Yamashita M, Hori Y, Shinomiya T, Obuse C, Tsurimoto T, Yoshikawa H, Shirahige K: The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI. Genes Cells. 1997, 2: 655-665. 10.1046/j.1365-2443.1997.1530351.x.
Article
CAS
PubMed
Google Scholar
Wintersberger E: Why is there late replication?. Chromosoma. 2000, 109: 300-307. 10.1007/s004120000080.
Article
CAS
PubMed
Google Scholar
Raghuraman MK, Winzeler EA, Collingwood D, Hunt S, Wodicka L, Conway A, Lockhart DJ, Davis RW, Brewer BJ, Fangman WL: Replication dynamics of the yeast genome. Science. 2001, 294: 115-121. 10.1126/science.294.5540.115.
Article
CAS
PubMed
Google Scholar
Sekedat MD, Fenyo D, Rogers RS, Tackett AJ, Aitchison JD, Chait BT: GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome. Mol Syst Biol. 2010, 6: 353-10.1038/msb.2010.8.
Article
PubMed Central
PubMed
Google Scholar
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M: Eukaryotic chromosome DNA replication: where, when, and how?. Annu Rev Biochem. 2010, 79: 89-130. 10.1146/annurev.biochem.052308.103205.
Article
CAS
PubMed
Google Scholar
Yang SC, Bechhoefer J: How Xenopus laevis embryos replicate reliably: investigating the random-completion problem. Phys Rev E Stat Nonlin Soft Matter Phys. 2008, 78: 41917-10.1103/PhysRevE.78.041917.
Article
Google Scholar
Legouras I, Xouri G, Dimopoulos S, Lygeros J, Lygerou Z: DNA replication in the fission yeast: robustness in the face of uncertainty. Yeast. 2006, 23: 951-962. 10.1002/yea.1416.
Article
CAS
PubMed
Google Scholar
Farkash-Amar S, Lipson D, Polten A, Goren A, Helmstetter C, Yakhini Z, Simon I: Global organization of replication time zones of the mouse genome. Genome Res. 2008, 18: 1562-1570. 10.1101/gr.079566.108.
Article
CAS
PubMed Central
PubMed
Google Scholar
Farkash-Amar S, Simon I: Genome-wide analysis of the replication program in mammals. Chromosome Res. 2010, 18: 115-125. 10.1007/s10577-009-9091-5.
Article
CAS
PubMed
Google Scholar
Lang GI, Murray AW: Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol. 2011, 3: 799-811. 10.1093/gbe/evr054.
Article
PubMed Central
PubMed
Google Scholar
Zappulla DC, Sternglanz R, Leatherwood J: Control of replication timing by a transcriptional silencer. Curr Biol. 2002, 12: 869-875. 10.1016/S0960-9822(02)00871-0.
Article
CAS
PubMed
Google Scholar
Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y, Widom J, Segal E: Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol. 2008, 4: e1000216-10.1371/journal.pcbi.1000216.
Article
PubMed Central
PubMed
Google Scholar
Friedman KL, Brewer BJ, Fangman WL: Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells. 1997, 2: 667-678. 10.1046/j.1365-2443.1997.1520350.x.
Article
CAS
PubMed
Google Scholar
McCune HJ, Danielson LS, Alvino GM, Collingwood D, Delrow JJ, Fangman WL, Brewer BJ, Raghuraman MK: The temporal program of chromosome replication: genomewide replication in clb5{Delta} Saccharomyces cerevisiae. Genetics. 2008, 180: 1833-1847. 10.1534/genetics.108.094359.
Article
CAS
PubMed Central
PubMed
Google Scholar
Raghuraman MK, Brewer BJ: Molecular analysis of the replication program in unicellular model organisms. Chromosome Res. 2010, 18: 19-34. 10.1007/s10577-009-9099-x.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rhind N, Yang SC, Bechhoefer J: Reconciling stochastic origin firing with defined replication timing. Chromosome Res. 2010, 18: 35-43. 10.1007/s10577-009-9093-3.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yang SC, Rhind N, Bechhoefer J: Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing. Mol Syst Biol. 2010, 6: 404-
PubMed Central
PubMed
Google Scholar
Alvino GM, Collingwood D, Murphy JM, Delrow J, Brewer BJ, Raghuraman MK: Replication in hydroxyurea: it's a matter of time. Mol Cell Biol. 2007, 27: 6396-6406. 10.1128/MCB.00719-07.
Article
CAS
PubMed Central
PubMed
Google Scholar
Koren A, Soifer I, Barkai N: MRC1-dependent scaling of the budding yeast DNA replication timing program. Genome Res. 2010, 20: 781-790. 10.1101/gr.102764.109.
Article
CAS
PubMed Central
PubMed
Google Scholar
Donaldson AD, Fangman WL, Brewer BJ: Cdc7 is required throughout the yeast S phase to activate replication origins. Genes Dev. 1998, 12: 491-501. 10.1101/gad.12.4.491.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hayano M, Kanoh Y, Matsumoto S, Masai H: Mrc1 marks early-firing origins and coordinates timing and efficiency of initiation in fission yeast. Mol Cell Biol. 2011, 31: 2380-2391. 10.1128/MCB.01239-10.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rhind N: An intrinsic checkpoint model for regulation of replication origins. Cell Cycle. 2008, 7: 2619-2620. 10.4161/cc.7.17.6624.
Article
CAS
PubMed Central
PubMed
Google Scholar
Santocanale C, Diffley JF: A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature. 1998, 395: 615-618. 10.1038/27001.
Article
CAS
PubMed
Google Scholar
Tercero JA, Diffley JF: Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature. 2001, 412: 553-557. 10.1038/35087607.
Article
CAS
PubMed
Google Scholar
Feng W, Collingwood D, Boeck ME, Fox LA, Alvino GM, Fangman WL, Raghuraman MK, Brewer BJ: Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat Cell Biol. 2006, 8: 148-155. 10.1038/ncb1358.
Article
CAS
PubMed Central
PubMed
Google Scholar
Crabbe L, Thomas A, Pantesco V, De Vos J, Pasero P, Lengronne A: Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat Struct Mol Biol. 2010, 17: 1391-1397. 10.1038/nsmb.1932.
Article
CAS
PubMed
Google Scholar
Alcasabas AA, Osborn AJ, Bachant J, Hu F, Werler PJ, Bousset K, Furuya K, Diffley JF, Carr AM, Elledge SJ: Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol. 2001, 3: 958-965. 10.1038/ncb1101-958.
Article
CAS
PubMed
Google Scholar
Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K: S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature. 2003, 424: 1078-1083. 10.1038/nature01900.
Article
CAS
PubMed
Google Scholar
Bjergbaek L, Cobb JA, Tsai-Pflugfelder M, Gasser SM: Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J. 2005, 24: 405-417. 10.1038/sj.emboj.7600511.
Article
CAS
PubMed Central
PubMed
Google Scholar
Szyjka SJ, Viggiani CJ, Aparicio OM: Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol Cell. 2005, 19: 691-697. 10.1016/j.molcel.2005.06.037.
Article
CAS
PubMed
Google Scholar
Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K: GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol. 2006, 8: 358-366. 10.1038/ncb1382.
Article
CAS
PubMed
Google Scholar
Lou H, Komata M, Katou Y, Guan Z, Reis CC, Budd M, Shirahige K, Campbell JL: Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell. 2008, 32: 106-117. 10.1016/j.molcel.2008.08.020.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tourriere H, Versini G, Cordon-Preciado V, Alabert C, Pasero P: Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol Cell. 2005, 19: 699-706. 10.1016/j.molcel.2005.07.028.
Article
CAS
PubMed
Google Scholar
Hodgson B, Calzada A, Labib K: Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase. Mol Biol Cell. 2007, 18: 3894-3902. 10.1091/mbc.E07-05-0500.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nieduszynski CA, Hiraga S, Ak P, Benham CJ, Donaldson AD: OriDB: a DNA replication origin database. Nucleic Acids Res. 2007, 35: D40-D46. 10.1093/nar/gkl758. http://www.oridb.org/index.php
Article
CAS
PubMed Central
PubMed
Google Scholar
Osborn AJ, Elledge SJ: Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev. 2003, 17: 1755-1767. 10.1101/gad.1098303.
Article
CAS
PubMed Central
PubMed
Google Scholar
Naylor ML, Li JM, Osborn AJ, Elledge SJ: Mrc1 phosphorylation in response to DNA replication stress is required for Mec1 accumulation at the stalled fork. Proc Natl Acad Sci U S A. 2009, 106: 12765-12770. 10.1073/pnas.0904623106.
Article
CAS
PubMed Central
PubMed
Google Scholar
Desany BA, Alcasabas AA, Bachant JB, Elledge SJ: Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 1998, 12: 2956-2970. 10.1101/gad.12.18.2956.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhao X, Muller EG, Rothstein R: A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell. 1998, 2: 329-340. 10.1016/S1097-2765(00)80277-4.
Article
CAS
PubMed
Google Scholar
Bando M, Katou Y, Komata M, Tanaka H, Itoh T, Sutani T, Shirahige K: Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates with DNA replication forks. J Biol Chem. 2009, 284: 34355-34365. 10.1074/jbc.M109.065730.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ohya T, Kawasaki Y, Hiraga S, Kanbara S, Nakajo K, Nakashima N, Suzuki A, Sugino A: The DNA polymerase domain of pol(epsilon) is required for rapid, efficient, and highly accurate chromosomal DNA replication, telomere length maintenance, and normal cell senescence in Saccharomyces cerevisiae. J Biol Chem. 2002, 277: 28099-28108. 10.1074/jbc.M111573200.
Article
CAS
PubMed
Google Scholar
Dua R, Levy DL, Campbell JL: Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase epsilon in DNA replication and the S/M checkpoint pathway. J Biol Chem. 1998, 273: 30046-30055. 10.1074/jbc.273.45.30046.
Article
CAS
PubMed
Google Scholar
Rhind N: DNA replication timing: random thoughts about origin firing. Nat Cell Biol. 2006, 8: 1313-1316. 10.1038/ncb1206-1313.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yabuki N, Terashima H, Kitada K: Mapping of early firing origins on a replication profile of budding yeast. Genes Cells. 2002, 7: 781-789. 10.1046/j.1365-2443.2002.00559.x.
Article
CAS
PubMed
Google Scholar
Blecher-Gonen R, Barnett-Itzhaki Z, Jaitin D, Amann-Zalcenstein D, Lara-Astiaso D, Amit I: High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states. Nat Protoc. 2013, 8: 539-554. 10.1038/nprot.2013.023.
Article
PubMed
Google Scholar