Taylor FJR, Hoppenrath M, Saldarriaga JF. Dinoflagellate diversity and distribution. Biodivers Conserv. 2008;17(2):407–18.
Google Scholar
LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol CB. 2018;28(16):2570–2580.e6.
CAS
PubMed
Google Scholar
Janouskovec J, Horák A, Oborník M, Lukes J, Keeling PJ. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A. 2010;107(24):10949–54.
PubMed
PubMed Central
Google Scholar
Bodył A. Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis. Biol Rev. 2018;93(1):201–22.
PubMed
Google Scholar
Wong JTY. Architectural organization of dinoflagellate liquid crystalline chromosomes. Microorganisms. 2019;7(2):27.
CAS
PubMed Central
Google Scholar
Hou Y, Lin S. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes. Plos One. 2009;4(9):e6978.
PubMed
PubMed Central
Google Scholar
LaJeunesse TC, Lambert G, Andersen RA, Coffroth MA, Galbraith DW. Symbiodinium (pyrrhophyta) genome sizes (DNA content) are smallest among Dinoflagellates1. J Phycol. 2005;41(4):880–6.
CAS
Google Scholar
Janouškovec J, Gavelis GS, Burki F, Dinh D, Bachvaroff TR, Gornik SG, et al. Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci U S A. 2017;114(2):E171–80.
PubMed
Google Scholar
Bachvaroff TR, Place AR. From stop to start: tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae. Plos One. 2008;3(8):e2929.
PubMed
PubMed Central
Google Scholar
Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, et al. Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci U S A. 2007;104(11):4618–23.
CAS
PubMed
PubMed Central
Google Scholar
Lidie KB, van Dolah FM. Spliced leader RNA-mediated trans-splicing in a dinoflagellate, Karenia brevis. J Eukaryot Microbiol. 2007;54(5):427–35.
CAS
PubMed
Google Scholar
Slamovits CH, Keeling PJ. Widespread recycling of processed cDNAs in dinoflagellates. Curr Biol CB. 2008;18(13):R550–2.
CAS
PubMed
Google Scholar
Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol CB. 2013;23(15):1399–408.
CAS
PubMed
Google Scholar
Moustafa A, Evans AN, Kulis DM, Hackett JD, Erdner DL, Anderson DM, et al. Transcriptome profiling of a toxic dinoflagellate reveals a gene-rich protist and a potential impact on gene expression due to bacterial presence. Plos One. 2010;5(3):e9688.
PubMed
PubMed Central
Google Scholar
Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10(12):3349–65.
CAS
PubMed
Google Scholar
Cachon J. Contribution à l′étude des péridiniens parasites. Cytologie, cycles évolutifs. Paris: Masson et Cie; 1964. p. 158. (Annales des Sciences Naturelles Zoologie et Biologie Animale; vol. 12ème série).
Google Scholar
Park MG, Yih W, Coats DW. Parasites and phytoplankton, with special emphasis on dinoflagellate infections. J Eukaryot Microbiol. 2004;51(2):145–55.
PubMed
Google Scholar
Chambouvet A, Morin P, Marie D, Guillou L. Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science. 2008;322(5905):1254–7.
CAS
PubMed
Google Scholar
Montagnes DJS, Chambouvet A, Guillou L, Fenton A. Responsibility of microzooplankton and parasite pressure for the demise of toxic dinoflagellate blooms. Aquat Microb Ecol. 2008;53(2):211–25.
Google Scholar
Alves-de-Souza C, Pecqueur D, Floc’h EL, Mas S, Roques C, Mostajir B, et al. Significance of plankton community structure and nutrient availability for the control of Dinoflagellate blooms by parasites: a modeling approach. Plos One. 2015;10(6):e0127623.
PubMed
PubMed Central
Google Scholar
Cai R, Kayal E, Alves-de-Souza C, Bigeard E, Corre E, Jeanthon C, et al. Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach. Sci Rep. 2020;10(1):2531.
CAS
PubMed
PubMed Central
Google Scholar
Fulnečková J, Ševčíková T, Fajkus J, Lukešová A, Lukeš M, Vlček Č, et al. A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes. Genome Biol Evol. 2013;5(3):468–83.
PubMed
PubMed Central
Google Scholar
John U, Lu Y, Wohlrab S, Groth M, Janouškovec J, Kohli GS, et al. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci Adv. 2019;5(4):eaav1110.
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, González-Pech RA, Stephens TG, Bhattacharya D, Chan CX. Evidence that inconsistent gene prediction can mislead analysis of Dinoflagellate genomes. J Phycol. 2020;56(1):6–10.
PubMed
PubMed Central
Google Scholar
Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, et al. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol. 2020;18(1):56.
CAS
PubMed
PubMed Central
Google Scholar
Istace B, Friedrich A, d’Agata L, Faye S, Payen E, Beluche O, et al. de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer. GigaScience. 2017;6(2):1–13.
PubMed
PubMed Central
Google Scholar
Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol. 1962;2019:227–45.
Google Scholar
Petersen J, Ludewig A-K, Michael V, Bunk B, Jarek M, Baurain D, et al. Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol. 2014;6(3):666–84.
CAS
PubMed
PubMed Central
Google Scholar
Danne JC, Gornik SG, MacRae JI, McConville MJ, Waller RF. Alveolate mitochondrial metabolic evolution: Dinoflagellates force reassessment of the role of parasitism as a driver of change in Apicomplexans. Mol Biol Evol. 2013;30(1):123–39.
CAS
PubMed
Google Scholar
Ludewig-Klingner A-K, Michael V, Jarek M, Brinkmann H, Petersen J. Distribution and evolution of peroxisomes in Alveolates (Apicomplexa, Dinoflagellates, ciliates). Genome Biol Evol. 2018;10(1):1–13.
CAS
PubMed
Google Scholar
Farhat S, Florent I, Noel B, Kayal E, Da Silva C, Bigeard E, et al. Comparative time-scale gene expression analysis highlights the infection processes of two Amoebophrya strains. Front Microbiol. 2018;9 Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2018.02251/full. [cited 2020 Aug 27].
Csuros M, Rogozin IB, Koonin EV. A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes. Plos Comput Biol. 2011;7(9):e1002150.
CAS
PubMed
PubMed Central
Google Scholar
Turunen JJ, Niemelä EH, Verma B, Frilander MJ. The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA. 2013;4(1):61–76.
CAS
PubMed
Google Scholar
Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun Biol. 2018;1:95. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123633/. [cited 2020 Sep 30].
PubMed
PubMed Central
Google Scholar
Porcel BM, Denoeud F, Opperdoes F, Noel B, Madoui M-A, Hammarton TC, et al. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. Plos Genet. 2014;10(2):e1004007.
PubMed
PubMed Central
Google Scholar
Lasda EL, Blumenthal T. Trans-splicing. Wiley Interdiscip Rev RNA. 2011;2(3):417–34.
CAS
PubMed
Google Scholar
Morey JS, Dolah FMV. Global analysis of mRNA half-lives and de novo transcription in a Dinoflagellate, Karenia brevis. Plos One. 2013;8(6):e66347.
CAS
PubMed
PubMed Central
Google Scholar
Beauchemin M, Roy S, Daoust P, Dagenais-Bellefeuille S, Bertomeu T, Letourneau L, et al. Dinoflagellate tandem array gene transcripts are highly conserved and not polycistronic. Proc Natl Acad Sci U S A. 2012;109(39):15793–8.
CAS
PubMed
PubMed Central
Google Scholar
Ghedin E, Bringaud F, Peterson J, Myler P, Berriman M, Ivens A, et al. Gene synteny and evolution of genome architecture in trypanosomatids. Mol Biochem Parasitol. 2004;134(2):183–91.
CAS
PubMed
Google Scholar
Gornik SG, Febrimarsa CAM, JI MR, Ramaprasad A, Rchiad Z, et al. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci U S A. 2015;112(18):5767–72.
CAS
PubMed
PubMed Central
Google Scholar
Jackson CJ, Gornik SG, Waller RF. The mitochondrial genome and transcriptome of the basal dinoflagellate Hematodinium sp.: character evolution within the highly derived mitochondrial genomes of dinoflagellates. Genome Biol Evol. 2012;4(1):59–72.
CAS
PubMed
Google Scholar
Smith DR, Keeling PJ. Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A. 2015;112(33):10177–84.
CAS
PubMed
PubMed Central
Google Scholar
Flegontov P, Michálek J, Janouškovec J, Lai D-H, Jirků M, Hajdušková E, et al. Divergent mitochondrial respiratory chains in phototrophic relatives of Apicomplexan parasites. Mol Biol Evol. 2015;32(5):1115–31.
CAS
PubMed
Google Scholar
Nash EA, Nisbet RER, Barbrook AC, Howe CJ. Dinoflagellates: a mitochondrial genome all at sea. Trends Genet. 2008;24(7):328–35.
CAS
PubMed
Google Scholar
Waller RF, Jackson CJ. Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. BioEssays. 2009;31(2):237–45.
CAS
PubMed
Google Scholar
Zhang H, Campbell DA, Sturm NR, Dungan CF, Lin S. Spliced leader RNAs, mitochondrial gene frameshifts and multi-protein phylogeny expand support for the genus Perkinsus as a unique group of alveolates. Plos One. 2011;6(5) Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101222/. [cited 2020 Sep 30].
Gawryluk RMR, Gray MW. An ancient fission of mitochondrial Cox1. Mol Biol Evol. 2010;27(1):7–10.
CAS
PubMed
Google Scholar
Lirdwitayaprasit T, Okaichi T, Montani S, Ochi T, Anderson DM. Changes in cell chemical composition during the life cycle of Scrippsiella trochoidea (Dinophyceae ). J Phycol. 1990;26:299-306.
CAS
Google Scholar
Pucker B, Holtgräwe D, Weisshaar B. Consideration of non-canonical splice sites improves gene prediction on the Arabidopsis thaliana Niederzenz-1 genome sequence. BMC Res Notes. 2017;10(1):667.
PubMed
PubMed Central
Google Scholar
Sibley CR, Blazquez L, Ule J. Lessons from non-canonical splicing. Nat Rev Genet. 2016;17(7):407–21.
CAS
PubMed
PubMed Central
Google Scholar
Frey K, Pucker B. Animal, fungi, and plant genome sequences harbor different non-canonical splice sites. Cells. 2020;9(2):458.
CAS
PubMed Central
Google Scholar
Denoeud F, Henriet S, Mungpakdee S, Aury J-M, Da Silva C, Brinkmann H, et al. Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science. 2010;330(6009):1381–5.
CAS
PubMed
PubMed Central
Google Scholar
Huff JT, Zilberman D, Roy SW. Mechanism for DNA transposons to generate introns on genomic scales. Nature. 2016;538(7626):533–6.
PubMed
PubMed Central
Google Scholar
Gumińska N, Płecha M, Zakryś B, Milanowski R. Order of removal of conventional and nonconventional introns from nuclear transcripts of Euglena gracilis. PLoS Genet. 2018;14(10):e1007761.
PubMed
PubMed Central
Google Scholar
Henriet S, Colom Sanmartí B, Sumic S, Chourrout D. Evolution of the U2 spliceosome for processing numerous and highly diverse non-canonical introns in the chordate Fritillaria borealis. Curr Biol. 2019;29(19):3193–3199.e4.
CAS
PubMed
Google Scholar
Rodríguez-Martín C, Cidre F, Fernández-Teijeiro A, Gómez-Mariano G, de la Vega L, Ramos P, et al. Familial retinoblastoma due to intronic LINE-1 insertion causes aberrant and noncanonical mRNA splicing of the RB1 gene. J Hum Genet. 2016;61(5):463–6.
PubMed
Google Scholar
Ishiura H, Doi K, Mitsui J, Yoshimura J, Matsukawa MK, Fujiyama A, et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet. 2018;50(4):581–90.
CAS
PubMed
Google Scholar
van Baren MJ, Bachy C, Reistetter EN, Purvine SO, Grimwood J, Sudek S, et al. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants. BMC Genomics. 2016;17. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815162/. [cited 2020 Sep 30].
Mendez GS, Delwiche CF, Apt KE, Lippmeier JC. Dinoflagellate gene structure and intron splice sites in a genomic tandem array. J Eukaryot Microbiol. 2015;62(5):679–87.
CAS
PubMed
PubMed Central
Google Scholar
Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007;41:331–68.
CAS
PubMed
PubMed Central
Google Scholar
Fattash I, Rooke R, Wong A, Hui C, Luu T, Bhardwaj P, et al. Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome. 2013;56(9):475–86.
CAS
PubMed
Google Scholar
Zhang H-H, Zhou Q-Z, Wang P-L, Xiong X-M, Luchetti A, Raoult D, et al. Unexpected invasion of miniature inverted-repeat transposable elements in viral genomes. Mob DNA. 2018;9(1):19.
PubMed
PubMed Central
Google Scholar
Hinas A, Larsson P, Avesson L, Kirsebom LA, Virtanen A, Söderbom F. Identification of the major spliceosomal RNAs in Dictyostelium discoideum reveals developmentally regulated U2 variants and Polyadenylated snRNAs. Eukaryot Cell. 2006;5(6):924–34.
CAS
PubMed
PubMed Central
Google Scholar
Scott WR, Walter G. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet. 2006;7(3):211–21.
Google Scholar
Wang JD, Berkmen MB, Grossman AD. Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc Natl Acad Sci U S A. 2007;104(13):5608–13.
CAS
PubMed
PubMed Central
Google Scholar
Loman NJ, Quinlan AR. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics. 2014;30(23):3399–401.
CAS
PubMed
PubMed Central
Google Scholar
Marie D, Simon N, Guillou L, Partensky F, Vaulot D. Flow cytometry analysis of marine picoplankton. In: Diamond RA, Demaggio S, editors. Living color: protocols in flow cytometry and cell sorting. Berlin, Heidelberg: Springer; 2000. p. 421–54. (Springer Lab Manuals). Available from: doi: 10.1007/978-3-642-57049-0_34. [cited 2020 Aug 27].
Google Scholar
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinforma Oxf Engl. 2011;27(6):764–70.
Google Scholar
Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A. 2011;108(4):1513–8.
CAS
PubMed
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012;1(1). Available from: https://academic.oup.com/gigascience/article/1/1/2047-217X-1-18/2656146. [cited 2020 Sep 30].
Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res. 2011;21(3):487–93.
PubMed
PubMed Central
Google Scholar
Cretu Stancu M, van Roosmalen MJ, Renkens I, Nieboer MM, Middelkamp S, de Ligt J, et al. Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat Commun. 2017;8(1):1326.
PubMed
PubMed Central
Google Scholar
Schmidt MH-W, Vogel A, Denton AK, Istace B, Wormit A, van de Geest H, et al. De novo assembly of a new Solanum pennellii accession using Nanopore sequencing [CC-BY]. Plant Cell. 2017;29(10):2336–48.
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95.
PubMed
PubMed Central
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. Plos One. 2014;9(11):e112963.
PubMed
PubMed Central
Google Scholar
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5(2):R12.
PubMed
PubMed Central
Google Scholar
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28(24):3211–7.
CAS
PubMed
Google Scholar
Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28(8):1086–92.
CAS
PubMed
PubMed Central
Google Scholar
Morgulis A, Gertz EM, Schäffer AA, Agarwala R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J Comput Biol. 2006;13(5):1028–40.
CAS
PubMed
Google Scholar
Smit A, Hubley R, Green P. RepeatMasker Open-4.0. 2015; Available from: http://www.repeatmasker.org.
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110(1–4):462–7.
CAS
PubMed
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80.
CAS
PubMed
PubMed Central
Google Scholar
Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21(Suppl 1):i351–8.
CAS
PubMed
Google Scholar
Mott R. EST_GENOME: a program to align spliced DNA sequences to unspliced genomic DNA. Bioinformatics. 1997;13(4):477–8.
CAS
Google Scholar
Consortium TU. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–15.
Google Scholar
Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64.
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
CAS
PubMed
Google Scholar
Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res. 2004;14(5):988–95.
CAS
PubMed
PubMed Central
Google Scholar
Marion D, Benjamin N, Tsinda R, Sarah F, Silva D, Yoann S, et al. Gmove a tool for eukaryotic gene predictions using various evidence. F1000research, published online. 2016. https://doi.org/10.7490/f1000research.1111735.1.
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40.
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–62.
CAS
PubMed
Google Scholar
Lin S, Cheng S, Song B, Zhong X, Lin X, Li W, et al. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science. 2015;350(6261):691–4.
CAS
PubMed
Google Scholar
Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep. 2016;6:39734.
CAS
PubMed
PubMed Central
Google Scholar
Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37(Database issue):D539–43.
CAS
PubMed
Google Scholar
Kissinger JC, Gajria B, Li L, Paulsen IT, Roos DS. ToxoDB: accessing the toxoplasma gondii genome. Nucleic Acids Res. 2003;31(1):234–6.
CAS
PubMed
PubMed Central
Google Scholar
Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M, Michálek J, et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife. 2015;4:e06974.
PubMed
PubMed Central
Google Scholar
Kappmeyer LS, Thiagarajan M, Herndon DR, Ramsay JD, Caler E, Djikeng A, et al. Comparative genomic analysis and phylogenetic position of Theileria equi. BMC Genomics. 2012;13:603.
CAS
PubMed
PubMed Central
Google Scholar
Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science. 2004;304(5669):441–5.
CAS
PubMed
Google Scholar
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(Database issue):D457–62.
CAS
PubMed
Google Scholar
Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30(7):1575–84.
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
CAS
PubMed
PubMed Central
Google Scholar
Feng Y-Y, Ramu A, Cotto KC, Skidmore ZL, Kunisaki J, Conrad DF, et al. RegTools: integrated analysis of genomic and transcriptomic data for discovery of splicing variants in cancer Yang-Yang Feng, Avinash Ramu, Kelsy C. Cotto, Zachary L. Skidmore, Jason Kunisaki, Donald F. Conrad, Yiing Lin, William C. Chapman, Ravindra Uppaluri, Ramaswamy Govindan, Obi L. Griffith, Malachi Griffith. 2018; Available from: https://www.biorxiv.org/content/10.1101/436634v2. [cited 2020 Sep 30].
Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–89.
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
CAS
PubMed
PubMed Central
Google Scholar
Dsouza M, Larsen N, Overbeek R. Searching for patterns in genomic data. Trends Genet TIG. 1997;13(12):497–8.
CAS
PubMed
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–9.
CAS
PubMed
Google Scholar
Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics. 2010;11(1):431.
PubMed
PubMed Central
Google Scholar
Rice P, Longden I, Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000;16(6):276–7.
CAS
PubMed
Google Scholar
Flutre T, Duprat E, Feuillet C, Quesneville H. Considering transposable element diversification in de novo annotation approaches. PLoS One. 2011;6(1):e16526.
CAS
PubMed
PubMed Central
Google Scholar
Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, Ashburner M, et al. Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol. 2005;1(2):e22.
PubMed Central
Google Scholar
Ye C, Ji G, Liang C. detectMITE: A novel approach to detect miniature inverted repeat transposable elements in genomes. Sci Rep. 2016;6:19688.
CAS
PubMed
PubMed Central
Google Scholar
Suvorova ES, White MW. Transcript maturation in apicomplexan parasites. Curr Opin Microbiol. 2014;20:82–7.
CAS
PubMed
Google Scholar
Sorber K, Dimon MT, DeRisi JL. RNA-Seq analysis of splicing in Plasmodium falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts. Nucleic Acids Res. 2011;39(9):3820–35.
CAS
PubMed
PubMed Central
Google Scholar
Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, et al. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. Supplementary Datasets. 2020. EMBL (BioProject accession PRJEB39972).
Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, et al. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. Supplementary Datasets. 2020. Genome broswer. http://application.sb-roscoff.fr/blast/hapar/. Accessed Nov 2020.