Small E, Jomphe M. A synopsis of the genus Medicago (Leguminosae). Can J Bot. 1989;67(11):3260–94. https://doi.org/10.1139/b89-405.
Article
Google Scholar
Li HY, Li ZY, Cai LY, Shi WG, Mi FG, Shi FL. Analysis of genetic diversity of Ruthenia Medic (Medicago ruthenica (L.) Trautv.) in Inner Mongolia using ISSR and SSR markers. Genet Resour Crop Ev. 2013;60(5):1687–94. https://doi.org/10.1007/s10722-012-9950-3.
Article
CAS
Google Scholar
Campbell TA, Bao G, Xia ZL. Agronomic evaluation of Medicago ruthenica collected in Inner Mongolia. Crop Sci. 1997;37(2):599–604. https://doi.org/10.2135/cropsci1997.0011183X003700020048x.
Article
Google Scholar
Balabaev GA. Yellow lucernes of Siberia, Medicago ruthenica (L.) Ledb. and M. platycarpa (L.) Ledb. Bull App Bot Genet Plant Breed Serv. 1934;7:13–123.
Google Scholar
Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, et al. A gene expression atlas of the model legume Medicago truncatula. Plant J. 2008;55(3):504–13. https://doi.org/10.1111/j.1365-313X.2008.03519.x.
Article
CAS
PubMed
Google Scholar
Bouton JH. Breeding lucerne for persistence. Crop Pasture Sci. 2012;63(2):95–106. https://doi.org/10.1071/CP12009.
Article
Google Scholar
Collino DJ, Dardanelli JL, De Luca MJ, Racca RW. Temperature and water availability effects on radiation and water use efficiencies in alfalfa (Medicago sativa L.). Aust J Exp Agr. 2005;45(4):383–90. https://doi.org/10.1071/EA04050.
Article
Google Scholar
Cornacchione MV, Suarez DL. Emergence, forage production, and ion relations of alfalfa in response to saline waters. Crop Sci. 2015;55(1):444–57. https://doi.org/10.2135/cropsci2014.01.0062.
Article
CAS
Google Scholar
Zhang W, Hou L, Yang J, Song S, Mao X, Zhang Q, et al. Establishment and management of alfalfa pasture in cold regions of China. Chin Sci Bull. 2018;63(17):1651–63. https://doi.org/10.1360/N972017-01181.
Article
Google Scholar
Dear BS, Reed KFM, Craig AD. Outcomes of the search for new perennial and salt tolerant pasture plants for southern Australia. Aust J Exp Agr. 2008;48(4):578–88. https://doi.org/10.1071/EA07118.
Article
Google Scholar
Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, et al. Genome structure of the legume, Lotus japonicus. DNA Res. 2008;15(4):227–39. https://doi.org/10.1093/dnares/dsn008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young ND, Debelle F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. 2011;480(7378):520–4. https://doi.org/10.1038/nature10625.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Vega JJ, Ayling S, Hegarty M, Kudrna D, Goicoechea JL, Ergon A, et al. Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci Rep-Uk. 2015;5(1):17394. https://doi.org/10.1038/srep17394.
Article
CAS
Google Scholar
Chen H, Zeng Y, Yang Y, Huang L, Tang B, Zhang H, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun. 2020;11(1):2494. https://doi.org/10.1038/s41467-020-16338-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen C, Du H, Chen Z, Lu H, Zhu F, Chen H, et al. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol Plant. 2020;13(9):1250–61. https://doi.org/10.1016/j.molp.2020.07.003.
Article
CAS
PubMed
Google Scholar
Liu M, Wang TZ, Zhang WH. Sodium extrusion associated with enhanced expression of SOS1 underlies different salt tolerance between Medicago falcata and Medicago truncatula seedlings. Environ Exp Bot. 2015;110:46–55. https://doi.org/10.1016/j.envexpbot.2014.09.005.
Article
CAS
Google Scholar
Yu LQ. Systematical evaluation on alfalfa germplasm and genetic diversity analysis. Huhehot: Inner Mongolia Agricultural University; 2009.
Google Scholar
Wang DK, Li H, Luo XY. Crossbreeding of Melilotoides ruthenicus and Medicago sativa. Acta Agrestia Sinica. 2008;16:458–65.
Google Scholar
Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet. 2014;46(7):707–13. https://doi.org/10.1038/ng.3008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178–83. https://doi.org/10.1038/nature08670.
Article
CAS
PubMed
Google Scholar
Varshney RK, Chen WB, Li YP, Bharti AK, Saxena RK, Schlueter JA, et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol. 2012;30(1):83–9. https://doi.org/10.1038/nbt.2022.
Article
CAS
Google Scholar
Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol. 2013;31(3):240–6. https://doi.org/10.1038/nbt.2491.
Article
CAS
PubMed
Google Scholar
Wu Z, Hou X, Ren W, Du J, Zhao Q, Wang Z. Prediction of the potential distribution of Medicago ruthenica in China under climate change. Acta Agrestia Sinica. 2018;26:898–906.
Google Scholar
Yoder JB, Briskine R, Mudge J, Farmer A, Paape T, Steele K, et al. Phylogenetic signal variation in the genomes of Medicago (Fabaceae). Syst Biol. 2013;62(3):424–38. https://doi.org/10.1093/sysbio/syt009.
Article
PubMed
Google Scholar
Albert VA, Barbazuk WB, dePamphilis CW, Der JP L-MJ, Ma H, Palmer JD, et al. The Amborella genome and the evolution of flowering plants. Science. 2013;342:1241089.
Article
Google Scholar
Wu SD, Han BC, Jiao YN. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Mol Plant. 2020;13(1):59–71. https://doi.org/10.1016/j.molp.2019.10.012.
Article
CAS
PubMed
Google Scholar
Cannon SB, McKain MR, Harkess A, Nelson MN, Dash S, Deyholos MK, et al. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol Biol Evol. 2015;32(1):193–210. https://doi.org/10.1093/molbev/msu296.
Article
CAS
PubMed
Google Scholar
Rispe C, Legeai F, Nabity PD, Fernandez R, Arora AK, Baa-Puyoulet P, et al. The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest. BMC Biol. 2020;18(1):90. https://doi.org/10.1186/s12915-020-00820-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Wang HY. Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. Trends Plant Sci. 2015;20(7):453–61. https://doi.org/10.1016/j.tplants.2015.04.003.
Article
CAS
PubMed
Google Scholar
Tang WJ, Ji Q, Huang YP, Jiang ZM, Bao MZ, Wang HY, et al. FAR-RED ELONGATED HYPOCOTYL3 and FAR-RED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol. 2013;163(2):857–66. https://doi.org/10.1104/pp.113.224386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma L, Tian T, Lin RC, Deng XW, Wang HY, Li G. Arabidopsis FHY3 and FAR1 regulate light-induced myo-inositol biosynthesis and oxidative stress responses by transcriptional activation of MIPS1. Mol Plant. 2016;9(4):541–57. https://doi.org/10.1016/j.molp.2015.12.013.
Article
CAS
PubMed
Google Scholar
Brozynska M, Furtado A, Henry RJ. Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J. 2016;14(4):1070–85. https://doi.org/10.1111/pbi.12454.
Article
CAS
PubMed
Google Scholar
Pascuan C, Frare R, Alleva K, Ayub ND, Soto G. mRNA biogenesis-related helicase eIF4AIII from Arabidopsis thaliana is an important factor for abiotic stress adaptation. Plant Cell Rep. 2016;35(5):1205–8. https://doi.org/10.1007/s00299-016-1947-5.
Article
CAS
PubMed
Google Scholar
Amin M, Elias SM, Hossain A, Ferdousi A, Rahman MS, Tuteja N, et al. Over-expression of a DEAD-box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.). Mol Breeding. 2012;30(1):345–54. https://doi.org/10.1007/s11032-011-9625-3.
Article
CAS
Google Scholar
Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, et al. Introduction of pea DNA Helicase 45 into Sugarcane (Saccharum spp. Hybrid) enhances cell membrane thermostability and upregulation of stress-responsive genes leads to abiotic stress tolerance. Mol Biotechnol. 2015;57(5):475–88. https://doi.org/10.1007/s12033-015-9841-x.
Article
CAS
PubMed
Google Scholar
Shivakumara TN, Sreevathsa R, Dash PK, Sheshshayee MS, Papolu PK, Rao U, et al. Overexpression of pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annuum L.). Sci Re. 2017;7:2760.
Google Scholar
Chen KL, Wang YP, Zhang R, Zhang HW, Gao CX. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol. 2019;70(1):667–97. https://doi.org/10.1146/annurev-arplant-050718-100049.
Article
CAS
PubMed
Google Scholar
Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13(12):1050–4. https://doi.org/10.1038/nmeth.4035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. https://doi.org/10.1371/journal.pone.0112963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mostovoy Y, Levy-Sakin M, Lam J, Lam ET, Hastie AR, Marks P, et al. A hybrid approach for de novo human genome sequence assembly and phasing. Nat Methods. 2016;13(7):587–90. https://doi.org/10.1038/nmeth.3865.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27(4):578–9. https://doi.org/10.1093/bioinformatics/btq683.
Article
CAS
PubMed
Google Scholar
Adey A, Kitzman JO, Burton JN, Daza R, Kumar A, Christiansen L, et al. In vitro, long-range sequence information for de novo genome assembly via transposase contiguity. Genome Res. 2014;24(12):2041–9. https://doi.org/10.1101/gr.178319.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burton JN, Adey A, Patwardhan RP, Qiu RL, Kitzman JO, Shendure J. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol. 2013;31(12):1119–25. https://doi.org/10.1038/nbt.2727.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2. https://doi.org/10.1093/bioinformatics/btv351.
Article
CAS
PubMed
Google Scholar
Parra G, Bradnam K, Korf I. CEGMA. a pipeline to accurately annotate core genes in eukaryotic genornes. Bioinformatics. 2007;23(9):1061–7. https://doi.org/10.1093/bioinformatics/btm071.
Article
CAS
PubMed
Google Scholar
Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2004;4:Unit4.10.
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80. https://doi.org/10.1093/nar/27.2.573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birney E, Clamp M, Durbin R. GeneWise and genomewise. Genome Res. 2004;14(5):988–95. https://doi.org/10.1101/gr.1865504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11. https://doi.org/10.1093/bioinformatics/btp120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. https://doi.org/10.1038/nbt.1621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. https://doi.org/10.1038/nbt.1883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Hannick LI, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31(19):5654–66. https://doi.org/10.1093/nar/gkg770.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9(1):R7. https://doi.org/10.1186/gb-2008-9-1-r7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000;28(1):45–8. https://doi.org/10.1093/nar/28.1.45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zdobnov EM, Apweiler R. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17(9):847–8. https://doi.org/10.1093/bioinformatics/17.9.847.
Article
CAS
PubMed
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64. https://doi.org/10.1093/nar/25.5.955.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics. 2009;25(10):1335–7. https://doi.org/10.1093/bioinformatics/btp157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 2005;33(Database issue):D121–4. https://doi.org/10.1093/nar/gki081.
Article
CAS
PubMed
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45. https://doi.org/10.1101/gr.092759.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Landmead B, Salzberg SL. HISAT. a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. https://doi.org/10.1038/nmeth.3317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kent WJ. BLAT-The BLAST-like alignment tool. Genome Res. 2002;12(4):656–64. https://doi.org/10.1101/gr.229202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–89. https://doi.org/10.1101/gr.1224503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu XJ, Zheng HK, Wang J, Wang W, Su B. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup. Genomics. 2006;88(6):745–51. https://doi.org/10.1016/j.ygeno.2006.05.008.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. https://doi.org/10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2008;57(5):758–71. https://doi.org/10.1080/10635150802429642.
Article
PubMed
Google Scholar
Yang ZH. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91. https://doi.org/10.1093/molbev/msm088.
Article
CAS
PubMed
Google Scholar
Tang HB, Bowers JE, Wang XY, Ming R, Alam M, Paterson AH. Perspective-synteny and collinearity in plant genomes. Science. 2008;320(5875):486–8. https://doi.org/10.1126/science.1153917.
Article
CAS
PubMed
Google Scholar
De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22(10):1269–71. https://doi.org/10.1093/bioinformatics/btl097.
Article
CAS
PubMed
Google Scholar
Zheng Y, Jiao C, Sun HH, Rosli HG, Pombo MA, Zhang PF, et al. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant. 2016;9(12):1667–70. https://doi.org/10.1016/j.molp.2016.09.014.
Article
CAS
PubMed
Google Scholar
Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6(1):31. https://doi.org/10.1186/1471-2105-6-31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexieva V, Sergiev I, Mapelli S, Karanov E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001;24(12):1337–44. https://doi.org/10.1046/j.1365-3040.2001.00778.x.
Article
CAS
Google Scholar
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–7. https://doi.org/10.1007/BF00018060.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Li MY, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. https://doi.org/10.1093/nar/gkq603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA-sequence data. Genetics. 1992;132(2):583–9. https://doi.org/10.1093/genetics/132.2.583.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tajima F. Evolutionary relationship of DNA-sequences in finite populations. Genetics. 1983;105(2):437–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9. https://doi.org/10.1038/75556.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9. https://doi.org/10.1093/bioinformatics/btu638.
Article
CAS
PubMed
Google Scholar
Zhang JY, de Carvalho MHC, Torres-Jerez I, Kang Y, Allen SN, Huhman DV, et al. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant Cell Environ. 2014;37(11):2553–76. https://doi.org/10.1111/pce.12328.
Article
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131.
Article
CAS
PubMed
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape. A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 1999;27:297–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang T. Medicago ruthenica. NCBI Genome WNNG00000000. 2021. https://www.ncbi.nlm.nih.gov/genome/?term=WNNG00000000.
Institute of Botany, CAS. Medicago ruthenica RNA-seq reads. NCBI BioProject, PRJNA589938. 2019. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA589938.
Institute of Botany, CAS. Medicago ruthenica re-sequencing reads. NCBI BioProject, PRJNA598783. 2020. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA598783.
Wang T. Genome assembly and annotation files of Medicago ruthenica. Figshare. 2021. https://doi.org/10.6084/m9.figshare.12726932.