Alexeyev MF. Is there more to aging than mitochondrial DNA and reactive oxygen species? FEBS J. 2009;276:5768–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kauppila JH, Stewart JB. Mitochondrial DNA: radically free of free-radical driven mutations. Biochim Biophys Acta. 2015;1847:1354–61.
Article
CAS
PubMed
Google Scholar
Kauppila TES, Kauppila JHK, Larsson NG. Mammalian mitochondria and aging: an update. Cell Metab. 2017;25:57–71.
Article
CAS
PubMed
Google Scholar
Roberts LJ 2nd, Reckelhoff JF. Measurement of F (2)-isoprostanes unveils profound oxidative stress in aged rats. Biochem Biophys Res Commun. 2001;287:254–6.
Article
CAS
PubMed
Google Scholar
Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci U S A. 2001;98:10469–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.
Article
CAS
PubMed
Google Scholar
Koopman WJ, Verkaart S, van Emst-de Vries SE, Grefte S, Smeitink JA, Nijtmans LG, Willems PH. Mitigation of NADH: ubiquinone oxidoreductase deficiency by chronic Trolox treatment. Biochim Biophys Acta. 2008;1777:853–9.
Article
CAS
PubMed
Google Scholar
Menzies KJ, Robinson BH, Hood DA. Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects. Am J Physiol Cell Physiol. 2009;296:C355–62.
Article
CAS
PubMed
Google Scholar
Gerhold JM, Cansiz-Arda S, Lohmus M, Engberg O, Reyes A, van Rennes H, Sanz A, Holt IJ, Cooper HM, Spelbrink JN. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci Rep. 2015;5:15292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cuppari A, Fernandez-Millan P, Battistini F, Tarres-Sole A, Lyonnais S, Iruela G, Ruiz-Lopez E, Enciso Y, Rubio-Cosials A, Prohens R, et al. DNA specificities modulate the binding of human transcription factor A to mitochondrial DNA control region. Nucleic Acids Res. 2019;47:6519–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farge G, Falkenberg M. Organization of DNA in Mammalian Mitochondria. Int J Mol Sci. 2019;20(11):2770.
Holt IJ. The mitochondrial R-loop. Nucleic Acids Res. 2019;47:5480–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kasahara T, Kubota M, Miyauchi T, Noda Y, Mouri A, Nabeshima T, Kato T. Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol Psychiatry. 2006;11:577–93 523.
Article
CAS
PubMed
Google Scholar
Kasahara T, Takata A, Kato TM, Kubota-Sakashita M, Sawada T, Kakita A, Mizukami H, Kaneda D, Ozawa K, Kato T. Depression-like episodes in mice harboring mtDNA deletions in paraventricular thalamus. Mol Psychiatry. 2016;21:39–48.
Article
CAS
PubMed
Google Scholar
Kubota M, Kasahara T, Nakamura T, Ishiwata M, Miyauchi T, Kato T. Abnormal Ca2+ dynamics in transgenic mice with neuron-specific mitochondrial DNA defects. J Neurosci. 2006;26:12314–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams SL, Huang J, Edwards YJK, Ulloa RH, Dillon LM, Prolla TA, Vance JM, Moraes CT, Züchner S. The mtDNA mutation spectrum of the progeroid Polg mutator mouse includes abundant control region multimers. Cell Metab. 2010;12:675–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nido GS, Dolle C, Flones I, Tuppen HA, Alves G, Tysnes OB, Haugarvoll K, Tzoulis C. Ultradeep mapping of neuronal mitochondrial deletions in Parkinson’s disease. Neurobiol Aging. 2017;63:120–7.
Article
PubMed
CAS
Google Scholar
Ma H, Lee Y, Hayama T, Van Dyken C, Marti-Gutierrez N, Li Y, Ahmed R, Koski A, Kang E, Darby H, et al. Germline and somatic mtDNA mutations in mouse aging. PLoS One. 2018;13:e0201304.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ni T, Wei G, Shen T, Han M, Lian Y, Fu H, Luo Y, Yang Y, Liu J, Wakabayashi Y, et al. MitoRCA-seq reveals unbalanced cytocine to thymine transition in Polg mutant mice. Sci Rep. 2015;5:12049.
Article
PubMed
PubMed Central
Google Scholar
Jayaprakash AD, Benson EK, Gone S, Liang R, Shim J, Lambertini L, Toloue MM, Wigler M, Aaronson SA, Sachidanandam R. Stable heteroplasmy at the single-cell level is facilitated by intercellular exchange of mtDNA. Nucleic Acids Res. 2015;43:2177–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bushnell B. BBMap short-read aligner, and other bioinformatics tools; 2015.
Google Scholar
Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309:481–4.
Article
CAS
PubMed
Google Scholar
Fuke S, Kametani M, Yamada K, Kasahara T, Kubota-Sakashita M, Kujoth GC, Prolla TA, Hitoshi S, Kato T. Heterozygous Polg mutation causes motor dysfunction due to mtDNA deletions. Ann Clin Transl Neurol. 2014;1:909–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rensch T, Villar D, Horvath J, Odom DT, Flicek P. Mitochondrial heteroplasmy in vertebrates using ChIP-sequencing data. Genome Biol. 2016;17:139.
Article
PubMed
PubMed Central
CAS
Google Scholar
Samuels DC, Schon EA, Chinnery PF. Two direct repeats cause most human mtDNA deletions. Trends Genet. 2004;20:393–8.
Article
CAS
PubMed
Google Scholar
Lakshmanan LN, Gruber J, Halliwell B, Gunawan R. Role of direct repeat and stem-loop motifs in mtDNA deletions: cause or coincidence? PLoS One. 2012;7:e35271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marine R, Polson SW, Ravel J, Hatfull G, Russell D, Sullivan M, Syed F, Dumas M, Wommack KE. Evaluation of a transposase protocol for rapid generation of shotgun high-throughput sequencing libraries from nanogram quantities of DNA. Appl Environ Microbiol. 2011;77:8071–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kia A, Gloeckner C, Osothprarop T, Gormley N, Bomati E, Stephenson M, Goryshin I, He MM. Improved genome sequencing using an engineered transposase. BMC Biotechnol. 2017;17:6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sato MP, Ogura Y, Nakamura K, Nishida R, Gotoh Y, Hayashi M, Hisatsune J, Sugai M, Takehiko I, Hayashi T. Comparison of the sequencing bias of currently available library preparation kits for Illumina sequencing of bacterial genomes and metagenomes. DNA Res. 2019;26:391–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortopassi GA, Shibata D, Soong NW, Arnheim N. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A. 1992;89:7370–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38:515–7.
Article
CAS
PubMed
Google Scholar
Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38:518–20.
Article
CAS
PubMed
Google Scholar
Reeve AK, Krishnan KJ, Elson JL, Morris CM, Bender A, Lightowlers RN, Turnbull DM. Nature of mitochondrial DNA deletions in substantia nigra neurons. Am J Hum Genet. 2008;82:228–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dolle C, Flones I, Nido GS, Miletic H, Osuagwu N, Kristoffersen S, Lilleng PK, Larsen JP, Tysnes OB, Haugarvoll K, et al. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun. 2016;7:13548.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, Aiken JM. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet. 2006;79:469–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, Aiken JM. Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol A Biol Sci Med Sci. 2007;62:235–45.
Article
PubMed
Google Scholar
Simonetti S, Chen X, DiMauro S, Schon EA. Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim Biophys Acta. 1992;1180:113–22.
Article
CAS
PubMed
Google Scholar
Nekhaeva E, Bodyak ND, Kraytsberg Y, McGrath SB, Van Orsouw NJ, Pluzhnikov A, Wei JY, Vijg J, Khrapko K. Clonally expanded mtDNA point mutations are abundant in individual cells of human tissues. Proc Natl Acad Sci U S A. 2002;99:5521–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burr SP, Pezet M, Chinnery PF. Mitochondrial DNA Heteroplasmy and Purifying Selection in the Mammalian Female Germ Line. Dev Growth Differ. 2018;60(1):21-32.
Ye K, Lu J, Ma F, Keinan A, Gu Z. Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. Proc Natl Acad Sci U S A. 2014;111:10654–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell G, Krishnan KJ, Deschauer M, Taylor RW, Turnbull DM. Dissecting the mechanisms underlying the accumulation of mitochondrial DNA deletions in human skeletal muscle. Hum Mol Genet. 2014;23:4612–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elson JL, Samuels DC, Turnbull DM, Chinnery PF. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet. 2001;68:802–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kowald A, Kirkwood TB. Mitochondrial mutations and aging: random drift is insufficient to explain the accumulation of mitochondrial deletion mutants in short-lived animals. Aging Cell. 2013;12:728–31.
Article
CAS
PubMed
Google Scholar
Kowald A, Kirkwood TB. Transcription could be the key to the selection advantage of mitochondrial deletion mutants in aging. Proc Natl Acad Sci U S A. 2014;111:2972–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Madsen CS, Ghivizzani SC, Hauswirth WW. In vivo and in vitro evidence for slipped mispairing in mammalian mitochondria. Proc Natl Acad Sci U S A. 1993;90:7671–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larsson NG. Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem. 2010;79:683–706.
Article
CAS
PubMed
Google Scholar
Srivastava S, Moraes CT. Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans. Hum Mol Genet. 2005;14:893–902.
Article
CAS
PubMed
Google Scholar
Fukui H, Moraes CT. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet. 2009;18:1028–36.
Article
CAS
PubMed
Google Scholar
Szczepanowska K, Trifunovic A. Origins of mtDNA mutations in ageing. Essays Biochem. 2017;61:325–37.
Article
PubMed
Google Scholar
Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci U S A. 1989;86:7952–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hjelm BE, Rollins B, Morgan L, Sequeira A, Mamdani F, Pereira F, Damas J, Webb MG, Weber MD, Schatzberg AF, et al. Splice-Break: exploiting an RNA-seq splice junction algorithm to discover mitochondrial DNA deletion breakpoints and analyses of psychiatric disorders. Nucleic Acids Res. 2019;47:e59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Damas J, Samuels DC, Carneiro J, Amorim A, Pereira F: Mitochondrial DNA rearrangements in health and disease-a comprehensive study 2014, 35:1–14.
Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW, Wanrooij S, Spelbrink JN, Lightowlers RN, Turnbull DM. What causes mitochondrial DNA deletions in human cells? Nat Genet. 2008;40:275–9.
Article
CAS
PubMed
Google Scholar
Wanrooij S, Luoma P, van Goethem G, van Broeckhoven C, Suomalainen A, Spelbrink JN. Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res. 2004;32:3053–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tengan CH, Ferreiro-Barros C, Cardeal M, Fireman MAT, Oliveira ASB, Kiyomoto BH, Gabbai AA. Frequency of duplications in the D-loop in patients with mitochondrial DNA deletions. Biochim Biophys Acta. 2002;1588:65–70.
Article
CAS
PubMed
Google Scholar
Bouzidi MF, Poyau A, Godinot C. Co-existence of high levels of a cytochrome b mutation and of a tandem 200 bp duplication in the D-loop of muscle human mitochondrial DNA. Hum Mol Genet. 1998;7:385–91.
Article
CAS
PubMed
Google Scholar
Lee H-C, Pang C-Y, Hsu H-S, Weia Y-H. Ageing-associated tandem duplications in the D-loop of mitochondrial DNA of human muscle. FEBS Lett. 1994;354:79–83.
Article
CAS
PubMed
Google Scholar
Bailey LJ, Cluett TJ, Reyes A, Prolla TA, Poulton J, Leeuwenburgh C, Holt IJ. Mice expressing an error-prone DNA polymerase in mitochondria display elevated replication pausing and chromosomal breakage at fragile sites of mitochondrial DNA. Nucleic Acids Res. 2009;37:2327–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Kaushik S, Kalinowski P, Kim B, Gershome C, Ching J, Poburko D. Droplet digital PCR shows the D-Loop to be an error prone locus for mitochondrial DNA copy number determination. Sci Rep. 2018;8:11392.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brieba LG, Eichman BF, Kokoska RJ, Doublie S, Kunkel TA, Ellenberger T. Structural basis for the dual coding potential of 8-oxoguanosine by a high-fidelity DNA polymerase. EMBO J. 2004;23:3452–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graziewicz MA, Bienstock RJ, Copeland WC. The DNA polymerase gamma Y955C disease variant associated with PEO and parkinsonism mediates the incorporation and translesion synthesis opposite 7,8-dihydro-8-oxo-2′-deoxyguanosine. Hum Mol Genet. 2007;16:2729–39.
Article
CAS
PubMed
Google Scholar
Hiona A, Sanz A, Kujoth GC, Pamplona R, Seo AY, Hofer T, Someya S, Miyakawa T, Nakayama C, Samhan-Arias AK, et al. Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PLoS One. 2010;5:e11468.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nordmann PL, Makris JC, Reznikoff WS. Inosine induced mutations. Mol Gen Genet. 1988;214:62–7.
Article
CAS
PubMed
Google Scholar
Longley MJ, Nguyen D, Kunkel TA, Copeland WC. The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem. 2001;276:38555–62.
Article
CAS
PubMed
Google Scholar
Song S, Pursell ZF, Copeland WC, Longley MJ, Kunkel TA, Mathews CK. DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. Proc Natl Acad Sci U S A. 2005;102:4990–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng W, Khrapko K, Coller HA, Thilly WG, Copeland WC. Origins of human mitochondrial point mutations as DNA polymerase gamma-mediated errors. Mutat Res. 2006;599:11–20.
Article
CAS
PubMed
Google Scholar
Sheng ZH. The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol. 2017;27:403–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacAskill AF, Kittler JT. Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 2010;20:102–12.
Article
CAS
PubMed
Google Scholar
Pickrell AM, Huang CH, Kennedy SR, Ordureau A, Sideris DP, Hoekstra JG, Harper JW, Youle RJ. Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron. 2015;87:371–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiang AC, McCartney E, O'Farrell PH, Ma H. A genome-wide screen reveals that reducing mitochondrial DNA polymerase can promote elimination of deleterious mitochondrial mutations. Curr Biol. 2019;29:4330–6 e4333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross JM, Stewart JB, Hagstrom E, Brene S, Mourier A, Coppotelli G, Freyer C, Lagouge M, Hoffer BJ, Olson L, Larsson NG. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature. 2013;501:412–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross JM, Coppotelli G, Hoffer BJ, Olson L. Maternally transmitted mitochondrial DNA mutations can reduce lifespan. Sci Rep. 2014;4:6569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khrapko K, Kraytsberg Y, de Grey AD, Vijg J, Schon EA. Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging? Aging Cell. 2006;5:279–82.
Article
CAS
PubMed
Google Scholar
Khrapko K, Bodyak N, Thilly WG, van Orsouw NJ, Zhang X, Coller HA, Perls TT, Upton M, Vijg J, Wei JY. Cell-by-cell scanning of whole mitochondrial genomes in aged human heart reveals a significant fraction of myocytes with clonally expanded deletions. Nucleic Acids Res. 1999;27:2434–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matic S, Jiang M, Nicholls TJ, Uhler JP, Dirksen-Schwanenland C, Polosa PL, Simard ML, Li X, Atanassov I, Rackham O, et al. Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nat Commun. 2018;9:1202.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fuke S, Kubota-Sakashita M, Kasahara T, Shigeyoshi Y, Kato T. Regional variation in mitochondrial DNA copy number in mouse brain. Biochim Biophys Acta. 2011;1807:270–4.
Article
CAS
PubMed
Google Scholar
Herbers E, Kekalainen NJ, Hangas A, Pohjoismaki JL, Goffart S. Tissue specific differences in mitochondrial DNA maintenance and expression. Mitochondrion. 2019;44:85–92.
Article
CAS
PubMed
Google Scholar
Kato TM, Kubota-Sakashita M, Fujimori-Tonou N, et al. Ant1 mutant mice bridge the mitochondrial and serotonergic dysfunctions in bipolar disorder. Mol Psychiatry. 2018;23(10):2039-2049.
Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012, 6:80–92.
Wang M, Zhao Y, Zhang B. Efficient test and visualization of multi-set intersections. Sci Rep. 2015;5:16923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu Z, Gu L, Eils R, Schlesner M, Brors B: circlize implements and enhances circular visualization in R. Bioinformatics 2014, 30:2811–2812.
Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–7.
Article
CAS
PubMed
Google Scholar