Guan L. Na+/Melibiose Membrane Transport Protein, MelB. In: Roberts G, Watts A, editors. European Biophysical Societies (eds) Encyclopedia of Biophysics. Berlin, Heidelberg: Springer; 2018. (doi.org/10.1007/978-3-642-35943-9_10082-1).
Google Scholar
Ethayathulla AS, Yousef MS, Amin A, Leblanc G, Kaback HR, Guan L. Structure-based mechanism for Na(+)/melibiose symport by MelB. Nat Commun. 2014;5:3009.
Article
PubMed
PubMed Central
CAS
Google Scholar
Niiya S, Moriyama Y, Futai M, Tsuchiya T. Cation coupling to melibiose transport in Salmonella typhimurium. J Bacteriol. 1980;144:192–9.
PubMed
PubMed Central
CAS
Google Scholar
Tsuchiya T, Wilson TH. Cation-sugar cotransport in the melibiose transport system of Escherichia coli. Membr Biochem. 1978;2:63–79.
Article
PubMed
CAS
Google Scholar
Bassilana M, Pourcher T, Leblanc G. Facilitated diffusion properties of melibiose permease in Escherichia coli membrane vesicles. Release of co-substrates is rate limiting for permease cycling. J Biol Chem. 1987;262:16865–70.
PubMed
CAS
Google Scholar
Guan L, Nurva S, Ankeshwarapu SP. Mechanism of melibiose/cation symport of the melibiose permease of Salmonella typhimurium. J Biol Chem. 2011;286:6367–74.
Article
PubMed
CAS
Google Scholar
Poolman B, Knol J, van der Does C, Henderson PJ, Liang WJ, Leblanc G, et al. Cation and sugar selectivity determinants in a novel family of transport proteins. Mol Microbiol. 1996;19:911–22.
Article
PubMed
CAS
Google Scholar
Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, et al. The major facilitator superfamily. J Mol Microbiol Biotechnol. 1999;1:257–79.
PubMed
CAS
Google Scholar
Guan L, Mirza O, Verner G, Iwata S, Kaback HR. Structural determination of wild-type lactose permease. Proc Natl Acad Sci U S A. 2007;104:15294–8.
Article
PubMed
PubMed Central
Google Scholar
Guan L, Kaback HR. Lessons from lactose permease. Annu Rev Biophys Biomol Struct. 2006;35:67–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meyer-Lipp K, Sery N, Ganea C, Basquin C, Fendler K, Leblanc G. The inner interhelix loop 4-5 of the melibiose permease from Escherichia coli takes part in conformational changes after sugar binding. J Biol Chem. 2006;281:25882–92.
Article
PubMed
CAS
Google Scholar
Yousef MS, Guan L. A 3D structure model of the melibiose permease of Escherichia coli represents a distinctive fold for Na(+) symporters. Proc Natl Acad Sci U S A. 2009;106:15291–6.
Article
PubMed
PubMed Central
Google Scholar
Garcia-Celma JJ, Ploch J, Smirnova I, Kaback HR, Fendler K. Delineating electrogenic reactions during lactose/H(+) symport. Biochemistry. 2010;49:6115–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guan L, Jakkula SV, Hodkoff AA, Su Y. Role of Gly117 in the cation/melibiose symport of MelB of Salmonella typhimurium. Biochemistry. 2012;51:2950–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hariharan P, Guan L. Thermodynamic cooperativity of cosubstrate binding and cation selectivity of Salmonella typhimurium MelB. J Gen Physiol. 2017;149:1029–39.
Article
PubMed
PubMed Central
Google Scholar
Dumas F, Tocanne JF, Leblanc G, Lebrun MC. Consequences of hydrophobic mismatch between lipids and melibiose permease on melibiose transport. Biochemistry. 2000;39:4846–54.
Article
PubMed
CAS
Google Scholar
Ames GF. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol. 1968;95:833–43.
PubMed
PubMed Central
CAS
Google Scholar
Bogdanov M, Dowhan W. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. J Biol Chem. 1995;270:732–9.
Article
PubMed
CAS
Google Scholar
Bogdanov M, Sun J, Kaback HR, Dowhan W. A phospholipid acts as a chaperone in assembly of a membrane transport protein. J Biol Chem. 1996;271:11615–8.
Article
PubMed
CAS
Google Scholar
Bogdanov M, Heacock PN, Dowhan W. A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J. 2002;21:2107–16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vitrac H, Bogdanov M, Dowhan W. Proper fatty acid composition rather than an ionizable lipid amine is required for full transport function of lactose permease from Escherichia coli. J Biol Chem. 2013;288:5873–85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bogdanov M, Xie J, Heacock P, Dowhan W. To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. J Cell Biol. 2008;182:925–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bogdanov M, Dowhan W. Lipid-dependent generation of dual topology for a membrane protein. J Biol Chem. 2012;287:37939–48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bogdanov M, Dowhan W. Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO J. 1998;17:5255–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vitrac H, Bogdanov M, Dowhan W. In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein. Proc Natl Acad Sci U S A. 2013;110:9338–43.
Article
PubMed
PubMed Central
Google Scholar
Zhang W, Bogdanov M, Pi J, Pittard AJ, Dowhan W. Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J Biol Chem. 2003;278:50128–35.
Article
PubMed
CAS
Google Scholar
Zhang W, Campbell HA, King SC, Dowhan W. Phospholipids as determinants of membrane protein topology. Phosphatidylethanolamine is required for the proper topological organization of the gamma-aminobutyric acid permease (GabP) of Escherichia coli. J Biol Chem. 2005;280:26032–8.
Article
PubMed
CAS
Google Scholar
Valiyaveetil FI, Zhou Y, MacKinnon R. Lipids in the structure, folding, and function of the KcsA K(+) channel. Biochemistry. 2002;41:10771–7.
Article
PubMed
CAS
Google Scholar
Weingarth M, Prokofyev A, van der Cruijsen EAW, Nand D, Bonvin AMJJ, Pongs O, et al. Structural determinants of specific lipid binding to potassium channels. J Am Chem Soc. 2013;135:3983–8.
Article
PubMed
CAS
Google Scholar
Xu Y, Ramu Y, Lu Z. Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K(+) channels. Nature. 2008;451:826–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marius P, de Planque MRR, Williamson PTF. Probing the interaction of lipids with the non-annular binding sites of the potassium channel KcsA by magic-angle spinning NMR. Biochimica Et Biophysica Acta-Biomembranes. 1818;2012:90–6.
Google Scholar
Koshy C, Schweikhard ES, Gartner RM, Perez C, Yildiz O, Ziegler C. Structural evidence for functional lipid interactions in the betaine transporter BetP. EMBO J. 2013;32:3096–105.
Article
PubMed
PubMed Central
CAS
Google Scholar
DeChavigny A, Heacock PN, Dowhan W. Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J Biol Chem. 1991;266:5323–32.
PubMed
CAS
Google Scholar
Shiba Y, Yokoyama Y, Aono Y, Kiuchi T, Kusaka J, Matsumoto K, et al. Activation of the Rcs signal transduction system is responsible for the thermosensitive growth defect of an Escherichia coli mutant lacking phosphatidylglycerol and cardiolipin. J Bacteriol. 2004;186:6526–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tan BK, Bogdanov M, Zhao J, Dowhan W, Raetz CR, Guan Z. Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci U S A. 2012;109:16504–9.
Article
PubMed
PubMed Central
Google Scholar
Tikhonova EB, Ethayathulla AS, Su Y, Hariharan P, Xie S, Guan L. A transcription blocker isolated from a designed repeat protein combinatorial library by in vivo functional screen. Sci Rep. 2015;5:8070.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pourcher T, Leclercq S, Brandolin G, Leblanc G. Melibiose permease of Escherichia coli: large scale purification and evidence that H(+), Na(+), and li(+) sugar symport is catalyzed by a single polypeptide. Biochemistry. 1995;34:4412–20.
Article
PubMed
CAS
Google Scholar
Jakkula SV, Guan L. Reduced Na(+) affinity increases turnover of Salmonella enterica serovar Typhimurium MelB. J Bacteriol. 2012;194:5538–44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Amin A, Ethayathulla AS, Guan L. Suppression of conformation-compromised mutants of Salmonella enterica serovar Typhimurium MelB. J Bacteriol. 2014;196:3134–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maehrel C, Cordat E, Mus-Veteau I, Leblanc G. Structural studies of the melibiose permease of Escherichia coli by fluorescence resonance energy transfer. I. Evidence for ion-induced conformational change. J Biol Chem. 1998;273:33192–7.
Article
PubMed
CAS
Google Scholar
Weingarth M, Demco DE, Bodenhausen G, Tekely P. Improved magnetization transfer in solid-state NMR with fast magic angle spinning. Chem Phys Lett. 2009;469:342–8.
Article
CAS
Google Scholar
Weingarth M, Bodenhausen G, Tekely P. Broadband carbon-13 correlation spectra of microcrystalline proteins in very high magnetic fields. J Am Chem Soc. 2009;131:13937–9.
Article
PubMed
CAS
Google Scholar
Gradmann S, Ader C, Heinrich I, Nand D, Dittmann M, Cukkemane A, et al. Rapid prediction of multi-dimensional NMR data sets. J Biomol NMR. 2012;54:377–87.
Article
PubMed
CAS
Google Scholar
Laage S, Tao Y, McDermott AE. Cardiolipin interaction with subunit c of ATP synthase: solid-state NMR characterization. Biochim Biophys Acta. 1848;2015:260–5.
Google Scholar
Weingarth M, Bodenhausen G, Tekely P. Broadband magnetization transfer using moderate radio-frequency fields for NMR with very high static fields and spinning speeds. Chem Phys Lett. 2010;488:10–6.
Article
CAS
Google Scholar
Lee CWB, Griffin RG. Two-dimensional H-1/C-13 heteronuclear chemical-shift correlation spectroscopy of lipid bilayers. Biophys J. 1989;55:355–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marius P, Alvis SJ, East JM, Lee AG. The interfacial lipid binding site on the potassium channel KcsA is specific for anionic phospholipids. Biophys J. 2005;89:4081–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eddy MT, Ong TC, Clark L, Teijido O, van der Wel PC, Garces R, et al. Lipid dynamics and protein-lipid interactions in 2D crystals formed with the beta-barrel integral membrane protein VDAC1. J Am Chem Soc. 2012;134:6375–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huster D. Solid-state NMR spectroscopy to study protein-lipid interactions. Biochim Biophys Acta. 1841;2014:1146–60.
Google Scholar
Kaur H, Lakatos-Karoly A, Vogel R, Noll A, Tampe R, Glaubitz C. Coupled ATPase-adenylate kinase activity in ABC transporters. Nat Commun. 2016;7:13864.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mandal A, Hoop CL, DeLucia M, Kodali R, Kagan VE, Ahn J, et al. Structural changes and proapoptotic peroxidase activity of cardiolipin-bound mitochondrial cytochrome c. Biophys J. 2015;109:1873–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
van der Cruijsen EA, Nand D, Weingarth M, Prokofyev A, Hornig S, Cukkemane AA, et al. Importance of lipid-pore loop interface for potassium channel structure and function. Proc Natl Acad Sci U S A. 2013;110:13008–13.
Article
PubMed
PubMed Central
Google Scholar
Weingarth M, Baldus M. Solid-state NMR-based approaches for supramolecular structure elucidation. Acc Chem Res. 2013;46:2037–46.
Article
PubMed
CAS
Google Scholar
Dowhan W, Bogdanov M. Molecular genetic and biochemical approaches for defining lipid-dependent membrane protein folding. Biochim Biophys Acta. 1818;2012:1097–107.
Google Scholar
Dowhan W, Mileykovskaya E, Bogdanov M. Diversity and versatility of lipid-protein interactions revealed by molecular genetic approaches. Biochim Biophys Acta 2004; 1666:19–39.
Mileykovskaya E, Ryan AC, Mo X, Lin CC, Khalaf KI, Dowhan W, et al. Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol. J Biol Chem. 2009;284:2990–3000.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mileykovskaya EI, Dowhan W. Alterations in the electron transfer chain in mutant strains of Escherichia coli lacking phosphatidylethanolamine. J Biol Chem. 1993;268:24824–31.
PubMed
CAS
Google Scholar
Hariharan P, Guan L. Insights into the inhibitory mechanisms of the regulatory protein IIA(Glc) on melibiose permease activity. J Biol Chem. 2014;289:33012–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Amin A, Hariharan P, Chae PS, Guan L. Effect of detergents on galactoside binding by Melibiose permeases. Biochemistry. 2015;54:5849–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaback HR. Bacterial membranes. Methods in Enzymol. 1971;XXII:99–120.
Article
Google Scholar
Short SA, Kaback HR, Kohn LD. D-lactate dehydrogenase binding in Escherichia coli dld- membrane vesicles reconstituted for active transport. Proc Natl Acad Sci U S A. 1974;71:1461–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guan L, Smirnova IN, Verner G, Nagamori S, Kaback HR. Manipulating phospholipids for crystallization of a membrane transport protein. Proc Natl Acad Sci U S A. 2006;103:1723–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou X, Arthur G. Improved procedures for the determination of lipid phosphorus by malachite green. J Lipid Res. 1992;33:1233–6.
PubMed
CAS
Google Scholar
Munnik T, Musgrave A, de Vrije T. Rapid turnover of polyphosphoinositides in carnation flower petals. Planta. 1994;193:89-98.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.
Article
PubMed
CAS
Google Scholar
Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–87.
Article
PubMed
CAS
Google Scholar
Carrasco N, Herzlinger D, Mitchell R, DeChiara S, Danho W, Gabriel TF, et al. Intramolecular dislocation of the COOH terminus of the lac carrier protein in reconstituted proteoliposomes. Proc Natl Acad Sci U S A. 1984;81:4672–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guan L, Weinglass AB, Kaback HR. Helix packing in the lactose permease of Escherichia coli: localization of helix VI. J Mol Biol. 2001;312:69–77.
Article
PubMed
CAS
Google Scholar
Shen Y, Bax A. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR. 2010;48:13–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vitrac H, MacLean DM, Karlstaedt A, Taegtmeyer H, Jayaraman V, Bogdanov M, et al. Dynamic lipid-dependent modulation of protein topology by post-translational phosphorylation. J Biol Chem. 2017;292:1613–24.
Article
PubMed
CAS
Google Scholar