Marder E: Neuromodulation of neuronal circuits: back to the future. Neuron. 2012, 76: 1-11.
CAS
PubMed Central
PubMed
Google Scholar
Marder E, Goaillard JM: Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci. 2006, 7: 563-574.
CAS
PubMed
Google Scholar
Maffei A, Fontanini A: Network homeostasis: a matter of coordination. Curr Opin Neurobiol. 2009, 19: 168-173.
CAS
PubMed Central
PubMed
Google Scholar
Turrigiano G: Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci. 2011, 34: 89-103.
CAS
PubMed
Google Scholar
Keck T, Keller GB, Jacobsen RI, Eysel UT, Bonhoeffer T, Hübener M: Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron. 2013, 80: 327-334.
CAS
PubMed
Google Scholar
Hengen KB, Lambo ME, Van Hooser SD, Katz DB, Turrigiano GG: Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron. 2013, 80: 335-342.
CAS
PubMed
Google Scholar
Steriade M, Nuñez A, Amzica F: A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993, 13: 3252-3265.
CAS
PubMed
Google Scholar
Steriade M, Timofeev I, Grenier F: Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol. 2001, 85: 1969-1985.
CAS
PubMed
Google Scholar
Destexhe A, Contreras D, Steriade M: Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci. 1999, 19: 4595-4608.
CAS
PubMed
Google Scholar
Timofeev I, Grenier F, Steriade M: Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci U S A. 2001, 98: 1924-1929.
CAS
PubMed Central
PubMed
Google Scholar
Amzica F, Steriade M: The functional significance of K-complexes. Sleep Med Rev. 2002, 6: 139-149.
PubMed
Google Scholar
Volgushev M, Chauvette S, Mukovski M, Timofeev I: Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations. J Neurosci. 2006, 26: 5665-5672.
CAS
PubMed
Google Scholar
Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, Cirelli C, Tononi G: Cortical firing and sleep homeostasis. Neuron. 2009, 63: 865-878.
CAS
PubMed Central
PubMed
Google Scholar
Cash SS, Halgren E, Dehghani N, Rossetti AO, Thesen T, Wang C, Devinsky O, Kuzniecky R, Doyle W, Madsen JR, Bromfield E, Eross L, Hal'sz P, Karmos G, Csercsa R, Wittner L, Ulbert I: The human K-complex represents an isolated cortical down-state. Science. 2009, 324: 1084-1087.
CAS
PubMed Central
PubMed
Google Scholar
Chauvette S, Volgushev M, Timofeev I: Origin of active states in local neocortical networks during slow sleep oscillation. Cereb Cortex. 2010, 20: 2660-2674.
PubMed Central
PubMed
Google Scholar
Lee SH, Dan Y: Neuromodulation of brain states. Neuron. 2012, 76: 209-222.
CAS
PubMed Central
PubMed
Google Scholar
Harris KD, Thiele A: Cortical state and attention. Nat Rev Neurosci. 2011, 12: 509-523.
CAS
PubMed Central
PubMed
Google Scholar
Jones BE: From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci. 2005, 26: 578-586.
CAS
PubMed
Google Scholar
Platt B, Riedel G: The cholinergic system, EEG and sleep. Behav Brain Res. 2011, 221: 499-504.
CAS
PubMed
Google Scholar
Berridge CW, Schmeichel BE, España RA: Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev. 2012, 16: 187-197.
PubMed Central
PubMed
Google Scholar
Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M: Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex. 2000, 10: 1185-1199.
CAS
PubMed
Google Scholar
Sanchez-Vives MV, McCormick DA: Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci. 2000, 3: 1027-1034.
CAS
PubMed
Google Scholar
Beggs JM, Plenz D: Neuronal avalanches in neocortical circuits. J Neurosci. 2003, 23: 11167-11177.
CAS
PubMed
Google Scholar
Baker RE, Corner MA, van Pelt J: Spontaneous neuronal discharge patterns in developing organotypic mega-co-cultures of neonatal rat cerebral cortex. Brain Res. 2006, 1101: 29-35.
CAS
PubMed
Google Scholar
Johnson HA, Buonomano DV: Development and plasticity of spontaneous activity and Up states in cortical organotypic slices. J Neurosci. 2007, 27: 5915-5925.
CAS
PubMed
Google Scholar
Wester JC, Contreras D: Differential modulation of spontaneous and evoked thalamocortical network activity by acetylcholine level in vitro. J Neurosci. 2013, 33: 17951-17966.
CAS
PubMed Central
PubMed
Google Scholar
Maeda E, Robinson HP, Kawana A: The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons. J Neurosci. 1995, 15: 6834-6845.
CAS
PubMed
Google Scholar
Kamioka H, Maeda E, Jimbo Y, Robinson HP, Kawana A: Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neurosci Lett. 1996, 206: 109-112.
CAS
PubMed
Google Scholar
Canepari M, Bove M, Maeda E, Cappello M, Kawana A: Experimental analysis of neuronal dynamics in cultured cortical networks and transitions between different patterns of activity. Biol Cybern. 1997, 77: 153-162.
CAS
PubMed
Google Scholar
Segev R, Benveniste M, Hulata E, Cohen N, Palevski A, Kapon E, Shapira Y, Ben-Jacob E: Long term behavior of lithographically prepared in vitro neuronal networks. Phys Rev Lett. 2002, 88: 118102-
PubMed
Google Scholar
van Pelt J, Wolters PS, Corner MA, Rutten WL, Ramakers GJ: Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks. IEEE Trans Biomed Eng. 2004, 51: 2051-2062.
PubMed
Google Scholar
Wagenaar DA, Pine J, Potter SM: An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci. 2006, 7: 11-
PubMed Central
PubMed
Google Scholar
Eytan D, Marom S: Dynamics and effective topology underlying synchronization in networks of cortical neurons. J Neurosci. 2006, 26: 8465-8476.
CAS
PubMed
Google Scholar
Gullo F, Mazzetti S, Maffezzoli A, Dossi E, Lecchi M, Amadeo A, Krajewski J, Wanke E: Orchestration of "presto" and "largo" synchrony in up-down activity of cortical networks. Front Neural Circuits. 2010, 4: 11-
PubMed Central
PubMed
Google Scholar
Kaufman M, Corner MA, Ziv NE: Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling. PLoS One. 2012, 7: e40980-
CAS
PubMed Central
PubMed
Google Scholar
Hinard V, Mikhail C, Pradervand S, Curie T, Houtkooper RH, Auwerx J, Franken P, Tafti M: Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J Neurosci. 2012, 32: 12506-12517.
CAS
PubMed
Google Scholar
Orlandi JG, Soriano J, Alvarez-Lacalle E, Teller S, Casademunt J: Noise focusing and the emergence of coherent activity in neuronal cultures. Nat Phys. 2013, 9: 582-590.
CAS
Google Scholar
Corner MA, Baker RE, van Pelt J: Physiological consequences of selective suppression of synaptic transmission in developing cerebral cortical networks in vitro: differential effects on intrinsically generated bioelectric discharges in a living `model' system for slow-wave sleep activity. Neurosci Biobehav Rev. 2008, 32: 1569-1600.
PubMed
Google Scholar
Holcman D, Tsodyks M: The emergence of Up and Down states in cortical networks. PLoS Comput Biol. 2006, 2: e23-
PubMed Central
PubMed
Google Scholar
Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ: Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci. 2002, 22: 8691-8704.
CAS
PubMed
Google Scholar
Ivenshitz M, Segal M: Neuronal density determines network connectivity and spontaneous activity in cultured hippocampus. J Neurophysiol. 2010, 104: 1052-1060.
PubMed
Google Scholar
Nita DA, Cissé Y, Timofeev I, Steriade M: Increased propensity to seizures after chronic cortical deafferentation in vivo. J Neurophysiol. 2006, 95: 902-913.
PubMed
Google Scholar
Fröhlich F, Bazhenov M, Sejnowski TJ: Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex. J Neurosci. 2008, 28: 1709-1720.
PubMed Central
PubMed
Google Scholar
Constantinople CM, Bruno RM: Effects and mechanisms of wakefulness on local cortical networks. Neuron. 2011, 69: 1061-1068.
CAS
PubMed Central
PubMed
Google Scholar
Robinson HP, Kawahara M, Jimbo Y, Torimitsu K, Kuroda Y, Kawana A: Periodic synchronized bursting and intracellular calcium transients elicited by low magnesium in cultured cortical neurons. J Neurophysiol. 1993, 70: 1606-1616.
CAS
PubMed
Google Scholar
Cohen E, Ivenshitz M, Amor-Baroukh V, Greenberger V, Segal M: Determinants of spontaneous activity in networks of cultured hippocampus. Brain Res. 2008, 1235: 21-30.
CAS
PubMed
Google Scholar
Cohen D, Segal M: Network bursts in hippocampal microcultures are terminated by exhaustion of vesicle pools. J Neurophysiol. 2011, 106: 2314-2321.
PubMed
Google Scholar
Hill S, Tononi G: Modeling sleep and wakefulness in the thalamocortical system. J Neurophysiol. 2005, 93: 1671-1698.
PubMed
Google Scholar
Mark S, Tsodyks M: Population spikes in cortical networks during different functional states. Front Comput Neurosci. 2012, 6: 43-
PubMed Central
PubMed
Google Scholar
Kalmbach A, Hedrick T, Waters J: Selective optogenetic stimulation of cholinergic axons in neocortex. J Neurophysiol. 2012, 107: 2008-2019.
CAS
PubMed Central
PubMed
Google Scholar
Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L: Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010, 13: 1526-1533.
CAS
PubMed Central
PubMed
Google Scholar
Moruzzi G, Magoun HW: Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949, 1: 455-473.
CAS
PubMed
Google Scholar
Szerb JC: Cortical acetylcholine release and electroencephalographic arousal. J Physiol. 1967, 192: 329-343.
CAS
PubMed Central
PubMed
Google Scholar
Steriade M, Curro Dossi R, Nuñez A: Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J Neurosci. 1991, 11: 3200-3217.
CAS
PubMed
Google Scholar
Steriade M, Amzica F, Nuñez A: Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. J Neurophysiol. 1993, 70: 1385-1400.
CAS
PubMed
Google Scholar
Berridge CW, Foote SL: Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. J Neurosci. 1991, 11: 3135-3145.
CAS
PubMed Central
PubMed
Google Scholar
Metherate R, Cox CL, Ashe JH: Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J Neurosci. 1992, 12: 4701-4711.
CAS
PubMed
Google Scholar
Berridge CW, España RA: Synergistic sedative effects of noradrenergic alpha(1)- and beta-receptor blockade on forebrain electroencephalographic and behavioral indices. Neuroscience. 2000, 99: 495-505.
CAS
PubMed
Google Scholar
Dringenberg HC, Olmstead MC: Integrated contributions of basal forebrain and thalamus to neocortical activation elicited by pedunculopontine tegmental stimulation in urethane-anesthetized rats. Neuroscience. 2003, 119: 839-853.
CAS
PubMed
Google Scholar
Rudolph M, Pelletier JG, Paré D, Destexhe A: Characterization of synaptic conductances and integrative properties during electrically induced EEG-activated states in neocortical neurons in vivo. J Neurophysiol. 2005, 94: 2805-2821.
PubMed
Google Scholar
Castro-Alamancos MA, Gulati T: Neuromodulators produce distinct activated states in neocortex. J Neurosci. 2014, 34: 12353-12367.
PubMed Central
PubMed
Google Scholar
Tateno T, Jimbo Y, Robinson HPC: Spatio-temporal cholinergic modulation in cultured networks of rat cortical neurons: spontaneous activity. Neuroscience. 2005, 134: 425-437.
CAS
PubMed
Google Scholar
Chiappalone M, Vato A, Berdondini L, Koudelka-Hep M, Martinoia S: Network dynamics and synchronous activity in cultured cortical neurons. Int J Neural Syst. 2007, 17: 87-103.
PubMed
Google Scholar
Pasquale V, Massobrio P, Bologna LL, Chiappalone M, Martinoia S: Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience. 2008, 153: 1354-1369.
CAS
PubMed
Google Scholar
Schmidt SL, Chew EY, Bennett DV, Hammad MA, Fröhlich F: Differential effects of cholinergic and noradrenergic neuromodulation on spontaneous cortical network dynamics. Neuropharmacology. 2013, 72: 259-273.
CAS
PubMed
Google Scholar
Lewis LD, Weiner VS, Mukamel EA, Donoghue JA, Eskandar EN, Madsen JR, Anderson WS, Hochberg LR, Cash SS, Brown EN, Purdon PL: Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci U S A. 2012, 109: E3377-E3386.
CAS
PubMed Central
PubMed
Google Scholar
Mukamel EA, Pirondini E, Babadi B, Wong KF, Pierce ET, Harrell PG, Walsh JL, Salazar-Gomez AF, Cash SS, Eskandar EN, Weiner VS, Brown EN, Purdon PL: A transition in brain state during propofol-induced unconsciousness. J Neurosci. 2014, 34: 839-845.
CAS
PubMed Central
PubMed
Google Scholar
Soreq H, Seidman S: Acetylcholinesterase-new roles for an old actor. Nat Rev Neurosci. 2001, 2: 294-302.
CAS
PubMed
Google Scholar
Minerbi A, Kahana R, Goldfeld L, Kaufman M, Marom S, Ziv NE: Long-term relationships between synaptic tenacity, synaptic remodeling, and network activity. PLoS Biol. 2009, 7: e1000136-
PubMed Central
PubMed
Google Scholar
Wagenaar DA, Madhavan R, Pine J, Potter SM: Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. J Neurosci. 2005, 25: 680-688.
CAS
PubMed Central
PubMed
Google Scholar
Contreras D, Steriade M: Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci. 1995, 15: 604-622.
CAS
PubMed
Google Scholar
Golmayo L, Nuñez A, Zaborszky L: Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience. 2003, 119: 597-609.
CAS
PubMed
Google Scholar
Briand LA, Gritton H, Howe WM, Young DA, Sarter M: Modulators in concert for cognition: modulator interactions in the prefrontal cortex. Prog Neurobiol. 2007, 83: 69-91.
CAS
PubMed Central
PubMed
Google Scholar
Hebb DO: Drives and the C.N.S. (conceptual nervous system). Psychol Rev. 1955, 62: 243-254.
CAS
PubMed
Google Scholar
Hodgkin AL, Huxley AF, Katz B: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952, 116: 424-448.
CAS
PubMed Central
PubMed
Google Scholar
Zrenner C, Eytan D, Wallach A, Their P, Marom S: A generic framework for real-time multi-channel neuronal signal analysis, telemetry control, and sub-millisecond latency feedback generation. Front Neurosci. 2010, 4: 173-
PubMed Central
PubMed
Google Scholar
Wallach A, Eytan D, Gal A, Zrenner C, Marom S: Neuronal response clamp. Front Neuroeng. 2011, 4: 3-
PubMed Central
PubMed
Google Scholar
Wallach A, Marom S: Interactions between network synchrony and the dynamics of neuronal threshold. J Neurophysiol. 2012, 107: 2926-2936.
PubMed
Google Scholar
Wallach A: The response clamp: functional characterization of neural systems using closed-loop control. Front Neural Circuits. 2013, 7: 5-
PubMed Central
PubMed
Google Scholar
Miller JD, Farber J, Gatz P, Roffwarg H, German DC: Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and waking in the rat. Brain Res. 1983, 273: 133-141.
CAS
PubMed
Google Scholar
Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C: Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep-wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res. 2005, 81: 891-899.
CAS
PubMed
Google Scholar
Mayne EW, Craig MT, McBain CJ, Paulsen O: Dopamine suppresses persistent network activity via D1-like dopamine receptors in rat medial entorhinal cortex. Eur J Neurosci. 2013, 37: 1242-1247.
PubMed Central
PubMed
Google Scholar
Gulledge AT, Bucci DJ, Zhang SS, Matsui M, Yeh HH: M1 receptors mediate cholinergic modulation of excitability in neocortical pyramidal neurons. J Neurosci. 2009, 29: 9888-9902.
CAS
PubMed Central
PubMed
Google Scholar
Klein WL, Nathanson N, Nirenberg M: Muscarinic acetylcholine receptor regulation by accelerated rate of receptor loss. Biochem Biophys Res Commun. 1979, 90: 506-512.
CAS
PubMed
Google Scholar
Maloteaux JM, Hermans E: Agonist-induced muscarinic cholinergic receptor internalization, recycling and degradation in cultured neuronal cells. Cellular mechanisms and role in desensitization. Biochem Pharmacol. 1994, 47: 77-88.
CAS
PubMed
Google Scholar
Thangaraju A, Sawyer GW: Comparison of the kinetics and extent of muscarinic M1-M5 receptor internalization, recycling and downregulation in Chinese hamster ovary cells. Eur J Pharmacol. 2011, 650: 534-543.
CAS
PubMed Central
PubMed
Google Scholar
Giniatullin R, Nistri A, Yakel JL: Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci. 2005, 28: 371-378.
CAS
PubMed
Google Scholar
Wang Y, Gu Q, Mao F, Haugland RP, Cynader MS: Activity-dependent expression and distribution of M1 muscarinic ACh receptors in visual cortex neuronal cultures. J Neurosci. 1994, 14: 4147-4158.
CAS
PubMed
Google Scholar
Stewart CV, Plenz D: Homeostasis of neuronal avalanches during postnatal cortex development in vitro. J Neurosci Methods. 2008, 169: 405-416.
PubMed Central
PubMed
Google Scholar
Lemieux M, Chen JY, Lonjers P, Bazhenov M, Timofeev I: The impact of cortical deafferentation on the neocortical slow oscillation. J Neurosci. 2014, 34: 5689-5703.
PubMed Central
PubMed
Google Scholar
Sun YG, Pita-Almenar JD, Wu CS, Renger JJ, Uebele VN, Lu HC, Beierlein M: Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons. J Neurosci. 2013, 33: 2048-2059.
CAS
PubMed Central
PubMed
Google Scholar
Tsodyks MV, Markram H: The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A. 1997, 94: 719-723.
CAS
PubMed Central
PubMed
Google Scholar
McCormick DA: Actions of acetylcholine in the cerebral cortex and thalamus and implications for function. Prog Brain Res. 1993, 98: 303-308.
CAS
PubMed
Google Scholar
Wu LG, Saggau P: Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci. 1997, 20: 204-212.
CAS
PubMed
Google Scholar
Giessel AJ, Sabatini BL: M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron. 2010, 68: 936-947.
CAS
PubMed Central
PubMed
Google Scholar
Alitto HJ, Dan Y: Cell-type-specific modulation of neocortical activity by basal forebrain input. Front Syst Neurosci. 2013, 6: 79-
PubMed Central
PubMed
Google Scholar
Oda A, Yamagata K, Nakagomi S, Uejima H, Wiriyasermkul P, Ohgaki R, Nagamori S, Kanai Y, Tanaka H: Nicotine induces dendritic spine remodeling in cultured hippocampal neurons. J Neurochem. 2014, 128: 246-255.
CAS
PubMed
Google Scholar
Halff AW, Gómez-Varela D, John D, Berg DK: A novel mechanism for nicotinic potentiation of glutamatergic synapses. J Neurosci. 2014, 34: 2051-2064.
CAS
PubMed Central
PubMed
Google Scholar
Blankenship AG, Feller MB: Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci. 2010, 11: 18-29.
CAS
PubMed Central
PubMed
Google Scholar
Khazipov R, Luhmann HJ: Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci. 2006, 29: 414-418.
CAS
PubMed
Google Scholar
Sarter M, Parikh V, Howe WM: Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat Rev Neurosci. 2009, 10: 383-390.
CAS
PubMed Central
PubMed
Google Scholar
Hasselmo ME, Sarter M: Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology. 2011, 36: 52-73.
CAS
PubMed Central
PubMed
Google Scholar
Gu Z, Yakel JL: Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron. 2011, 71: 155-165.
CAS
PubMed Central
PubMed
Google Scholar
Lee MG, Hassani OK, Alonso A, Jones BE: Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci. 2005, 25: 4365-4369.
CAS
PubMed
Google Scholar
McCormick DA, Prince DA: Actions of acetylcholine in the guinea-pig and cat medial and lateral geniculate nuclei, in vitro. J Physiol. 1987, 392: 147-165.
CAS
PubMed Central
PubMed
Google Scholar
Marrosu F, Portas C, Mascia MS, Casu MA, Fà M, Giagheddu M, Imperato A, Gessa GL: Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Res. 1995, 671: 329-332.
CAS
PubMed
Google Scholar
Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G: Local sleep in awake rats. Nature. 2011, 472: 443-447.
CAS
PubMed Central
PubMed
Google Scholar
Hebb DO: The Organization of Behavior. 1949, John Wiley & Sons, New York
Google Scholar
Newman JP, Zeller-Townson R, Fong MF, Arcot Desai S, Gross RE, Potter SM: Closed-loop, multichannel experimentation using the open-source NeuroRighter Electrophysiology Platform. Front Neural Circuits. 2013, 6: 98-
PubMed Central
PubMed
Google Scholar
Poulet JF, Petersen CC: Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature. 2008, 454: 881-885.
CAS
PubMed
Google Scholar
Poulet JF, Fernandez LM, Crochet S, Petersen CC: Thalamic control of cortical states. Nat Neurosci. 2012, 15: 370-372.
CAS
PubMed
Google Scholar
Berridge CW, Abercrombie ED: Relationship between locus coeruleus discharge rates and rates of norepinephrine release within neocortex as assessed by in vivo microdialysis. Neuroscience. 1999, 93: 1263-1270.
CAS
PubMed
Google Scholar
Meisel C, Olbrich E, Shriki O, Achermann P: Fading signatures of critical brain dynamics during sustained wakefulness in humans. J Neurosci. 2013, 33: 17363-17372.
CAS
PubMed Central
PubMed
Google Scholar
Polsky A, Mel B, Schiller J: Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons. J Neurosci. 2009, 29: 11891-11903.
CAS
PubMed Central
PubMed
Google Scholar