Sturtevant AH. A case of rearrangement of genes in Drosophila. Proc Natl Acad Sci U S A. 1921;7(8):235–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wellenreuther M, Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol. 2018;33(6):427–40.
Article
PubMed
Google Scholar
Dobzhansky T, Sturtevant AH. Inversions in the chromosomes of Drosophila pseudoobscura. Genetics. 1938;23(1):28–64.
CAS
PubMed
PubMed Central
Google Scholar
Krimbas KV, Powell JR. Drosophila inversion polymorphism. UK: CRC Press; 1992.
Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484(7392):55–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson MJ, Jiggins CD. Supergenes and their role in evolution. Heredity (Edinb). 2014;113(1):1–8.
Article
CAS
Google Scholar
White MJD. Modes of speciation. San Francisco: W. H. Freeman and Co.; 1978.
Dobzhansky T. Genetics of natural populations; a response of certain gene arrangements in the third chromosome of Drosophila pseudoobscura to natural selection. Genetics. 1947;32(2):142–60.
CAS
PubMed
PubMed Central
Google Scholar
Noor MA, Grams KL, Bertucci LA, Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci U S A. 2001;98(21):12084–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dagilis AJ, Kirkpatrick M. Prezygotic isolation, mating preferences, and the evolution of chromosomal inversions. Evolution (N Y). 2016;70(7):1465–72.
Google Scholar
Fuller ZL, Leonard CJ, Young RE, Schaeffer SW, Phadnis N. Ancestral polymorphisms explain the role of chromosomal inversions in speciation. PLoS Genet. 2018;14(7):e1007526 Wittkopp P, editor.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol. 2014;23(13):3133–57.
Article
PubMed
Google Scholar
Ayala D, Fontaine MC, Cohuet A, Fontenille D, Vitalis R, Simard F. Chromosomal inversions, natural selection and adaptation in the malaria vector Anopheles funestus. Mol Biol Evol. 2011;28(1):745–58.
Article
CAS
PubMed
Google Scholar
Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE, Sharakhov IV, et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science. 2014;347(6217):1258524.
Article
PubMed
PubMed Central
CAS
Google Scholar
Coluzzi M, Sabatini A, della Torre A, Di Deco MA, Petrarca V. A polytene chromosome analysis of the Anopheles gambiae species complex. Science. 2002;298(5597):1415–8.
Article
CAS
PubMed
Google Scholar
Simard F, Ayala D, Kamdem GC, Pombi M, Etouna J, Ose K, et al. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 2009;9:17. https://doi.org/10.1186/1472-6785-9-17.
Fouet C, Gray E, Besansky NJ, Costantini C. Adaptation to aridity in the malaria mosquito Anopheles gambiae: chromosomal inversion polymorphism and body size influence resistance to desiccation. PLoS One. 2012;7(4):e34841 Pinto J, editor.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng C, White BJ, Kamdem C, Mockaitis K, Costantini C, Hahn MW, et al. Ecological genomics of Anopheles gambiae along a latitudinal cline: a population-resequencing approach. Genetics. 2012;190(4):1417–32.
Article
PubMed
PubMed Central
Google Scholar
Coluzzi M, Sabatini A, Petrarca V, Di Deco MA. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979;73(5):483–97.
Article
CAS
PubMed
Google Scholar
Main BJ, Lee Y, Ferguson HM, Kreppel KS, Kihonda A, Govella NJ, et al. The genetic basis of host preference and resting behavior in the major African malaria vector, Anopheles arabiensis. PLoS Genet. 2016;12(9):e1006303. https://doi.org/10.1371/journal.pgen.1006303.
Manoukis NC, Powell JR, Toure MB, Sacko A, Edillo FE, Coulibaly MB, et al. A test of the chromosomal theory of ecotypic speciation in Anopheles gambiae. Proc Natl Acad Sci U S A. 2008;105(8):2940–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanford MR, Ramsay S, Cornel AJ, Marsden CD, Norris LC, Patchoke S, et al. A preliminary investigation of the relationship between water quality and Anopheles gambiae larval habitats in western Cameroon. Malar J. 2013;12(1):225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brooke BD, Hunt RH, Coetzee M. Resistance to dieldrin + fipronil assorts with chromosome inversion 2La in the malaria vector Anopheles gambiae. Med Vet Entomol. 2000 Jun;14(2):190–4.
Article
CAS
PubMed
Google Scholar
Petrarca V, Beier JC. Intraspecific chromosomal polymorphism in the Anopheles gambiae complex as a factor affecting malaria transmission in the Kisumu area of Kenya. Am J Trop Med Hyg. 1992;46(2):229–37.
Article
CAS
PubMed
Google Scholar
Riehle MM, Bukhari T, Gneme A, Guelbeogo WM, Coulibaly B, Fofana A, et al. The Anopheles gambiae 2La chromosome inversion is associated with susceptibility to Plasmodium falciparum in Africa. Elife. 2017;23:6.
Google Scholar
Kraemer MUG, Sinka ME, Duda KA, Mylne A, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:e08347.
Article
PubMed
PubMed Central
Google Scholar
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
W.H.O. Global Strategy for dengue prevention and control, 2012–2020. Switzerland: World Health Organization; 2012.
Faria NR, Azevedo RS d S, Kraemer MUG, Souza R, Cunha MS, Hill SC, et al. Zika virus in the Americas: early epidemiological and genetic findings. Science. 2016;352(6283):345–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma GP, Mittal OP, Chaudhry S, Pal V. A preliminary map of the salivary gland chromosomes of Aedes (stegomyia) aegypti (Culicadae, Diptera). Cytobios. 1978;22(87–88):169–78.
CAS
PubMed
Google Scholar
Campos J, Andrade CFS, Recco-Pimentel SM. A technique for preparing polytene chromosomes from Aedes aegypti (Diptera, Culicinae). Mem Inst Oswaldo Cruz. 2003;98(3):387–90.
Article
PubMed
Google Scholar
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287(5461):2185–95.
Article
PubMed
Google Scholar
Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298(5591):129–49.
Article
CAS
PubMed
Google Scholar
Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, Crawford JE, et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature. 2018;563(7732):501–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medvedev P, Stanciu M, Brudno M. Computational methods for discovering structural variation with next-generation sequencing. Nat Methods. 2009;6(11):S13–20.
Article
CAS
PubMed
Google Scholar
Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet. 2011;12(5):363–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macdonald WW, Sheppard PM. Cross-over values in the sex chromosomes of the mosquito Aedes aegypti and evidence of the presence of inversions. Ann Trop Med Parasitol. 1965;59:74–87.
Article
CAS
PubMed
Google Scholar
Bernhardt SA, Blair C, Sylla M, Bosio C, Black WC IV, Black WC. Evidence of multiple chromosomal inversions in Aedes aegypti formosus from Senegal. Insect Mol Biol. 2009;18(5):557–69.
Article
CAS
PubMed
Google Scholar
Dickson LB, Sharakhova MV, Timoshevskiy VA, Fleming KL, Caspary A, Sylla M, et al. Reproductive incompatibility involving Senegalese Aedes aegypti (L) is associated with chromosome rearrangements. PLoS Negl Trop Dis. 2016;10(4):1–28.
Article
CAS
Google Scholar
McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature. 2014;515(7526):222–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tabachnick WJ. Evolutionary genetics and arthropod-borne disease: the yellow fever mosquito. Am Entomol. 1991;37(1):14–26.
Article
Google Scholar
Crawford JE, Alves JM, Palmer WJ, Day JP, Sylla M, Ramasamy R, et al. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biol. 2017;15(1):16.
Article
PubMed
PubMed Central
Google Scholar
Gloria-Soria A, Ayala D, Bheecarry A, Calderon-Arguedas O, Chadee DD, Chiappero M, et al. Global genetic diversity of Aedes aegypti. Mol Ecol. 2016;25(21):5377–95.
Article
PubMed
PubMed Central
Google Scholar
Powell JR, Evans BR. How much does inbreeding reduce heterozygosity? Empirical results from aedes aegypti. Am J Trop Med Hyg. 2017;96:157–58. https://doi.org/10.4269/ajtmh.16-0693.
Article
PubMed
PubMed Central
Google Scholar
Lobo NF, Sangaré DM, Regier AA, Reidenbach KR, Bretz DA, Sharakhova MV, et al. Breakpoint structure of the Anopheles gambiae 2Rb chromosomal inversion. Malar J. 2010;9(1):293.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cockburn AF, Mitchell SE. Repetitive DNA interspersion patterns in Diptera. Arch Insect Biochem Physiol. 1989;10(2):105–13.
Article
CAS
Google Scholar
Stevison LS, Hoehn KB, Noor MAF. Effects of inversions on within- and between-species recombination and divergence. Genome Biol Evol. 2011;3(0):830–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marsden CD, Lee Y, Nieman CC, Sanford MR, Dinis J, Martins C, et al. Asymmetric introgression between the M and S forms of the malaria vector, Anopheles gambiae, maintains divergence despite extensive hybridization. Mol Ecol. 2011;20(23):4983–94.
Article
PubMed
PubMed Central
Google Scholar
Gomes B, Sousa CA, Novo MT, Freitas FB, Alves R, Côrte-Real AR, et al. Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in the Comporta region, Portugal. BMC Evol Biol. 2009;9(1):262.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee Y, Marsden CD, Norris LC, Collier TC, Main BJ, Fofana A, et al. Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A. 2013;110:19854–9. https://doi.org/10.1073/pnas.1316851110.
Gloria-Soria A, Soghigian J, Kellner D, Powell JR. Genetic diversity of laboratory strains and implications for research: the case of Aedes aegypti. PLoS Negl Trop Dis. 2019;13(12):e0007930 Barker CM, editor.
Article
PubMed
PubMed Central
Google Scholar
He C, Liang D, Zhang P. Asymmetric Distribution of Gene Trees Can Arise Under Purifying Selection if Differences in Population Size Exist. Gojobori J, editor. Mol Biol Evol. 2020;37:881–92. https://doi.org/10.1093/molbev/msz232.
Miles A, Harding NJ, Bottà G, Clarkson CS, Antão T, Kozak K, et al. Genetic diversity of the African malaria vector Anopheles gambiae. Nature. 2017;552(7683):96.
Article
CAS
Google Scholar
Clarkson CS, Weetman D, Essandoh J, Yawson AE, Maslen G, Manske M, et al. Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation. Nat Commun. 2014;5:4248.
Article
CAS
PubMed
Google Scholar
Neafsey D, Waterhouse R, Abai M, Aganezov S, Alekseyev M, Allen J, et al. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science (80- ). 2015;347(6217):1258522.
Article
CAS
Google Scholar
White BJ, Cheng C, Sangaré D, Lobo NF, Collins FH, Besansky NJ. The population genomics of trans-specific inversion polymorphisms in Anopheles gambiae. Genetics. 2009;183(1):275–88.
Article
PubMed
PubMed Central
Google Scholar
Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol. 2013;58(1):373–91.
Article
CAS
PubMed
Google Scholar
Brito NF, Moreira MF, Melo ACA. A look inside odorant-binding proteins in insect chemoreception. J Insect Physiol. 2016;95:51–65.
Article
CAS
PubMed
Google Scholar
Gomez-Diaz C, Reina JH, Cambillau C, Benton R. Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins. PLoS Biol. 2013;11(4):e1001546.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larter NK, Sun JS, Carlson JR. Organization and function of Drosophila odorant binding proteins. Elife. 2016;15:5.
Google Scholar
Pelletier J, Guidolin A, Syed Z, Cornel AJ, Leal WS. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J Chem Ecol. 2010;36(3):245–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biessmann H, Andronopoulou E, Biessmann MR, Douris V, Dimitratos SD, Eliopoulos E, et al. The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. PLoS One. 2010;5(3):e9471 Bartell PA, editor.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mastrobuoni G, Qiao H, Iovinella I, Sagona S, Niccolini A, Boscaro F, et al. A proteomic investigation of soluble olfactory proteins in Anopheles gambiae. PLoS One. 2013;8(11):e75162.
Article
PubMed
PubMed Central
Google Scholar
Lounibos LP. Habitat segregation among African treehole mosquitoes. Ecol Entomol. 1981;6(2):129–54.
Article
Google Scholar
Mangudo C, Aparicio JP, Gleiser RM. Tree holes as larval habitats for Aedes aegypti in urban, suburban and forest habitats in a dengue affected area. Bull Entomol Res. 2015;105(06):679–84.
Article
CAS
PubMed
Google Scholar
Durand EY, Patterson N, Reich D, Slatkin M. Testing for ancient admixture between closely related populations. Mol Biol Evol. 2011;28(8):2239–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin SH, Davey JW, Jiggins CD. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol Biol Evol. 2015;32(1):244–57.
Article
CAS
PubMed
Google Scholar
Redmond SN, Sharma A, Sharakhov I, Tu Z, Sharakhova M, Neafsey DE, et al. Aedes aegypti global structural variant discovery. Short Read Archive [PRJNA55993]. Available from: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA559933/.
Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, Crawford JE, et al. Aedes aegypti Genome Working Group. Short Read Archive [PRJNA318737]. Available from: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA318737.