Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22(1):58–73. https://doi.org/10.1038/cdd.2014.137.
Article
CAS
PubMed
Google Scholar
Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997;88(3):347–54. https://doi.org/10.1016/S0092-8674(00)81873-5.
Article
CAS
PubMed
Google Scholar
Suzanne M, Steller H. Shaping organisms with apoptosis. Cell Death Differ. 2013;20(5):669–75. https://doi.org/10.1038/cdd.2013.11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daneva A, Gao Z, Van Durme M, Nowack MK. Functions and regulation of programmed cell death in plant development. Annu Rev Cell Dev Biol. 2016;32(1):441–68. https://doi.org/10.1146/annurev-cellbio-111315-124915.
Article
CAS
PubMed
Google Scholar
Huysmans M, Lema AS, Coll NS, Nowack MK. Dying two deaths - programmed cell death regulation in development and disease. Curr Opin Plant Biol. 2017;35:37–44. https://doi.org/10.1016/j.pbi.2016.11.005.
Article
CAS
PubMed
Google Scholar
Coll NS, Epple P, Dangl JL. Programmed cell death in the plant immune system. Cell Death Differ. 2011;18(8):1247–56. https://doi.org/10.1038/cdd.2011.37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol. 2017;17(3):151–64. https://doi.org/10.1038/nri.2016.147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57. https://doi.org/10.1038/bjc.1972.33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letai A. Apoptosis and Cancer. Annu Rev Cancer Biol. 2017;1(1):275–94. https://doi.org/10.1146/annurev-cancerbio-050216-121933.
Article
Google Scholar
Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 2005;12(Suppl 2):1463–7. https://doi.org/10.1038/sj.cdd.4401724.
Article
CAS
PubMed
Google Scholar
van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, et al. Morphological classification of plant cell deaths. Cell Death Differ. 2011;18(8):1241–6. https://doi.org/10.1038/cdd.2011.36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murat F, van de Peer Y, Salse J. Decoding plant and animal genome plasticity from differential paleo-evolutionary patterns and processes. Genome Biol Evol. 2012;4(9):917–28. https://doi.org/10.1093/gbe/evs066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drost H-G, Janitza P, Grosse I, Quint M. Cross-kingdom comparison of the developmental hourglass. Curr Opin Genet Dev. 2017;45:69–75. https://doi.org/10.1016/j.gde.2017.03.003.
Article
CAS
PubMed
Google Scholar
Fritz-Laylin LK. The evolution of animal cell motility. Curr Biol. 2020;30(10):R477–82. https://doi.org/10.1016/j.cub.2020.03.026.
Article
CAS
PubMed
Google Scholar
Fulcher N, Sablowski R. Hypersensitivity to DNA damage in plant stem cell niches. Proc Natl Acad Sci. 2009;106(49):20984 LP–20988.
Article
Google Scholar
De Zio D, Cianfanelli V, Cecconi F. New insights into the link between DNA damage and apoptosis. Antioxid Redox Signal. 2013;19(6):559–71. https://doi.org/10.1089/ars.2012.4938.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol. 2015;16(9):907–17. https://doi.org/10.1038/ni.3253.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4.
Article
PubMed
PubMed Central
Google Scholar
Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol. 2008;9(5):378–90. https://doi.org/10.1038/nrm2393.
Sperandio S, Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A. 2000;97(26):14376–81. https://doi.org/10.1073/pnas.97.26.14376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molnár T, Mázló A, Tslaf V, Szöllősi AG, Emri G, Koncz G. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis. 2019;10(11):860. https://doi.org/10.1038/s41419-019-2094-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixon SJ, Stockwell BR. The hallmarks of Ferroptosis. Annu Rev Cancer Biol. 2019;3(1):35–54. https://doi.org/10.1146/annurev-cancerbio-030518-055844.
Article
Google Scholar
Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010;11(12):1136–42. https://doi.org/10.1038/ni.1960.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ameisen JC. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ. 2002;9(4):367–93. https://doi.org/10.1038/sj.cdd.4400950.
Article
CAS
PubMed
Google Scholar
Bozhkov PV, Lam E. Green death: revealing programmed cell death in plants. Cell Death Differ. 2011;18(8):1239–40. https://doi.org/10.1038/cdd.2011.86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sueldo DJ, van der Hoorn RAL. Plant life needs cell death, but does plant cell death need Cys proteases? FEBS J. 2017;284(10):1577–85. https://doi.org/10.1111/febs.14034.
Article
CAS
PubMed
Google Scholar
Uren AG, O’Rourke K, Aravind L, Pisabarro MT, Seshagiri S, Koonin EV, et al. Identification of paracaspases and metacaspases. Mol Cell. 2000;6(4):961–7.
CAS
PubMed
Google Scholar
Salvesen GS, Hempel A, Coll NS. Protease signaling in animal and plant-regulated cell death. FEBS J. 2016;283(14):2577–98. https://doi.org/10.1111/febs.13616.
Article
CAS
PubMed
Google Scholar
Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV. Metacaspases. Cell Death Differ. 2011;18(8):1279–88. https://doi.org/10.1038/cdd.2011.66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minina EA, Coll NS, Tuominen H, Bozhkov PV. Metacaspases versus caspases in development and cell fate regulation. Cell Death Differ. 2017;24(8):1314–25. https://doi.org/10.1038/cdd.2017.18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vercammen D, van de Cotte B, De Jaeger G, Eeckhout D, Casteels P, Vandepoele K, et al. Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem. 2004;279(44):45329–36. https://doi.org/10.1074/jbc.M406329200.
Article
CAS
PubMed
Google Scholar
Minina EA, Staal J, Alvarez VE, Berges JA, Berman-Frank I, Beyaert R, et al. Classification and nomenclature of metacaspases and paracaspases: no more confusion with caspases. Mol Cell. 2020;77(5):927–9. https://doi.org/10.1016/j.molcel.2019.12.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun. 2018;500(1):26–34. https://doi.org/10.1016/j.bbrc.2017.06.190.
Article
CAS
PubMed
Google Scholar
Lacomme C, Santa CS. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci U S A. 1999;96(14):7956–61. https://doi.org/10.1073/pnas.96.14.7956.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitsuhara I, Malik KA, Miura M, Ohashi Y. Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco plants. Curr Biol. 1999;9(14):775–S1. https://doi.org/10.1016/S0960-9822(99)80341-8.
Article
CAS
PubMed
Google Scholar
Yu X-H, Perdue TD, Heimer YM, Jones AM. Mitochondrial involvement in tracheary element programmed cell death. Cell Death Differ. 2002;9(2):189–98. https://doi.org/10.1038/sj.cdd.4400940.
Article
CAS
PubMed
Google Scholar
Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, et al. Mol Cell Proteomics. 2013;12(12):3666–76. https://doi.org/10.1074/mcp.M113.030692.
Dickman M, Williams B, Li Y, Figueiredo P, Wolpert T. Reassessing apoptosis in plants. Nat plants. 2017;3(10):773–9. https://doi.org/10.1038/s41477-017-0020-x.
Article
CAS
PubMed
Google Scholar
Kabbage M, Kessens R, Bartholomay LC, Williams B. The life and death of a plant cell. Annu Rev Plant Biol. 2017;68(1):375–404. https://doi.org/10.1146/annurev-arplant-043015-111655.
Article
CAS
PubMed
Google Scholar
Tixeira R, Poon IKH. Disassembly of dying cells in diverse organisms. Cell Mol Life Sci. 2019;76(2):245–57. https://doi.org/10.1007/s00018-018-2932-7.
Article
CAS
PubMed
Google Scholar
Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A. Programmed cell death (PCD) control in plants: new insights from the Arabidopsis thaliana deathosome. Plant Sci. 2020;299:110603. https://doi.org/10.1016/j.plantsci.2020.110603.
Article
CAS
PubMed
Google Scholar
Tsujimoto Y. Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes. Cell Death Differ. 1997;4(6):429–34. https://doi.org/10.1038/sj.cdd.4400262.
Article
CAS
PubMed
Google Scholar
Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–6. https://doi.org/10.1038/35037710.
Article
CAS
PubMed
Google Scholar
Segawa K, Nagata S. An apoptotic “eat me” signal: phosphatidylserine exposure. Trends Cell Biol. 2015;25(11):639–50. https://doi.org/10.1016/j.tcb.2015.08.003.
Article
CAS
PubMed
Google Scholar
Zhang Y, Chen X, Gueydan C, Han J. Plasma membrane changes during programmed cell deaths. Cell Res. 2018;28(1):9–21. https://doi.org/10.1038/cr.2017.133.
Article
CAS
PubMed
Google Scholar
Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ. 2012;19(1):107–20. https://doi.org/10.1038/cdd.2011.96.
Article
CAS
PubMed
Google Scholar
Atkin-Smith GK, Poon IKH. Disassembly of the dying: mechanisms and functions. Trends Cell Biol. 2017;27(2):151–62. https://doi.org/10.1016/j.tcb.2016.08.011.
Article
CAS
PubMed
Google Scholar
Balk J, Leaver CJ, McCabe PF. Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett. 1999;463(1–2):151–4. https://doi.org/10.1016/S0014-5793(99)01611-7.
Article
CAS
PubMed
Google Scholar
Vacca RA, Pinto MC, Valenti D, Passarella S, Marra E, Gara L. Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol. 2004;134(3):1100–12. https://doi.org/10.1104/pp.103.035956.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hogg BV, Kacprzyk J, Molony EM, O’Reilly C, Gallagher TF, Gallois P, et al. An in vivo root hair assay for determining rates of apoptotic-like programmed cell death in plants. Plant Methods. 2011;7(1):45. https://doi.org/10.1186/1746-4811-7-45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kacprzyk J, Brogan NP, Daly CT, Doyle SM, Diamond M, Molony EM, McCabe PF. The retraction of the protoplast during PCD is an active, and interruptible, calcium-flux driven process. Plant Sci. 2017;260:50–9. https://doi.org/10.1016/j.plantsci.2017.04.001.
Article
CAS
PubMed
Google Scholar
Curtis MJ, Wolpert TJ. The victorin-induced mitochondrial permeability transition precedes cell shrinkage and biochemical markers of cell death, and shrinkage occurs without loss of membrane integrity. Plant J. 2004;38(2):244–59. https://doi.org/10.1111/j.1365-313X.2004.02040.x.
Article
CAS
PubMed
Google Scholar
Mlejnek P, Doležel P, Procházka S. Intracellular phosphorylation of benzyladenosine is related to apoptosis induction in tobacco BY-2 cells. Plant Cell Environ. 2003;26(10):1723–35. https://doi.org/10.1046/j.1365-3040.2003.01090.x.
Article
CAS
Google Scholar
Zhang Q-F, Li J, Bi F-C, Liu Z, Chang Z-Y, Wang L-Y, et al. Ceramide-induced cell death depends on calcium and caspase-like activity in Rice. Front Plant Sci. 2020;11:145. https://doi.org/10.3389/fpls.2020.00145.
Article
PubMed
PubMed Central
Google Scholar
Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E. Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco bright-yellow 2 cells en route to heat shock-induced cell death. Plant Physiol. 2006;141(1):208–19. https://doi.org/10.1104/pp.106.078683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002;9(3):459–70. https://doi.org/10.1016/S1097-2765(02)00482-3.
Article
CAS
PubMed
Google Scholar
Wang J, Li X, Liu Y, Zhao X. Salt stress induces programmed cell death in Thellungiella halophila suspension-cultured cells. J Plant Physiol. 2010;167(14):1145–51. https://doi.org/10.1016/j.jplph.2010.03.008.
Article
CAS
PubMed
Google Scholar
Coffeen WC, Wolpert TJ. Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell. 2004;16(4):857–73. https://doi.org/10.1105/tpc.017947.
Article
CAS
PubMed
PubMed Central
Google Scholar
Żabka A, Winnicki K, Polit JT, Maszewski J. Sanguinarine-induced oxidative stress and apoptosis-like programmed cell death (AL-PCD) in root meristem cells of Allium cepa. Plant Physiol Biochem PPB. 2017;112:193–206. https://doi.org/10.1016/j.plaphy.2017.01.004.
Article
CAS
PubMed
Google Scholar
Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P. Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death. J Biol Chem. 2004;279(1):779–87. https://doi.org/10.1074/jbc.M304468200.
Article
CAS
PubMed
Google Scholar
McCabe PF, Levine A, Meijer P-J, Tapon NA, Pennell RI. A programmed cell death pathway activated in carrot cells cultured at low cell density. Plant J. 1997;12(2):267–80. https://doi.org/10.1046/j.1365-313X.1997.12020267.x.
Article
CAS
Google Scholar
Coimbra S, Torrão L, Abreu I. Programmed cell death induces male sterility in Actinidia deliciosa female flowers. Plant Physiol Biochem PPB. 2004;42(6):537–41. https://doi.org/10.1016/j.plaphy.2004.05.004.
Article
CAS
PubMed
Google Scholar
Li W, Dickman MB. Abiotic stress induces apoptotic-like features in tobacco that is inhibited by expression of human Bcl-2. Biotechnol Lett. 2004;26(2):87–95. https://doi.org/10.1023/B:BILE.0000012896.76432.ba.
Article
CAS
PubMed
Google Scholar
Li W, Kabbage M, Dickman MB. Transgenic expression of an insect inhibitor of apoptosis gene, SfIAP, confers abiotic and biotic stress tolerance and delays tomato fruit ripening. Physiol Mol Plant Pathol. 2010;74(5):363–75. https://doi.org/10.1016/j.pmpp.2010.06.001.
Article
CAS
Google Scholar
Hou L, Liu K, Li Y, Ma S, Ji X, Liu L. Necrotic pyknosis is a morphologically and biochemically distinct event from apoptotic pyknosis. J Cell Sci. 2016;129(16):3084–90. https://doi.org/10.1242/jcs.184374.
Article
CAS
PubMed
Google Scholar
Moharikar S, D’Souza JS, Kulkarni AB, Rao BJ. Apoptotic-like cell death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: detection and functional analyses. J Phycol. 2006;42(2):423–33. https://doi.org/10.1111/j.1529-8817.2006.00207.x.
Article
CAS
Google Scholar
O’Brien IE, Reutelingsperger CP, Holdaway KM. Annexin-V and TUNEL use in monitoring the progression of apoptosis in plants. Cytometry. 1997;29(1):28–33. https://doi.org/10.1002/(SICI)1097-0320(19970901)29:1<28::AID-CYTO2>3.0.CO;2-9.
Shlomovitz I, Speir M, Gerlic M. Flipping the dogma - phosphatidylserine in non-apoptotic cell death. Cell Commun Signal. 2019;17(1):139. https://doi.org/10.1186/s12964-019-0437-0.
Article
PubMed
PubMed Central
Google Scholar
Reape TJ, McCabe PF. Apoptotic-like programmed cell death in plants. New Phytol. 2008;180(1):13–26. https://doi.org/10.1111/j.1469-8137.2008.02549.x.
Article
CAS
PubMed
Google Scholar
Reape TJ, McCabe PF. Commentary: the cellular condensation of dying plant cells: programmed retraction or necrotic collapse? Plant Sci. 2013;207:135–9. https://doi.org/10.1016/j.plantsci.2013.03.001.
Article
CAS
PubMed
Google Scholar
Tian R-H, Zhang G-Y, Yan C-H, Dai Y-R. Involvement of poly (ADP-ribose) polymerase and activation of caspase-3-like protease in heat shock-induced apoptosis in tobacco suspension cells. FEBS Lett. 2000;474(1):11–5. https://doi.org/10.1016/S0014-5793(00)01561-1.
Article
CAS
PubMed
Google Scholar
Chen S, Vaghchhipawala Z, Li W, Asard H, Dickman MB. Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants. Plant Physiol. 2004;135(3):1630 LP–1641.
Article
Google Scholar
Diamond M, Reape TJ, Rocha O, Doyle SM, Kacprzyk J, Doohan FM, McCabe PF. The Fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death. PLoS One. 2013;8(7):e69542. https://doi.org/10.1371/journal.pone.0069542.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malerba M, Cerana R. Effect of selenium on the responses induced by heat stress in plant cell cultures. Plants. 2018;7(3):1–10.
Article
Google Scholar
Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995;15(4):961–73. https://doi.org/10.1016/0896-6273(95)90186-8.
Article
CAS
PubMed
Google Scholar
Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146(1):3–15.
CAS
PubMed
PubMed Central
Google Scholar
Nagata T, Nemoto Y, Hasezawa S. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. In: Jeon KW, Friedlander M, editors. International review of cytologyA survey of cell biology : Volume 132. London: Elsevier; 1992. p. 1–30. (International Review of Cytology TS - CrossRef; vols. 132 SV-).
Google Scholar
Smetana O, Široký J, Houlné G, Opatrný Z, Chabouté M-E. Non-apoptotic programmed cell death with paraptotic-like features in bleomycin-treated plant cells is suppressed by inhibition of ATM/ATR pathways or NtE2F overexpression. J Exp Bot. 2012;63(7):2631–44. https://doi.org/10.1093/jxb/err439.
Article
CAS
PubMed
Google Scholar
Bortner CD, Cidlowski JA. Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ. 2002;9(12):1307–10. https://doi.org/10.1038/sj.cdd.4401126.
Article
CAS
PubMed
Google Scholar
Bortner CD, Cidlowski JA. Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys. 2007;462(2):176–88. https://doi.org/10.1016/j.abb.2007.01.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green DR, Fitzgerald P. Just so stories about the evolution of apoptosis. Curr Biol. 2016;26(13):R620–7. https://doi.org/10.1016/j.cub.2016.05.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hara-Nishimura I, Hatsugai N. The role of vacuole in plant cell death. Cell Death Differ. 2011;18(8):1298–304. https://doi.org/10.1038/cdd.2011.70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rotman B, Papermaster BW. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci. 1966;55(1):134–41. https://doi.org/10.1073/pnas.55.1.134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zong W-X, Thompson CB. Necrotic death as a cell fate. Genes Dev. 2006;20(1):1–15. https://doi.org/10.1101/gad.1376506.
Article
CAS
PubMed
Google Scholar
Zamaraeva MV, Sabirov RZ, Maeno E, Ando-Akatsuka Y, Bessonova SV, Okada Y. Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ. 2005;12(11):1390–7. https://doi.org/10.1038/sj.cdd.4401661.
Article
CAS
PubMed
Google Scholar
Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011;50(2):98–115. https://doi.org/10.2144/000113610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunter DR, Haworth RA. The Ca2+−induced membrane transition in mitochondria: I. the protective mechanisms. Arch Biochem Biophys. 1979;195(2):453–9. https://doi.org/10.1016/0003-9861(79)90371-0.
Article
CAS
PubMed
Google Scholar
Kristián T, Siesjö BK. Calcium in ischemic cell death. Stroke. 1998;29(3):705–18. https://doi.org/10.1161/01.STR.29.3.705.
Article
PubMed
Google Scholar
Distéfano AM, Martin MV, Córdoba JP, Bellido AM, D’Ippólito S, Colman SL, et al. Heat stress induces ferroptosis-like cell death in plants. J Cell Biol. 2017;216(2):463–76. https://doi.org/10.1083/jcb.201605110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Login GR, Dvorak AM. Microwave fixation provides excellent preservation of tissue, cells and antigens for light and electron microscopy. Histochem J. 1988;20(6–7):373–87. https://doi.org/10.1007/BF01002732.
Article
CAS
PubMed
Google Scholar
Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, et al. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science (80- ). 2019;364(6435):eaav5870.
Article
CAS
Google Scholar
Ma S, Lapin D, Liu L, Sun Y, Song W, Zhang X, et al. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science (80- ). 2020;370(6521):eabe3069.
Article
CAS
Google Scholar
Martin R, Qi T, Zhang H, Liu F, King M, Toth C, et al. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science (80- ). 2020;370(6521):eabd9993.
Article
CAS
Google Scholar
Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13(6):397–411. https://doi.org/10.1038/nri3452.
Article
CAS
PubMed
Google Scholar
Saur IML, Panstruga R, Schulze-Lefert P. NOD-like receptor-mediated plant immunity: from structure to cell death. Nat Rev Immunol. 2020; https://doi.org/10.1038/s41577-020-00473-z.
Ambastha V, Sopory SK, Tiwari BS, Tripathy BC. Photo-modulation of programmed cell death in rice leaves triggered by salinity. Apoptosis. 2017;22(1):41–56. https://doi.org/10.1007/s10495-016-1305-7.
Article
CAS
PubMed
Google Scholar
Araniti F, Costas-Gil A, Cabeiras-Freijanes L, Lupini A, Sunseri F, Reigosa MJ, et al. Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction. PLoS One. 2018;13(12):e0208802. https://doi.org/10.1371/journal.pone.0208802.
Article
PubMed
PubMed Central
Google Scholar
Ghasemi R, Sharifi R, Ghaderian SM. Studying the roles of calcium and magnesium in cell death in the serpentine native plant Alyssum inflatum NYÁRÁDY through cell suspension culture technique. Plant Physiol Biochem PPB. 2020;151:362–8. https://doi.org/10.1016/j.plaphy.2020.03.032.
Article
CAS
PubMed
Google Scholar
Ryerson DE, Heath MC. Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatments. Plant Cell. 1996;8(3):393–402. https://doi.org/10.2307/3870320.
Article
CAS
PubMed
PubMed Central
Google Scholar
Navarre DA, Wolpert TJ. Victorin induction of an apoptotic/senescence-like response in oats. Plant Cell. 1999;11(2):237–49. https://doi.org/10.1105/tpc.11.2.237.
Article
CAS
PubMed
PubMed Central
Google Scholar
Houot V, Etienne P, Petitot AS, Barbier S, Blein JP, Suty L. Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. J Exp Bot. 2001;52(361):1721–30.
CAS
PubMed
Google Scholar
Behboodi BS, Samadi L. Detection of apoptotic bodies and oligonucleosomal DNA fragments in cadmium-treated root apical cells of Allium cepa Linnaeus. Plant Sci. 2004;167(3):411–6. https://doi.org/10.1016/j.plantsci.2004.04.024.
Article
CAS
Google Scholar
Tada Y, Kusaka K, Betsuyaku S, Shinogi T, Sakamoto M, Ohura Y, et al. Victorin triggers programmed cell death and the defense response via interaction with a cell surface mediator. Plant Cell Physiol. 2005;46(11):1787–98. https://doi.org/10.1093/pcp/pci193.
Article
CAS
PubMed
Google Scholar
Lytvyn DI, Yemets AI, Blume YB. UV-B overexposure induces programmed cell death in a BY-2 tobacco cell line. Environ Exp Bot. 2010;68(1):51–7. https://doi.org/10.1016/j.envexpbot.2009.11.004.
Article
CAS
Google Scholar
Rybaczek D, Musiałek MW, Balcerczyk A. Caffeine-induced premature chromosome condensation results in the apoptosis-like programmed cell death in root meristems of Vicia faba. PLoS One. 2015;10(11):e0142307. https://doi.org/10.1371/journal.pone.0142307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nyalugwe EP, Barbetti MJ, Clode PL, Jones RAC. Programmed cell death pathways induced by early plant-virus infection are determined by isolate virulence and stage of infection. Plant Pathol. 2016;65(9):1518–28. https://doi.org/10.1111/ppa.12533.
Article
CAS
Google Scholar
Dauphinee AN, Cardoso C, Dalman K, Ohlsson JA, Fick SB, Robert S, Hicks GR, Bozhkov PV, Minina EA. Chemical screening pipeline for identification of specific plant autophagy modulators. Plant Physiol. 2019;181(3):855–66. https://doi.org/10.1104/pp.19.00647.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minina EA, Filonova LH, Sanchez-Vera V, Suarez MF, Daniel G, Bozhkov PV. Detection and measurement of necrosis in plants. In: McCall K, Klein C, editors. . Totowa: Humana Press; 2013. p. 229–48.
Google Scholar