Mixão V, Gabaldón T. Hybridization and emergence of virulence in opportunistic human yeast pathogens. Yeast. 2018;35:5–20. https://doi.org/10.1002/yea.3242.
Article
CAS
PubMed
Google Scholar
Pryszcz LP, Németh T, Saus E, Ksiezopolska E, Hegedűsová E, Nosek J, et al. The genomic aftermath of hybridization in the opportunistic pathogen Candida metapsilosis. PLoS Genet. 2015;11:e1005626.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mixão V, Hansen AP, Saus E, Boekhout T, Lass-Florl C, Gabaldón T. Whole-genome sequencing of the opportunistic yeast pathogen Candida inconspicua uncovers its hybrid origin. Front Genet. 2019;10. https://doi.org/10.3389/fgene.2019.00383.
Li W, Averette AF, Desnos-Ollivier M, Ni M, Dromer F, Heitman J. Genetic diversity and genomic plasticity of Cryptococcus neoformans AD hybrid strains. G3. 2012;2:83–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G, de Vienne DM, et al. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol Ecol. 2014;23:753–73.
Article
PubMed
Google Scholar
Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, et al. Hybridization and speciation. J Evol Biol. 2013;26:229–46.
Article
CAS
PubMed
Google Scholar
Mallet J. Hybrid speciation. Nature. 2007;446:279–83.
Article
CAS
PubMed
Google Scholar
Dagilis AJ, Kirkpatrick M, Bolnick DI. The evolution of hybrid fitness during speciation. PLoS Genet. 2019;15:e1008125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mallet J, Beltrán M, Neukirchen W, Linares M. Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evol Biol. 2007;7:28.
Article
PubMed
PubMed Central
Google Scholar
Ottenburghs J. Multispecies hybridization in birds. Avian Res. 2019;10:229.
Article
Google Scholar
Lunt DH, Kumar S, Koutsovoulos G, Blaxter ML. The complex hybrid origins of the root knot nematodes revealed through comparative genomics. PeerJ. 2014;2:e356.
Article
PubMed
PubMed Central
CAS
Google Scholar
Welch ME, Rieseberg LH. Patterns of genetic variation suggest a single, ancient origin for the diploid hybrid species Helianthus paradoxus. Evolution. 2002;56:2126–37.
Article
CAS
PubMed
Google Scholar
Morales L, Dujon B. Evolutionary role of interspecies hybridization and genetic exchanges in yeasts. Microbiol Mol Biol Rev. 2012;76:721–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tusso S, Nieuwenhuis BPS, Sedlazeck FJ, Davey JW, Jeffares DC, Wolf JBW. Ancestral admixture is the main determinant of global biodiversity in fission yeast. Mol Biol Evol. 2019;36:1975–89.
Article
PubMed
PubMed Central
Google Scholar
Krogerus K, Preiss R, Gibson B. A unique × hybrid isolated from Norwegian farmhouse beer: characterization and reconstruction. Front Microbiol. 2018;9:2253.
Article
PubMed
PubMed Central
Google Scholar
Marcet-Houben M, Gabaldón T. Beyond the whole-genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the baker’s yeast lineage. PLoS Biol. 2015;13:e1002220.
Article
PubMed
PubMed Central
CAS
Google Scholar
Monerawela C, Bond U. The hybrid genomes of Saccharomyces pastorianus: a current perspective. Yeast. 2018;35:39–50.
Article
CAS
PubMed
Google Scholar
Samarasinghe H, You M, Jenkinson TS, Xu J, James TY. Hybridization facilitates adaptive evolution in two major fungal pathogens. Genes. 2020;11. https://doi.org/10.3390/genes11010101.
Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol. 2015;78:16–48.
Article
CAS
PubMed
Google Scholar
Pryszcz LP, Németh T, Gácser A, Gabaldón T. Genome comparison of Candida orthopsilosis clinical strains reveals the existence of hybrids between two distinct subspecies. Genome Biol Evol. 2014;6:1069–78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20:133–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lass-Flörl C. The changing face of epidemiology of invasive fungal disease in Europe. Mycoses. 2009;52:197–205.
Article
PubMed
Google Scholar
Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv13.
Article
CAS
PubMed
Google Scholar
Gabaldón T, Carreté L. The birth of a deadly yeast: tracing the evolutionary emergence of virulence traits in Candida glabrata. FEMS Yeast Res. 2016;16:fov110. https://doi.org/10.1093/femsyr/fov110.
Article
CAS
PubMed
Google Scholar
Consortium OPATHY, Gabaldón T. Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiol Rev. 2019;43:517–47.
Google Scholar
Jordà-Marcos R, Alvarez-Lerma F, Jurado M, Palomar M, Nolla-Salas J, León MA, et al. Risk factors for candidaemia in critically ill patients: a prospective surveillance study. Mycoses. 2007;50:302–10.
Article
PubMed
Google Scholar
Cauchie M, Desmet S, Lagrou K. Candida and its dual lifestyle as a commensal and a pathogen. Res Microbiol. 2017;168:802–10. https://doi.org/10.1016/j.resmic.2017.02.005.
Article
PubMed
Google Scholar
Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 2008;6:e110.
Article
PubMed
PubMed Central
Google Scholar
Berman J, Hadany L. Does stress induce (para)sex? Implications for Candida albicans evolution. Trends Genet. 2012;28:197–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett RJ. The parasexual lifestyle of Candida albicans. Curr Opin Microbiol. 2015;28:10–7.
Article
PubMed
PubMed Central
Google Scholar
Alby K, Bennett RJ. Sexual reproduction in the Candida clade: cryptic cycles, diverse mechanisms, and alternative functions. Cell Mol Life Sci. 2010;67:3275–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S, et al. Genetic and phenotypic intra-species variation in Candida albicans. Genome Res. 2015;25:413–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ene IV, Farrer RA, Hirakawa MP, Agwamba K, Cuomo CA, Bennett RJ. Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proc Natl Acad Sci U S A. 2018;115:E8688–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ropars J, Maufrais C, Diogo D, Marcet-Houben M, Perin A, Sertour N, et al. Gene flow contributes to diversification of the major fungal pathogen Candida albicans. Nat Commun. 2018;9:2253.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang JM, Bennett RJ, Anderson MZ. The genome of the human pathogen Candida albicans is shaped by mutation and cryptic sexual recombination. mBio. 2018;9. https://doi.org/10.1128/mbio.01205-18.
Bensasson D, Dicks J, Ludwig JM, Bond CJ, Elliston A, Roberts IN, et al. Diverse lineages of Candida albicans live on old oaks. Genetics. 2019;211:277–88. https://doi.org/10.1534/genetics.118.301482.
Article
CAS
PubMed
Google Scholar
Schröder MS, Martinez de San Vicente K, THR P, Hammel S, Higgins DG, Bagagli E, et al. Multiple origins of the pathogenic yeast Candida orthopsilosis by separate hybridizations between two parental species. PLoS Genet. 2016;12:e1006404.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mapleson D, Garcia Accinelli G, Kettleborough G, Wright J, Clavijo BJ. KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics. 2017;33:574–6.
CAS
PubMed
Google Scholar
Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92. https://doi.org/10.1093/bib/bbs017.
Article
CAS
PubMed
Google Scholar
Gabaldón T, Fairhead C. Genomes shed light on the secret life of Candida glabrata: not so asexual, not so commensal. Curr Genet. 2019;65:93–8. https://doi.org/10.1007/s00294-018-0867-z.
Article
CAS
PubMed
Google Scholar
Tietz H-J, Hopp M, Schmalreck A, Sterry W, Czaika V. Candida africana sp. nov., a new human pathogen or a variant of Candida albicans? Mycoses. 2001;44:437–45. https://doi.org/10.1046/j.1439-0507.2001.00707.x.
Article
CAS
PubMed
Google Scholar
Romeo O, Tietz H-J, Criseo G. Candida africana: is it a fungal pathogen? Curr Fungal Infect Rep. 2013;7:192–7. https://doi.org/10.1007/s12281-013-0142-1.
Article
Google Scholar
Sai S, Holland LM, McGee CF, Lynch DB, Butler G. Evolution of mating within the Candida parapsilosis species group. Eukaryot Cell. 2011;10:578–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muzzey D, Schwartz K, Weissman JS, Sherlock G. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol. 2013;14:R97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barnett JA. A history of research on yeasts 12: medical yeasts part 1, Candida albicans. Yeast. 2008;25:385–417.
Article
CAS
PubMed
Google Scholar
Peter J, De Chiara M, Friedrich A, Yue J-X, Pflieger D, Bergström A, et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature. 2018;556:339–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inderbitzin P, Bostock RM, Davis RM, Usami T, Platt HW, Subbarao KV. Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS One. 2011;6:e28341.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inderbitzin P, Michael Davis R, Bostock RM, Subbarao KV. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLoS One. 2011;6:e18260. https://doi.org/10.1371/journal.pone.0018260.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liti G, Barton DBH, Louis EJ. Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics. 2006;174:839–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunter N, Chambers SR, Louis EJ, Borts RH. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 1996;15:1726–33. https://doi.org/10.1002/j.1460-2075.1996.tb00518.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolfe KH. Origin of the yeast whole-genome duplication. PLoS Biol. 2015;13:e1002221.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hou J, Schacherer J. Negative epistasis: a route to intraspecific reproductive isolation in yeast? Curr Genet. 2016;62:25–9. https://doi.org/10.1007/s00294-015-0505-y.
Article
CAS
PubMed
Google Scholar
Rogers DW, McConnell E, Ono J, Greig D. Spore-autonomous fluorescent protein expression identifies meiotic chromosome mis-segregation as the principal cause of hybrid sterility in yeast. PLoS Biol. 2018;16:e2005066.
Article
PubMed
PubMed Central
CAS
Google Scholar
Seervai RNH, Jones SK, Hirakawa MP, Porman AM, Bennett RJ. Parasexuality and ploidy change in Candida tropicalis. Eukaryot Cell. 2013;12:1629–40. https://doi.org/10.1128/ec.00128-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pujol C, Daniels KJ, Lockhart SR, Srikantha T, Radke JB, Geiger J, et al. The closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot Cell. 2004;3:1015–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison BD, et al. The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature. 2013;494(7435):55–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Bendixsen DP, Janzen T, Nolte AW, Greig D, Stelkens R. Recombining your way out of trouble: the genetic architecture of hybrid fitness under environmental stress. Mol Biol Evol. 2020;37:167–82.
Article
PubMed
Google Scholar
Smukowski Heil CS, DeSevo CG, Pai DA, Tucker CM, Hoang ML, Dunham MJ. Loss of heterozygosity drives adaptation in hybrid yeast. Mol Biol Evol. 2017;34:1596–612.
Article
PubMed
PubMed Central
CAS
Google Scholar
King KC, Stelkens RB, Webster JP, Smith DF, Brockhurst MA. Hybridization in parasites: consequences for adaptive evolution, pathogenesis, and public health in a changing world. PLoS Pathog. 2015;11:e1005098.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vincent BM, Lancaster AK, Scherz-Shouval R, Whitesell L, Lindquist S. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol. 2013;11:e1001692.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pryszcz LP, Németh T, Gácser A, Gabaldón T. Unexpected genomic variability in clinical and environmental strains of the pathogenic yeast Candida parapsilosis. Genome Biol Evol. 2013;5:2382–92. https://doi.org/10.1093/gbe/evt185.
Article
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riccombeni A, Vidanes G, Proux-Wéra E, Wolfe KH, Butler G. Sequence and analysis of the genome of the pathogenic yeast Candida orthopsilosis. PLoS One. 2012;7:e35750.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459:657–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D, et al. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res. 2009;19:2231–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013; https://arxiv.org/abs/1303.3997v2.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303. https://doi.org/10.1101/gr.107524.110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2. https://doi.org/10.1093/bioinformatics/btq033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 2017;45:D592–6. https://doi.org/10.1093/nar/gkw924.
Article
CAS
PubMed
Google Scholar
Edge P, Bafna V, Bansal V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies. Genome Res. 2017;27:801–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mixão V, Gabaldón T. Supplementary Datasets. 2020. NCBI BioProject accession: PRJNA555042. [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA555042].
Ropars J, Maufrais C, Diogo D, Marcet-Houben M, Perin A, Sertour N, et al. Supplementary Datasets. 2018. NCBI BioProject accession: PRJNA432884. [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA432884].
Bensasson D, Dicks J, Ludwig JM, Bond CJ, Elliston A, Roberts IN, et al. Supplementary Datasets. 2018. NCBI BioProject accession: PRJEB27862. [https://www.ncbi.nlm.nih.gov/bioproject/PRJEB27862].
Pryszcz LP, Németh T, Gácser A, Gabaldón T. Supplementary Datasets. 2014. NCBI BioProject accession: PRJEB4430. [https://www.ncbi.nlm.nih.gov/bioproject/PRJEB4430].
Schröder MS, Martinez de San Vicente K, Prandini THR, Hammel S, Higgins DG, Bagagli E, et al. Supplementary Datasets. 2016. NCBI BioProject accession: PRJNA322245. [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA322245].
Pryszcz LP, Németh T, Saus E, Ksiezopolska E, Hegedűsová E, Nosek J, et al. Supplementary Datasets. NCBI BioProject accession: PRJEB1698. [https://www.ncbi.nlm.nih.gov/bioproject/PRJEB1698].
Pryszcz LP, Németh T, Gácser A, Gabaldón T. Supplementary Datasets. 2013. NCBI BioProject accession: PRJEB1685. [https://www.ncbi.nlm.nih.gov/bioproject/PRJEB1685].
Conway Institute. 2016. NCBI Supplementary Datasets. BioProject accession: PRJNA326748. [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA326748].
Vincent BM, Lancaster AK, Scherz-Shouval R, Whitesell L, Lindquist S. Supplementary Datasets. 2013. NCBI BioProject accession: PRJNA194439. [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA194439].
Riccombeni A, Vidanes G, Proux-Wéra E, Wolfe KH, Butler G. Supplementary Datasets. 2012. NCBI BioProject accession: PRJEA83665. [https://www.ncbi.nlm.nih.gov/bioproject/PRJEA83665].
Wellcome Trust Sanger Institute. 2008. Supplementary Datasets. NCBI BioProject accession: PRJEA32889. [https://www.ncbi.nlm.nih.gov/bioproject/PRJEA32889].
Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA, et al. Supplementary Datasets. 2005. NCBI BioProject accession: PRJNA13675. [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA13675].
Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D, et al. Supplementary Datasets. 2009. NCBI BioProject accession: PRJEA34697. [https://www.ncbi.nlm.nih.gov/bioproject/PRJEA34697].
Muzzey D, Schwartz K, Weissman JS, Sherlock G. Supplementary Datasets. 2014. Candida Genome Database - C. albicans assembly 22. [http://www.candidagenome.org/download/sequence/C_albicans_SC5314/Assembly22/].