM, Rainey FA, Kostyukova AS, Lysenko AM, Chernyh NA, Bonch-Osmolovskaya EA: Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol. 1998, 48: 23-29.
PubMed
Google Scholar
Rachel R, Wyschkony I, Riehl S, Huber H: The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea. 2002, 1: 9-
CAS
PubMed Central
PubMed
Google Scholar
Baker BJ, Tyson GW, Webb RI, Flanagan J, Hugenholtz P, Allen EE, Banfield JF: Lineages of acidophilic Archaea revealed by community genomic analysis. Science. 2006, 314: 1933-1935.
CAS
PubMed
Google Scholar
Marguet E, Gaudin M, Gauliard E, Fourquaux I, du Plouy S, Matsui I, Forterre P: Membrane vesicles, nanopods and/or nanotubes produced by hyperthermophilic archaea of the genus Thermococcus. Biochem Soc Trans. 2013, 41: 436-442.
CAS
PubMed
Google Scholar
Reysenbach A, Liu Y, Banta A, Beveridge T, Kirshtein J, Schouten S, Tivey M, Von Damm K, Voytek M: A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature. 2006, 442: 444-447.
CAS
PubMed
Google Scholar
Baluška F, Volkmann D, Menzel D, Barlow P: Strasburger's legacy to mitosis and cytokinesis and its relevance for the Cell Theory. Protoplasma. 2012, 249: 1151-1162.
PubMed
Google Scholar
Margulis L, Dolan M, Guerrero R: The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. Proc Natl Acad Sci U S A. 2000, 97: 6954-6959.
CAS
PubMed Central
PubMed
Google Scholar
Takemura M: Poxviruses and the origin of the eukaryotic nucleus. J Mol Evol. 2001, 52: 419-425.
CAS
PubMed
Google Scholar
Bell P: Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus?. J Mol Evol. 2001, 53: 251-256.
CAS
PubMed
Google Scholar
Lake J, Rivera M: Was the nucleus the first endosymbiont?. Proc Natl Acad Sci U S A. 1994, 91: 2880-2881.
CAS
PubMed Central
PubMed
Google Scholar
Gupta R, Golding G: The origin of the eukaryotic cell. Trends Biochem Sci. 1996, 21: 166-171.
CAS
PubMed
Google Scholar
Horiike T, Hamada K, Miyata D, Shinozawa T: The origin of eukaryotes is suggested as the symbiosis of Pyrococcus into γ-Proteobacteria by phylogenetic tree based on gene content. J Mol Evol. 2004, 59: 606-619.
CAS
PubMed
Google Scholar
Forterre P: A new fusion hypothesis for the origin of Eukarya: better than previous ones, but probably also wrong. Res Microbiol. 2011, 162: 77-91.
CAS
PubMed
Google Scholar
Moreira D, Lopez-Garcia P: Symbiosis between methanogenic Archaea and δ-Proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol. 1998, 47: 517-530.
CAS
PubMed
Google Scholar
Lopez-Garcia P, Moreira D: Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci. 1999, 24: 88-93.
CAS
PubMed
Google Scholar
Gould GW, Dring GJ: On a possible relationship between bacterial endospore formation and the origin of eukaryotic cells. J Theor Biol. 1979, 81: 47-53.
CAS
PubMed
Google Scholar
Kelly S, Wickstead B, Gull K: Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc R Soc B. 2011, 278: 1009-1018.
CAS
PubMed Central
PubMed
Google Scholar
Williams T, Foster P, Nye T, Cox C, Embley T: A congruent phylogenomic signal places eukaryotes within the Archaea. Proc R Soc B. 2012, 279: 4870-4879.
CAS
PubMed Central
PubMed
Google Scholar
Rivera MC, Lake JA: The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature. 2004, 431: 152-155.
CAS
PubMed
Google Scholar
Brown JR, Doolittle WF: Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev. 1997, 61: 456-502.
CAS
PubMed Central
PubMed
Google Scholar
Rochette NC, Brochier-Armanet C, Gouy M: Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol Biol Evol. 2014, 31: 832-845.
CAS
PubMed Central
PubMed
Google Scholar
Martin W: A briefly argued case that mitochondria and plastids are descendants of endosymbionts, but that the nuclear compartment is not. Proc R Soc B. 1999, 266: 1387-1395.
PubMed Central
Google Scholar
Cavalier-Smith T: Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution.Biol Direct 2010, 5.,
Thiergart T, Landan G, Schenk M, Dagan T, Martin WF: An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol Evol. 2012, 4: 466-485.
CAS
PubMed Central
PubMed
Google Scholar
Cavalier-Smith T: The origin of nuclei and of eukaryotic cells. Nature. 1975, 256: 463-468.
Google Scholar
Taylor FJR: Autogenous theories for the origin of eukaryotes. Taxon. 1976, 4: 377-390.
Google Scholar
Poole A, Neumann N: Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Res Microbiol. 2011, 162: 71-76.
PubMed
Google Scholar
Cavalier-Smith T: Origin of nuclei and of eukaryotic cells. Nature. 1975, 256: 463-468.
Google Scholar
Cavalier-Smith T: Autogeny and symbiosis in the origin of nuclei, endomembranes, cilia, mitochondria, chloroplasts and microbodies. Endocyt Cell Res. 1986, 3: 354-354.
Google Scholar
Cavalier-Smith T: Origin of the cell nucleus. Bioessays. 1988, 9: 72-78.
CAS
PubMed
Google Scholar
Devos D, Dokudovskaya S, Alber F, Williams R, Chait B, Sali A, Rout M: Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2004, 2: 2085-2093.
CAS
Google Scholar
Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA: Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science. 1989, 243: 75-77.
CAS
PubMed
Google Scholar
Roger AJ: Reconstructing early events in eukaryotic evolution. Am Nat. 1999, 154: S146-S163.
PubMed
Google Scholar
Embley TM, Hirt RP: Early branching eukaryotes?. Curr Opin Genet Dev. 1998, 8: 624-629.
CAS
PubMed
Google Scholar
Searcy DG: Metabolic integration during the evolutionary origin of mitochondria. Cell Res. 2003, 13: 229-238.
CAS
PubMed
Google Scholar
Martin W, Muller M: The hydrogen hypothesis for the first eukaryote. Nature. 1998, 392: 37-41.
CAS
PubMed
Google Scholar
Martin W, Koonin E: Introns and the origin of nucleus-cytosol compartmentalization. Nature. 2006, 440: 41-45.
CAS
PubMed
Google Scholar
de Roos A: The origin of the eukaryotic cell based on conservation of existing interfaces. Artif Life. 2006, 12: 513-523.
PubMed
Google Scholar
Lake J, Henderson E, Oakes M, Clark M: Eocytes - a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci U S A. 1984, 81: 3786-3790.
CAS
PubMed Central
PubMed
Google Scholar
Guy L, Ettema TJG: The archaeal `TACK' superphylum and the origin of eukaryotes. Trends Microbiol. 2011, 19: 580-587.
CAS
PubMed
Google Scholar
Albers S, Meyer B: The archaeal cell envelope. Nat Rev Microbiol. 2011, 9: 414-426.
CAS
PubMed
Google Scholar
Ettema T, Lindas A, Bernander R: An actin-based cytoskeleton in archaea. Mol Microbiol. 2011, 80: 1052-1061.
CAS
PubMed
Google Scholar
Wickstead B, Gull K: The evolution of the cytoskeleton. J Cell Biol. 2011, 194: 513-525.
CAS
PubMed Central
PubMed
Google Scholar
Yutin N, Koonin EV: Archaeal origin of tubulin. Biol Direct. 2012, 7: 10-
CAS
PubMed Central
PubMed
Google Scholar
Deatherage B, Cookson B: Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun. 2012, 80: 1948-1957.
CAS
PubMed Central
PubMed
Google Scholar
Ellen A, Zolghadr B, Driessen A, Albers S: Shaping the archaeal cell envelope. Archaea. 2010, 2010: 608243-
PubMed Central
PubMed
Google Scholar
O'Donnell M, Langston L, Stillman B: Principles and concepts of DNA replication in Bacteria, Archaea, and Eukarya. Cold Spring Harb Perspect Biol. 2013, 5: a010108-
PubMed Central
PubMed
Google Scholar
Samson R, Obita T, Freund S, Williams R, Bell S: A role for the ESCRT system in cell division in Archaea. Science. 2008, 322: 1710-1713.
CAS
PubMed Central
PubMed
Google Scholar
Lindås A-C, Bernander R: The cell cycle of archaea. Nat Rev Microbiol. 2013, 11: 627-638.
PubMed
Google Scholar
Cox C, Foster P, Hirt R, Harris S, Embley T: The archaebacterial origin of eukaryotes. Proc Natl Acad Sci U S A. 2008, 105: 20356-20361.
CAS
PubMed Central
PubMed
Google Scholar
McInerney JO, O'Connell MJ, Pisani D: The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat Rev Microbiol. 2014, 12: 449-455.
CAS
PubMed
Google Scholar
Forterre P: The common ancestor of Archaea and Eukarya was not an archaeon. Archaea. 2013, 2013: 372396-
PubMed Central
PubMed
Google Scholar
Rieger G, Rachel R, Hermann R, Stetter KO: Ultrastructure of the hyperthermophilic archaeon Pyrodictium abyssi. J Struct Biol. 1995, 115: 78-87.
Google Scholar
Li Z, Clarke AJ, Beveridge TJ: Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol. 1998, 180: 5478-5483.
CAS
PubMed Central
PubMed
Google Scholar
Margulis L: Handbook of Protoctista. 1990, Sudbury, MA, Jones and Bartlett
Google Scholar
Pawlowski J, Holzmann M, Berney C, Fahrni J, Gooday AJ, Cedhagen T, Habura A, Bowser SS: The evolution of early Foraminifera. Proc Natl Acad Sci. 2003, 100: 11494-11498.
CAS
PubMed Central
PubMed
Google Scholar
Jing H, Takagi J, Liu J, Lindgren S, Zhang R, Joachimiak A, Wang J, Springer T: Archaeal surface layer proteins contain β propeller, PKD, and β helix domains and are related to metazoan cell surface proteins. Structure. 2002, 10: 1453-1464.
CAS
PubMed
Google Scholar
Leksa NC, Brohawn SG, Schwartz TU: The structure of the scaffold nucleoporin Nup120 reveals a new and unexpected domain architecture. Structure. 2009, 17: 1082-1091.
CAS
PubMed Central
PubMed
Google Scholar
Leksa NC, Schwartz TU: Membrane-coating lattice scaffolds in the nuclear pore and vesicle coats: commonalities, differences, challenges. Nucleus. 2010, 1: 314-318.
PubMed Central
PubMed
Google Scholar
Brohawn SG, Leksa NC, Spear ED, Rajashankar KR, Schwartz TU: Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science. 2008, 322: 1369-1373.
CAS
PubMed Central
PubMed
Google Scholar
Santarella-Mellwig R, Franke J, Jaedicke A, Gorjanacz M, Bauer U, Budd A, Mattaj IW, Devos DP: The compartmentalized bacteria of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum have membrane coat-like proteins. PLoS Biol. 2010, 8: e1000281-
PubMed Central
PubMed
Google Scholar
McInerney JO, Martin WF, Koonin EV, Allen JF, Galperin MY, Lane N, Archibald JM, Embley TM: Planctomycetes and eukaryotes: a case of analogy not homology. Bioessays. 2011, 33: 810-817.
CAS
PubMed Central
PubMed
Google Scholar
Mans B, Anantharaman V, Aravind L, Koonin E: Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle. 2004, 3: 1612-1637.
CAS
PubMed
Google Scholar
Neumann N, Lundin D, Poole AM: Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS ONE. 2010, 5 (10): e13241-
PubMed Central
PubMed
Google Scholar
Field M, Dacks J: First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr Opin Cell Biol. 2009, 21: 4-13.
CAS
PubMed
Google Scholar
Savas JN, Toyama BH, Xu T, Yates JR, Hetzer MW: Extremely long-lived nuclear pore proteins in the rat brain. Science. 2012, 335: 942-942.
CAS
PubMed Central
PubMed
Google Scholar
Toyama B, Savas J, Park S, Harris M, Ingolia N, Yates J, Hetzer M: Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell. 2013, 154: 971-982.
CAS
PubMed Central
PubMed
Google Scholar
Debler EW, Ma Y, Seo H-S, Hsia K-C, Noriega TR, Blobel G, Hoelz A: A fence-like coat for the nuclear pore membrane. Mol Cell. 2008, 32: 815-826.
CAS
PubMed
Google Scholar
DeGrasse JA, DuBois KN, Devos D, Siegel TN, Sali A, Field MC, Rout MP, Chait BT: Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol Cell Proteomics. 2009, 8: 2119-2130.
CAS
PubMed Central
PubMed
Google Scholar
Siniossoglou S, Wimmer C, Rieger M, Doye V, Tekotte H, Weise C, Emig S, Segref A, Hurt EC: A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell. 1996, 84: 265-275.
CAS
PubMed
Google Scholar
Devos D, Dokudovskaya S, Williams R, Alber F, Eswar N, Chait B, Rout M, Sali A: Simple fold composition and modular architecture of the nuclear pore complex. Proc Natl Acad Sci U S A. 2006, 103: 2172-2177.
CAS
PubMed Central
PubMed
Google Scholar
Polz MF, Distel DL, Zarda B, Amann R, Felbeck H, Ott JA, Cavanaugh CM: Phylogenetic analysis of a highly specific association between ectosymbiotic, sulfur-oxidizing bacteria and a marine nematode. Appl Environ Microbiol. 1994, 60: 4461-4467.
CAS
PubMed Central
PubMed
Google Scholar
Bauer-Nebelsick M, Bardele CF, Ott JA: Electron microscopic studies on Zoothamnium niveum (Hemprich & Ehrenberg, 1831) Ehrenberg 1838 (Oligohymenophora, Peritrichida), a ciliate with ectosymbiotic, chemoautotrophic bacteria. Eur J Protistol. 1996, 32: 202-215.
Google Scholar
Wenzel M, Radek R, Brugerolle G, König H: Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol. 2003, 39: 11-23.
Google Scholar
Muller F, Brissac T, Le Bris N, Felbeck H, Gros O: First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat. Environ Microbiol. 2010, 12: 2371-2383.
CAS
PubMed
Google Scholar
Bernhard JM, Goldstein ST, Bowser SS: An ectobiont-bearing foraminiferan, Bolivina pacifica, that inhabits microxic pore waters: cell-biological and paleoceanographic insights. Environ Microbiol. 2010, 12: 2107-2119.
CAS
PubMed
Google Scholar
Martin W, Russell M: On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans R Soc B. 2003, 358: 59-83.
CAS
PubMed Central
PubMed
Google Scholar
Emelyanov VV: Evolutionary relationship of Rickettsiae and mitochondria. FEBS Lett. 2001, 501: 11-18.
CAS
PubMed
Google Scholar
Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM: New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS One. 2013, 8: e83383-
PubMed Central
PubMed
Google Scholar
Serbus L, Casper-Lindley C, Landmann F, Sullivan W: The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet. 2008, 42: 683-707.
CAS
PubMed
Google Scholar
Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle K, Balla T, Mannella C, Hajnóczky G: Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. 2006, 174: 915-921.
PubMed Central
PubMed
Google Scholar
Friedman J, Lackner L, West M, DiBenedetto J, Nunnari J, Voeltz G: ER tubules mark sites of mitochondrial division. Science. 2011, 334: 358-362.
CAS
PubMed Central
PubMed
Google Scholar
Korobova F, Ramabhadran V, Higgs HN: An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science. 2013, 339: 464-467.
CAS
PubMed
Google Scholar
Lopalco P, Lobasso S, Babudri F, Corcelli A: Osmotic shock stimulates de novo synthesis of two cardiolipins in an extreme halophilic archaeon. J Lipid Res. 2004, 45: 194-201.
CAS
PubMed
Google Scholar
Engelhardt H: Mechanism of osmoprotection by archaeal S-layers: a theoretical study. J Struct Biol. 2007, 160: 190-199.
CAS
PubMed
Google Scholar
Hixon W, Searcy D: Cytoskeleton in the archaebacterium Thermoplasma acidophilum - viscosity increase in soluble abstracts. Biosystems. 1993, 29: 151-160.
CAS
PubMed
Google Scholar
Park MK, Petersen OH, Tepikin AV: The endoplasmic reticulum as one continuous Ca2+pool: visualization of rapid Ca2+movements and equilibration.EMBO J 2000, 19:5729-5739.,
Frescas D, Mavrakis M, Lorenz H, DeLotto R, Lippincott-Schwartz J: The secretory membrane system in the Drosophila syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei. J Cell Biol. 2006, 173: 219-230.
CAS
PubMed Central
PubMed
Google Scholar
Snapp EL, Iida T, Frescas D, Lippincott-Schwartz J, Lilly MA: The fusome mediates intercellular endoplasmic reticulum connectivity in Drosophila ovarian cysts. Mol Biol Cell. 2004, 15: 4512-4521.
CAS
PubMed Central
PubMed
Google Scholar
Helenius A, Aebi M: Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem. 2004, 73: 1019-1049.
CAS
PubMed
Google Scholar
Maita N, Nyirenda J, Igura M, Kamishikiryo J, Kohda D: Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases. J Biol Chem. 2010, 285: 4941-4950.
CAS
PubMed Central
PubMed
Google Scholar
Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D: Coupling of the nucleus and cytoplasm role of the LINC complex. J Cell Biol. 2006, 172: 41-53.
CAS
PubMed Central
PubMed
Google Scholar
Sosa B, Rothballer A, Kutay U, Schwartz T: LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell. 2012, 149: 1035-1047.
CAS
PubMed Central
PubMed
Google Scholar
Ketema M, Sonnenberg A: Nesprin-3: a versatile connector between the nucleus and the cytoskeleton. Biochem Soc Trans. 2011, 39: 1719-1724.
CAS
PubMed
Google Scholar
Nery FC, Zeng J, Niland BP, Hewett J, Farley J, Irimia D, Li Y, Wiche G, Sonnenberg A, Breakefield XO: TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. J Cell Sci. 2008, 121: 3476-3486.
CAS
PubMed Central
PubMed
Google Scholar
Zhao C, Brown RSH, Chase AR, Eisele MR, Schlieker C: Regulation of Torsin ATPases by LAP1 and LULL1. Proc Natl Acad Sci. 2013, 110: E1545-E1554.
CAS
PubMed Central
PubMed
Google Scholar
Wilson KL, Dawson SC: Functional evolution of nuclear structure. J Cell Biol. 2011, 195: 171-181.
CAS
PubMed Central
PubMed
Google Scholar
Jokhi V, Ashley J, Nunnari J, Noma A, Ito N, Wakabayashi-Ito N, Moore MJ, Budnik V: Torsin mediates primary envelopment of large ribonucleoprotein granules at the nuclear envelope. Cell Rep. 2013, 3: 988-995.
CAS
PubMed Central
PubMed
Google Scholar
Speese SD, Ashley J, Jokhi V, Nunnari J, Barria R, Li Y, Ataman B, Koon A, Chang Y-T, Li Q: Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell. 2012, 149: 832-846.
CAS
PubMed Central
PubMed
Google Scholar
Rose AE, Zhao C, Turner EM, Steyer AM, Schlieker C: Arresting a Torsin ATPase reshapes the endoplasmic reticulum. J Biol Chem. 2014, 289: 552-564.
CAS
PubMed Central
PubMed
Google Scholar
Wang W, Shi Z, Jiao S, Chen C, Wang H, Liu G, Wang Q, Zhao Y, Greene M, Zhou Z: Structural insights into SUN-KASH complexes across the nuclear envelope. Cell Res. 2012, 22: 1440-1452.
CAS
PubMed Central
PubMed
Google Scholar
Zhou X, Meier I: How plants LINC the SUN to KASH. Nucleus. 2013, 4: 206-215.
PubMed Central
PubMed
Google Scholar
Iyer LM, Leipe DD, Koonin EV, Aravind L: Evolutionary history and higher order classification of AAA + ATPases. J Struct Biol. 2004, 146: 11-31.
CAS
PubMed
Google Scholar
Koga Y, Morii H: Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem. 2005, 69: 2019-2034.
CAS
PubMed
Google Scholar
Koga Y, Morii H: Biosynthesis of ether-type polar lipids in Archaea and evolutionary considerations. Microbiol Mol Biol Rev. 2007, 71: 97-120.
CAS
PubMed Central
PubMed
Google Scholar
Lykidis A: Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Prog Lipid Res. 2007, 46: 171-199.
CAS
PubMed
Google Scholar
Desmond E, Gribaldo S: Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol Evol. 2009, 1: 364-381.
PubMed Central
PubMed
Google Scholar
Pearson A, Budin M, Brocks JJ: Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci. 2003, 100: 15352-15357.
CAS
PubMed Central
PubMed
Google Scholar
Chong PL-G: Archaebacterial bipolar tetraether lipids: physico-chemical and membrane properties. Chem Phys Lipids. 2010, 163: 253-265.
CAS
PubMed
Google Scholar
Henne WM, Stenmark H, Emr SD: Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol. 2013, 5: a016766-
PubMed Central
PubMed
Google Scholar
Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010, 327: 46-50.
CAS
PubMed
Google Scholar
Wideman JG, Gawryluk RMR, Gray MW, Dacks JB: The ancient and widespread nature of the ER-mitochondria encounter structure. Mol Biol Evol. 2013, 30: 2044-2049.
CAS
PubMed
Google Scholar
Tian H-F, Feng J-M, Wen J-F: The evolution of cardiolipin biosynthesis and maturation pathways and its implications for the evolution of eukaryotes. BMC Evol Biol. 2012, 12: 32-
CAS
PubMed Central
PubMed
Google Scholar
Lagace TA, Ridgway ND: The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. Biochim Biophys Acta. 1833, 2013: 2499-2510.
Google Scholar
Voss C, Lahiri S, Young BP, Loewen CJ, Prinz WA: ER-shaping proteins facilitate lipid exchange between the ER and mitochondria in S. cerevisiae. J Cell Sci. 2012, 125: 4791-4799.
CAS
PubMed Central
PubMed
Google Scholar
van Meer G, de Kroon AIPM: Lipid map of the mammalian cell. J Cell Sci. 2011, 124: 5-8.
CAS
PubMed
Google Scholar
Horvath SE, Daum G: Lipids of mitochondria. Prog Lipid Res. 2013, 52: 590-614.
CAS
PubMed
Google Scholar
Shimada H, Yamagishi A: Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. Biochemistry. 2011, 50: 4114-4120.
CAS
PubMed
Google Scholar
Bergan J, Skotland T, Sylvänne T, Simolin H, Ekroos K, Sandvig K: The ether lipid precursor hexadecylglycerol causes major changes in the lipidome of HEp-2 cells. PLoS One. 2013, 8: e75904-
CAS
PubMed Central
PubMed
Google Scholar
Ivanova PT, Milne SB, Brown HA: Identification of atypical ether-linked glycerophospholipid species in macrophages by mass spectrometry. J Lipid Res. 2010, 51: 1581-1590.
CAS
PubMed Central
PubMed
Google Scholar
Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML, Garcia-Manyes S, Eggert US: Dividing cells regulate their lipid composition and localization. Cell. 2014, 156: 428-439.
CAS
PubMed Central
PubMed
Google Scholar
Michell RH: Inositol lipids: from an archaeal origin to phosphatidylinositol 3, 5-bisphosphate faults in human disease. FEBS J. 2013, 280: 6281-6294.
CAS
PubMed
Google Scholar
Flis VV, Daum G: Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harb Perspect Biol. 2013, 5: a013235-
PubMed Central
PubMed
Google Scholar
Barlow CA, Laishram RS, Anderson RA: Nuclear phosphoinositides: a signaling enigma wrapped in a compartmental conundrum. Trends Cell Biol. 2010, 20: 25-35.
CAS
PubMed Central
PubMed
Google Scholar
Wj K, Bultsma Y, Sommer L, Jones D, Divecha N: Phosphoinositide signalling in the nucleus. Adv Enzyme Regul. 2011, 51: 91-99.
Google Scholar
Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B: The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010, 11: 329-341.
CAS
PubMed
Google Scholar
Miranda SC, Thomas M, Adolfo S: Inositol pyrophosphates: between signalling and metabolism. Biochem J. 2013, 452: 369-379.
Google Scholar
Di Paolo G, De Camilli P: Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006, 443: 651-657.
CAS
PubMed
Google Scholar
Barry ER, Bell SD: DNA replication in the archaea. Microbiol Mol Biol Rev. 2006, 70: 876-887.
CAS
PubMed Central
PubMed
Google Scholar
Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J: Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci. 2011, 108: 4846-4851.
CAS
PubMed Central
PubMed
Google Scholar
De Souza C, Osmani S: Mitosis, not just open or closed. Eukaryot Cell. 2007, 6: 1521-1527.
CAS
PubMed Central
PubMed
Google Scholar
Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J: Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol. 1997, 138: 1193-1206.
CAS
PubMed Central
PubMed
Google Scholar
Lu L, Ladinsky MS, Kirchhausen T: Formation of the postmitotic nuclear envelope from extended ER cisternae precedes nuclear pore assembly. J Cell Biol. 2011, 194: 425-440.
CAS
PubMed Central
PubMed
Google Scholar
Lu L, Kirchhausen T: Visualizing the high curvature regions of post-mitotic nascent nuclear envelope membrane. Commun Integr Biol. 2012, 5: 16-18.
PubMed Central
PubMed
Google Scholar
Puhka M, Vihinen H, Joensuu M, Jokitalo E: Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells. J Cell Biol. 2007, 179: 895-909.
CAS
PubMed Central
PubMed
Google Scholar
Gu Y, Yam C, Oliferenko S: Divergence of mitotic strategies in fission yeasts. Nucleus. 2012, 3: 220-225.
PubMed Central
PubMed
Google Scholar
Lei EP, Silver PA: Protein and RNA export from the nucleus. Dev Cell. 2002, 2: 261-272.
CAS
PubMed
Google Scholar
Reid DW, Nicchitta CV: The enduring enigma of nuclear translation. J Cell Biol. 2012, 197: 7-9.
CAS
PubMed Central
PubMed
Google Scholar
Mellman DL, Gonzales ML, Song C, Barlow CA, Wang P, Kendziorski C, Anderson RA: A PtdIns4, 5P2-regulated nuclear poly (A) polymerase controls expression of select mRNAs. Nature. 2008, 451: 1013-1017.
CAS
PubMed
Google Scholar
Shah ZH, Jones DR, Sommer L, Foulger R, Bultsma Y, D'Santos C, Divecha N: Nuclear phosphoinositides and their impact on nuclear functions. FEBS J. 2013, 280: 6295-6310.
CAS
PubMed
Google Scholar
Okada M, Jang S-W, Ye K: Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proc Natl Acad Sci. 2008, 105: 8649-8654.
CAS
PubMed Central
PubMed
Google Scholar
Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ: Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol. 2013, 14: 153-165.
CAS
PubMed
Google Scholar
Calo D, Eichler J: Crossing the membrane in Archaea, the third domain of life. Biochim Biophys Acta. 1808, 2011: 885-891.
Google Scholar
Eichler J: Extreme sweetness: protein glycosylation in archaea. Nat Rev Microbiol. 2013, 11: 151-156.
CAS
PubMed
Google Scholar
Boncompain G, Perez F: The many routes of Golgi-dependent trafficking. Histochem Cell Biol. 2013, 140: 251-260.
CAS
PubMed
Google Scholar
West M, Zurek N, Hoenger A, Voeltz GK: A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J Cell Biol. 2011, 193: 333-346.
CAS
PubMed Central
PubMed
Google Scholar
Talamas JA, Hetzer MW: POM121 and Sun1 play a role in early steps of interphase NPC assembly. J Cell Biol. 2011, 194: 27-37.
CAS
PubMed Central
PubMed
Google Scholar
Praefcke GJK, McMahon HT: The dynamin superfamily: universal membrane tubulation and fission molecules?. Nat Rev Mol Cell Biol. 2004, 5: 133-147.
CAS
PubMed
Google Scholar
Low H, Lowe J: A bacterial dynamin-like protein. Nature. 2006, 444: 766-769.
CAS
PubMed
Google Scholar
Castagnetti S, Oliferenko S, Nurse P: Fission yeast cells undergo nuclear division in the absence of spindle microtubules. PLoS Biol. 2010, 8: e1000512-
PubMed Central
PubMed
Google Scholar
McMurray MA, Stefan CJ, Wemmer M, Odorizzi G, Emr SD, Thorner J: Genetic interactions with mutations affecting septin assembly reveal ESCRT functions in budding yeast cytokinesis. Biol Chem. 2011, 392: 699-712.
CAS
PubMed Central
PubMed
Google Scholar
Baluška F, Volkmann D, Barlow P: Eukaryotic cells and their cell bodies: cell theory revised. Ann Bot. 2004, 94: 9-32.
PubMed Central
PubMed
Google Scholar
Mavrakis M, Rikhy R, Lippincott-Schwartz J: Cells within a cell: insights into cellular architecture and polarization from the organization of the early fly embryo. Commun Integr Biol. 2009, 2: 313-314.
CAS
PubMed Central
PubMed
Google Scholar
Niklas KJ, Cobb ED, Crawford DR: The evo-devo of multinucleate cells, tissues, and organisms, and an alternative route to multicellularity. Evol Dev. 2013, 15: 466-474.
PubMed
Google Scholar
Bluemink JG, De Laat SW: New membrane formation during cytokinesis in normal and cytochalasin B-treated eggs of Xenopus laevis I: Electron microscope observations. J Cell Biol. 1973, 59: 89-108.
CAS
PubMed Central
PubMed
Google Scholar
Schulz P, Jensen WA: Capsella embryogenesis: the development of the free nuclear endosperm. Protoplasma. 1974, 80: 183-205.
Google Scholar
Katz LA, Grant JR, Parfrey LW, Burleigh JG: Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst Biol. 2012, 61: 653-660.
PubMed Central
PubMed
Google Scholar
Derelle R, Lang BF: Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol. 2012, 29: 1277-1289.
CAS
PubMed
Google Scholar
Dacks JB, Field MC: Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci. 2007, 120: 2977-2985.
CAS
PubMed
Google Scholar
Gagnon E, Duclos S, Rondeau C, Chevet E, Cameron P, Steele-Mortimer O, Paiement J, Bergeron J, Desjardins M: Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell. 2002, 110: 119-131.
CAS
PubMed
Google Scholar
Abodeely M, DuBois KN, Hehl A, Stefanic S, Sajid M, Attias M, Engel JC, Hsieh I, Fetter RD, McKerrow JH: A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell. 2009, 8: 1665-1676.
CAS
PubMed Central
PubMed
Google Scholar
Štefanić S, Morf L, Kulangara C, Regös A, Sonda S, Schraner E, Spycher C, Wild P, Hehl AB: Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J Cell Sci. 2009, 122: 2846-2856.
PubMed
Google Scholar
Rojas AM, Fuentes G, Rausell A, Valencia A: The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012, 196: 189-201.
CAS
PubMed Central
PubMed
Google Scholar
Jekely G: Small GTPases and the evolution of the eukaryotic cell. Bioessays. 2003, 25: 1129-1138.
CAS
PubMed
Google Scholar
Boureux A, Vignal E, Faure S, Fort P: Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol. 2007, 24: 203-216.
CAS
PubMed Central
PubMed
Google Scholar
Langford TD, Silberman JD, Weiland MEL, Svärd SG, Michael McCaffery J, Sogin ML, Gillin FD: Giardia lamblia: identification and characterization of Rab and GDI proteins in a genome survey of the ER to Golgi endomembrane system. Exp Parasitol. 2002, 101: 13-24.
PubMed
Google Scholar
Wood CR, Huang K, Diener DR, Rosenbaum JL: The cilium secretes bioactive ectosomes. Curr Biol. 2013, 23: 906-911.
CAS
PubMed
Google Scholar
Avasthi P, Marshall W: Ciliary secretion: switching the cellular antenna to `transmit'. Curr Biol. 2013, 23: R471-R473.
CAS
PubMed
Google Scholar
Lamb TD, Collin SP, Pugh EN: Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci. 2007, 8: 960-976.
CAS
PubMed Central
PubMed
Google Scholar
Fan S, Margolis B: The Ran importin system in cilia trafficking. Organogenesis. 2011, 7: 147-153.
PubMed Central
PubMed
Google Scholar
Jekely G, Arendt D: Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays. 2006, 28: 191-198.
CAS
PubMed
Google Scholar
Ounjai P, Kim KD, Liu H, Dong M, Tauscher AN, Witkowska HE, Downing KH: Architectural insights into a ciliary partition. Curr Biol. 2013, 23: 339-344.
CAS
PubMed Central
PubMed
Google Scholar
Kee H, Dishinger J, Blasius T, Liu C, Margolis B, Verhey K: A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat Cell Biol. 2012, 14: 431-437.
CAS
PubMed Central
PubMed
Google Scholar
Breslow DK, Koslover EF, Seydel F, Spakowitz AJ, Nachury MV: An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J Cell Biol. 2013, 203: 129-147.
PubMed Central
PubMed
Google Scholar
Rothballer A, Kutay U: Poring over pores: nuclear pore complex insertion into the nuclear envelope. Trends Biochem Sci. 2013, 38: 292-301.
CAS
PubMed
Google Scholar
Shaulov L, Gruber R, Cohen I, Harel A: A dominant-negative form of POM121 binds chromatin and disrupts the two separate modes of nuclear pore assembly. J Cell Sci. 2011, 124: 3822-3834.
CAS
PubMed
Google Scholar
Funakoshi T, Clever M, Watanabe A, Imamoto N: Localization of Pom121 to the inner nuclear membrane is required for an early step of interphase nuclear pore complex assembly. Mol Biol Cell. 2011, 22: 1058-1069.
CAS
PubMed Central
PubMed
Google Scholar
Stavru F, Hülsmann BB, Spang A, Hartmann E, Cordes VC, Görlich D: NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear pore complexes. J Cell Biol. 2006, 173: 509-519.
CAS
PubMed Central
PubMed
Google Scholar
Stavru F, Nautrup-Pedersen G, Cordes VC, Görlich D: Nuclear pore complex assembly and maintenance in POM121-and gp210-deficient cells. J Cell Biol. 2006, 173: 477-483.
CAS
PubMed Central
PubMed
Google Scholar
Olsson M, Schéele S, Ekblom P: Limited expression of nuclear pore membrane glycoprotein 210 in cell lines and tissues suggests cell-type specific nuclear pores in metazoans. Exp Cell Res. 2004, 292: 359-370.
CAS
PubMed
Google Scholar
Eisenhardt N, Redolfi J, Antonin W: Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly. J Cell Sci. 2014, 127: 908-921.
CAS
PubMed
Google Scholar
Szöllösi M, Szöllösi D: Blebbing of the nuclear-envelope of mouse zygotes, early embryos and hybrid-cells. J Cell Sci. 1988, 91: 257-267.
PubMed
Google Scholar
Goldberg MW, Wiese C, Allen TD, Wilson KL: Dimples, pores, star-rings, and thin rings on growing nuclear envelopes: evidence for structural intermediates in nuclear pore complex assembly. J Cell Sci. 1997, 110: 409-420.
CAS
PubMed
Google Scholar
Franke WW, Scheer U, Krohne G, Jarasch E-D: The nuclear envelope and the architecture of the nuclear periphery. J Cell Biol. 1981, 91: 39s-50s.
CAS
PubMed
Google Scholar
Kaňka J, Fulka J, Petr J: Nuclear transplantation in bovine embryo: fine structural and autoradiographic studies. Mol Reprod Dev. 1991, 29: 110-116.
PubMed
Google Scholar
Wente SR, Blobel G: A temperature-sensitive NUP116 null mutant forms a nuclear envelope seal over the yeast nuclear pore complex thereby blocking nucleocytoplasmic traffic. J Cell Biol. 1993, 123: 275-284.
CAS
PubMed
Google Scholar
Luby-Phelps K, Taylor DL, Lanni F: Probing the structure of cytoplasm. J Cell Biol. 1986, 102: 2015-2022.
CAS
PubMed
Google Scholar
Seksek O, Biwersi J, Verkman AS: Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol. 1997, 138: 131-142.
CAS
PubMed Central
PubMed
Google Scholar
Song AH, Wang D, Chen G, Li Y, Luo J, Duan S, Poo MM: A selective filter for cytoplasmic transport at the axon initial segment. Cell. 2009, 136: 1148-1160.
CAS
PubMed
Google Scholar
Sherlekar A, Rikhy R: Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: is there a correlation?. Front Biol. 2012, 7: 73-82.
CAS
Google Scholar
Gladfelter AS: Nuclear anarchy: asynchronous mitosis in multinucleated fungal hyphae. Curr Opin Microbiol. 2006, 9: 547-552.
CAS
PubMed
Google Scholar
Anderson CA, Eser U, Korndorf T, Borsuk ME, Skotheim JM, Gladfelter AS: Nuclear repulsion enables division autonomy in a single cytoplasm. Curr Biol. 2013, 23: 1999-2010.
CAS
PubMed Central
PubMed
Google Scholar
Gerstenberger JP, Occhipinti P, Gladfelter AS: Heterogeneity in mitochondrial morphology and membrane potential is independent of the nuclear division cycle in multinucleate fungal cells. Eukaryot Cell. 2012, 11: 353-367.
CAS
PubMed Central
PubMed
Google Scholar
Doan DNP, Linnestad C, Olsen O-A: Isolation of molecular markers from the barley endosperm coenocyte and the surrounding nucellus cell layers. Plant Mol Biol. 1996, 31: 877-886.
CAS
PubMed
Google Scholar
Drocco JA, Wieschaus EF, Tank DW: The synthesis-diffusion-degradation model explains Bicoid gradient formation in unfertilized eggs. Phys Biol. 2012, 9: 055004-
CAS
PubMed Central
PubMed
Google Scholar
Little SC, Tkačik G, Kneeland TB, Wieschaus EF, Gregor T: The formation of the Bicoid morphogen gradient requires protein movement from anteriorly localized mRNA. PLoS Biol. 2011, 9: e1000596-
CAS
PubMed Central
PubMed
Google Scholar
Blobel G: Gene gating - a hypothesis. Proc Natl Acad Sci U S A. 1985, 82: 8527-8529.
CAS
PubMed Central
PubMed
Google Scholar
Klattenhoff C, Theurkauf W: Biogenesis and germline functions of piRNAs. Development. 2008, 135: 3-9.
CAS
PubMed
Google Scholar
Lécuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM: Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell. 2007, 131: 174-187.
PubMed
Google Scholar
Lee C-P, Liu P-T, Kung H-N, Su M-T, Chua H-H, Chang Y-H, Chang C-W, Tsai C-H, Liu F-T, Chen M-R: The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein-Barr virus. PLoS Pathog. 2012, 8: e1002904-
CAS
PubMed Central
PubMed
Google Scholar