Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature. 2008;452(7190):1002–6. https://doi.org/10.1038/nature06850.
Article
CAS
PubMed
Google Scholar
Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature. 2008;452(7190):1007–11. https://doi.org/10.1038/nature06861.
Article
CAS
PubMed
Google Scholar
Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell. 2009;136(1):149–62. https://doi.org/10.1016/j.cell.2008.12.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Missbach C, Dweck HK, Vogel H, Vilcinskas A, Stensmyr MC, Hansson BS, et al. Evolution of insect olfactory receptors. eLife. 2014;3:e02115. https://doi.org/10.7554/eLife.02115.
Article
PubMed
PubMed Central
Google Scholar
Dippel S, Kollmann M, Oberhofer G, Montino A, Knoll C, Krala M, et al. Morphological and transcriptomic analysis of a beetle chemosensory system reveals a gnathal olfactory center. BMC Biol. 2016;14(1):90. https://doi.org/10.1186/s12915-016-0304-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butterwick JA, del Mármol J, Kim KH, Kahlson MA, Rogow JA, Walz T, Ruta, V. Cryo-EM structure of the insect olfactory receptor Orco. Nature. 2018;560:447–52. https://doi.org/10.1038/s41586-018-0420-8.
Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron. 2004;43(5):703–14. https://doi.org/10.1016/j.neuron.2004.08.019.
Article
CAS
PubMed
Google Scholar
DeGennaro M, McBride CS, Seeholzer L, Nakagawa T, Dennis EJ, Goldman C, et al. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature. 2013;498:487–91.
Article
CAS
Google Scholar
Li Y, Zhang J, Chen D, Yang P, Jiang F, Wang X, et al. CRISPR/Cas9 in locusts: successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). Insect Biochem Mol Biol. 2016;79:27–35. https://doi.org/10.1016/j.ibmb.2016.10.003.
Article
CAS
PubMed
Google Scholar
Trebels B, Dippel S, Schaaf M, Balakrishnan K, Wimmer EA, Schachtner J. Adult neurogenesis in the mushroom bodies of red flour beetles (Tribolium castaneum, Herbst) is influenced by the olfactory environment. Sci Rep. 2020;10:1–11.
Article
Google Scholar
Fandino RA, Haverkamp A, Bisch-Knaden S, Zhang J, Bucks S, Nguyen TAT, et al. Mutagenesis of odorant coreceptor Orco fully disrupts foraging but not oviposition behaviors in the hawkmoth Manduca sexta. Proc Natl Acad Sci USA. 2019;116:15677–85. https://doi.org/10.1073/pnas.1902089116.
Lin W, Yu Y, Zhou P, Zhang J, Dou L, Hao Q, et al. Identification and knockdown of the olfactory receptor (OrCo) in gypsy moth. Lymantria dispar. Int J Biol Sci. 2015;11(7):772–80. https://doi.org/10.7150/ijbs.11898.
Article
CAS
PubMed
Google Scholar
Schachtner J, Schmidt M, Homberg U. Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea+Hexapoda). Arthropod Struct Dev. 2005;34(3):257–99. https://doi.org/10.1016/j.asd.2005.04.003.
Article
Google Scholar
Anton S, Homberg U. Antennal Lobe Structure. In: Hansson BS, editor. Insect olfaction. Berlin, Heidelberg: Springer Berlin Heidelberg; 1999. p. 97–124.
Google Scholar
Vosshall LB. Olfaction in Drosophila. Curr Opin Neurobiol. 2000;10(4):498–503. https://doi.org/10.1016/S0959-4388(00)00111-2.
Article
CAS
PubMed
Google Scholar
Szyszka P, Galizia CG. Olfaction in Insects. In: Doty RL, editor. Handbook of olfaction and gustation. 3rd ed. Hoboken: Wiley; 2015. p. 531–46. https://doi.org/10.1002/9781118971758.ch22.
Chapter
Google Scholar
Riabinina O, Task D, Marr E, Lin C-C, Alford R, O’Brochta DA, et al. Organization of olfactory centres in the malaria mosquito Anopheles gambiae. Nat Commun. 2016;7(1):13010. https://doi.org/10.1038/ncomms13010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin T, Li C, Liu J, Smith BH, Lei H, Zeng X. Glomerular organization in the antennal lobe of the oriental fruit fly Bactrocera dorsalis. Front Neuroanat. 2018;12:71. https://doi.org/10.3389/fnana.2018.00071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan MF, Behan M. The sensory receptors of Tribolium larvae. Physiol Zool. 1973;46(3):238–44. https://doi.org/10.1086/physzool.46.3.30155605.
Article
Google Scholar
Behan M, Ryan MF. Ultrastructure of antennal sensory receptors of Tribolium larvae (Coleoptera: Tenebrionidae). Int J Insect Morphol Embryol. 1978;7(3):221–36. https://doi.org/10.1016/0020-7322(78)90005-3.
Article
Google Scholar
Bloom JW, Zacharuk RY, Holodniuk AE. Ultrastructure of the larval antenna of Tenebrio molitor L. (Coleoptera: Tenebrionidae): structure of the trichoid and uniporous peg sensilla. Can J Zool. 1982;60(7):1528–44. https://doi.org/10.1139/z82-202.
Article
Google Scholar
Corbière G. Anatomie sensorielle des appendices céphaliques de la larve du Speophyes lucidulus (Delar.)(Colèopteré cavernicole de la sous-famille des Bathysciinae). In: Annales de Spéléologie; 1967. p. 417–31.
Google Scholar
Roppel RM, Arbogast RT, Zeigler JA. Antennal sensilla of the larval sawtoothed grain beetle, Oryzaephilus surinamensis (Coleoptera, Cucujidae). Rev Can Biol. 1972;31(1):9–20.
CAS
PubMed
Google Scholar
Zacharuk RY. Sense organs of the head of larvae of some Elateridae (Coleoptera): their distribution, structure and innervation. J Morphol. 1962;111(1):1–33. https://doi.org/10.1002/jmor.1051110102.
Article
Google Scholar
Dethier VG. The function of the antennal receptors in lepidopterous larvae. Biol Bull. 1941;80(3):403–14. https://doi.org/10.2307/1537725.
Article
Google Scholar
Dethier VG, Schoonhoven LM. Olfactory coding by lepidopterous larvae. Entomol Exp Appl. 1969;12(5):535–43. https://doi.org/10.1111/j.1570-7458.1969.tb02551.x.
Article
Google Scholar
Chu I-W, Axtell RC. Fine structure of the dorsal organ of the house fly larva, Musca domestica L. Z Für Zellforsch Mikrosk Anat. 1971;117(1):17–34. https://doi.org/10.1007/BF00331098.
Article
CAS
Google Scholar
Singh RN, Singh K. Fine structure of the sensory organs of Drosophila melanogaster Meigen larva (Diptera : Drosophilidae). Int J Insect Morphol Embryol. 1984;13(4):255–73. https://doi.org/10.1016/0020-7322(84)90001-1.
Article
Google Scholar
Morata G, Lawrence PA. Development of the eye-antenna imaginal disc of Drosophila. Dev Biol. 1979;70(2):355–71. https://doi.org/10.1016/0012-1606(79)90033-2.
Article
CAS
PubMed
Google Scholar
Haynie JL, Bryant PJ. Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster. J Exp Zool. 1986;237(3):293–308. https://doi.org/10.1002/jez.1402370302.
Article
CAS
PubMed
Google Scholar
Sanes JR, Hildebrand JG. Structure and development of antennae in a moth, Manduca sexta. Dev Biol. 1976;51(2):282–99. https://doi.org/10.1016/0012-1606(76)90144-5.
Article
Google Scholar
Imms AD. Memoirs: on growth processes in the antennae of insects. J Cell Sci. 1940;s2-81:585–93.
Article
Google Scholar
Haas H. Untersuchungen zur Segmentbildung an der Antenne von Periplaneta americana, L. Wilhelm Roux Arch Für Entwicklungsmechanik Org. 1955;147(4-5):434–73. https://doi.org/10.1007/BF00575998.
Article
Google Scholar
Truman JW, Riddiford LM. Endocrine insights into the evolution of metamorphosis in insects. Annu Rev Entomol. 2002;47(1):467–500. https://doi.org/10.1146/annurev.ento.47.091201.145230.
Article
CAS
PubMed
Google Scholar
Villarreal CM, Darakananda K, Wang VR, Jayaprakash PM, Suzuki Y. Hedgehog signaling regulates imaginal cell differentiation in a basally branching holometabolous insect. Dev Biol. 2015;404(2):125–35. https://doi.org/10.1016/j.ydbio.2015.05.020.
Article
CAS
PubMed
Google Scholar
Smith FW, Angelini DR, Jockusch EL. A functional genetic analysis in flour beetles (Tenebrionidae) reveals an antennal identity specification mechanism active during metamorphosis in Holometabola. Mech Dev. 2014;132:13–27. https://doi.org/10.1016/j.mod.2014.02.002.
Article
CAS
PubMed
Google Scholar
Hoskins SG, Homberg U, Kingan TG, Christensen TA, Hildebrand JG. Immunocytochemistry of GABA in the antennal lobes of the sphinx moth Manduca sexta. Cell Tissue Res. 1986;244(2):243–52. https://doi.org/10.1007/BF00219199.
Article
CAS
PubMed
Google Scholar
Hähnlein I, Bicker G. Glial patterning during postembryonic development of central neuropiles in the brain of the honeybee. Dev Genes Evol. 1997;207(1):29–41. https://doi.org/10.1007/s004270050089.
Article
PubMed
Google Scholar
Wegerhoff R. GABA and serotonin immunoreactivity during postembryonic brain development in the beetle Tenebrio molitor. Microsc Res Tech. 1999;45(3):154–64. https://doi.org/10.1002/(SICI)1097-0029(19990501)45:3<154::AID-JEMT3>3.0.CO;2-5.
Article
CAS
PubMed
Google Scholar
Python F, Stocker RF. Adult-like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons. J Comp Neurol. 2002;445(4):374–87. https://doi.org/10.1002/cne.10188.
Article
PubMed
Google Scholar
Prillinger L. Postembryonic development of the antennal lobes in Periplaneta americana L. Cell Tissue Res. 1981;215(3):563–75. https://doi.org/10.1007/BF00233532.
Article
CAS
PubMed
Google Scholar
Boeckh J, Tolbert LP. Synaptic organization and development of the antennal lobe in insects. Microsc Res Tech. 1993;24(3):260–80. https://doi.org/10.1002/jemt.1070240305.
Article
CAS
PubMed
Google Scholar
Ryba AR, McKenzie SK, Olivos-Cisneros L, Clowney EJ, Pires PM, Kronauer DJC. Comparative development of the ant chemosensory system. Curr Biol. 2020;30:3223–3230.e4.
Article
CAS
Google Scholar
Trible W, Olivos-Cisneros L, McKenzie SK, Saragosti J, Chang N-C, Matthews BJ, et al. orco Mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell. 2017;170:727–735.e10.
Article
CAS
Google Scholar
Yan H, Opachaloemphan C, Mancini G, Yang H, Gallitto M, Mlejnek J, et al. An engineered orco mutation produces aberrant social behavior and defective neural development in ants. Cell. 2017;170:736–747.e9.
Article
CAS
Google Scholar
Berdnik D, Chihara T, Couto A, Luo L. Wiring stability of the adult Drosophila olfactory circuit after lesion. J Neurosci. 2006;26(13):3367–76. https://doi.org/10.1523/JNEUROSCI.4941-05.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiang A, Priya R, Ramaswami M, VijayRaghavan K, Rodrigues V. Neuronal activity and Wnt signaling act through Gsk3-β to regulate axonal integrity in mature Drosophila olfactory sensory neurons. Development. 2009;136(8):1273–82. https://doi.org/10.1242/dev.031377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maguire SE, Afify A, Goff LA, Potter CJ. A Feedback Mechanism Regulates Odorant Receptor Expression in the Malaria Mosquito, Anopheles gambiae. bioRxiv. 2020. https://doi.org/10.1101/2020.07.23.218586.
Bucher G, Scholten J, Klingler M. Parental RNAi in Tribolium (Coleoptera). Curr Biol. 2002;12(3):R85–6. https://doi.org/10.1016/S0960-9822(02)00666-8.
Article
CAS
PubMed
Google Scholar
Tomoyasu Y, Denell RE. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol. 2004;214(11):575–8. https://doi.org/10.1007/s00427-004-0434-0.
Article
CAS
PubMed
Google Scholar
Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol. 2008;9(1):R10. https://doi.org/10.1186/gb-2008-9-1-r10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stopfer M, Bhagavan S, Smith BH, Laurent G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature. 1997;390(6655):70–4. https://doi.org/10.1038/36335.
Article
CAS
PubMed
Google Scholar
Sachse S, Galizia CG. Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol. 2002;87(2):1106–17. https://doi.org/10.1152/jn.00325.2001.
Article
PubMed
Google Scholar
Wilson RI, Laurent G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci Off J Soc Neurosci. 2005;25(40):9069–79. https://doi.org/10.1523/JNEUROSCI.2070-05.2005.
Article
CAS
Google Scholar
Olsen SR, Bhandawat V, Wilson RI. Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron. 2007;54(1):89–103. https://doi.org/10.1016/j.neuron.2007.03.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olsen SR, Bhandawat V, Wilson RI. Divisive normalization in olfactory population codes. Neuron. 2010;66(2):287–99. https://doi.org/10.1016/j.neuron.2010.04.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang Y, Claridge-Chang A, Sjulson L, Pypaert M, Miesenböck G. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell. 2007;128(3):601–12. https://doi.org/10.1016/j.cell.2006.12.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silbering AF, Galizia CG. Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J Neurosci. 2007;27(44):11966–77. https://doi.org/10.1523/JNEUROSCI.3099-07.2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olsen SR, Wilson RI. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature. 2008;452(7190):956–60. https://doi.org/10.1038/nature06864.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okada R, Awasaki T, Ito K. Gamma-aminobutyric acid (GABA)-mediated neural connections in the Drosophila antennal lobe. J Comp Neurol. 2009;514(1):74–91. https://doi.org/10.1002/cne.21971.
Article
CAS
PubMed
Google Scholar
Tanaka NK, Ito K, Stopfer M. Odor-evoked neural oscillations in Drosophila are mediated by widely branching interneurons. J Neurosci. 2009;29(26):8595–603. https://doi.org/10.1523/JNEUROSCI.1455-09.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chou Y-H, Spletter ML, Yaksi E, Leong JCS, Wilson RI, Luo L. Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat Neurosci. 2010;13(4):439–49. https://doi.org/10.1038/nn.2489.
Article
CAS
PubMed
PubMed Central
Google Scholar
Root CM. Propagation and modulation of activity in early olfactory processing and its relevance to odor-driven behavior: Dissertation. San Diego: University of California; 2010. https://escholarship.org/uc/item/20q9w0st
Wilson RI. Early olfactory processing in Drosophila : mechanisms and principles. Annu Rev Neurosci. 2013;36(1):217–41. https://doi.org/10.1146/annurev-neuro-062111-150533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagel KI, Hong EJ, Wilson RI. Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics. Nat Neurosci. 2015;18(1):56–65. https://doi.org/10.1038/nn.3895.
Article
CAS
PubMed
Google Scholar
Carlsson MA, Diesner M, Schachtner J, Nässel DR. Multiple neuropeptides in the Drosophila antennal lobe suggest complex modulatory circuits. J Comp Neurol. 2010;518(16):3359–80. https://doi.org/10.1002/cne.22405.
Article
CAS
PubMed
Google Scholar
Binzer M, Heuer CM, Kollmann M, Kahnt J, Hauser F, Grimmelikhuijzen CJP, et al. Neuropeptidome of Tribolium castaneum antennal lobes and mushroom bodies. J Comp Neurol. 2014;522(2):337–57. https://doi.org/10.1002/cne.23399.
Article
CAS
PubMed
Google Scholar
Siju KP, Reifenrath A, Scheiblich H, Neupert S, Predel R, Hansson BS, et al. Neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti. J Comp Neurol. 2014;522(3):592–608. https://doi.org/10.1002/cne.23434.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kay LM, Stopfer M. Information processing in the olfactory systems of insects and vertebrates. Semin Cell Dev Biol. 2006;17(4):433–42. https://doi.org/10.1016/j.semcdb.2006.04.012.
Article
PubMed
Google Scholar
Dreyer D, Vitt H, Dippel S, Goetz B, El Jundi B, Kollmann M, et al. 3D standard brain of the red flour beetle Tribolium castaneum: a tool to study metamorphic development and adult plasticity. Front Syst Neurosci. 2010;4:3.
PubMed
PubMed Central
Google Scholar
Kreissl S, Strasser C, Galizia CG. Allatostatin immunoreactivity in the honeybee brain. J Comp Neurol. 2010;518(9):1391–417. https://doi.org/10.1002/cne.22343.
Article
CAS
PubMed
Google Scholar
Wegerhoff R. Metamorphic development of locusta-tachykinin immunoreactive neurons of the antennal lobes of the beetle Tenebrio molitor and the effect of fenvalerate application. Exp Biol Online. 1997;2(14):1–13. https://doi.org/10.1007/s00898-997-0014-7.
Article
Google Scholar
Posnien N, Koniszewski NDB, Bucher G. Insect Tc-six4 marks a unit with similarity to vertebrate placodes. Dev Biol. 2011;350(1):208–16. https://doi.org/10.1016/j.ydbio.2010.10.024.
Article
CAS
PubMed
Google Scholar
Lewis CT. Structure and function in some external receptors. In: Roy Entomol Soc London Symp; 1970.
Google Scholar
Schneider D, Steinbrecht RA. Checklist of insect olfactory sensilla. In: Symposia of the Zoological Society London; 1968. p. 279–97. http://hdl.handle.net/11858/00-001M-0000-002B-19CA-E.
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346(6210):763–7. https://doi.org/10.1126/science.1257570.
Article
CAS
PubMed
Google Scholar
Eassa YEE. Metamorphosis of the cranial capsule and its appendages in the cabbage butterfly, Pieris brassicae. Ann Entomol Soc Am. 1963;56(4):510–21. https://doi.org/10.1093/aesa/56.4.510.
Article
Google Scholar
Eassa YEE. The development of imaginal buds in the head of Pieris Brassicae Linn. (lepidoptera). Trans R Entomol Soc Lond. 1953;104:39–50.
Article
Google Scholar
Lienhard MC, Stocker RF. The development of the sensory neuron pattern in the antennal disc of wild-type and mutant (lz3, ssa) Drosophila melanogaster. Development. 1991;112(4):1063–75. https://doi.org/10.1242/dev.112.4.1063.
Article
CAS
PubMed
Google Scholar
Svácha P. What are and what are not imaginal discs: reevaluation of some basic concepts (insecta, holometabola). Dev Biol. 1992;154(1):101–17. https://doi.org/10.1016/0012-1606(92)90052-I.
Article
PubMed
Google Scholar
Schafer R. Postembryonic development in the antenna of the cockroach, Leucophaea maderae: growth, regeneration, and the development of the adult pattern of sense organs. J Exp Zool. 1973;183(3):353–63. https://doi.org/10.1002/jez.1401830309.
Article
Google Scholar
Sanes JR, Hildebrand JG. Origin and morphogenesis of sensory neurons in an insect antenna. Dev Biol. 1976;51(2):300–19. https://doi.org/10.1016/0012-1606(76)90145-7.
Article
CAS
PubMed
Google Scholar
Waku Y. Developmental changes of the antenna and its neurons in the silkworm, Bombyx mori, with special regard to larval-pupal transformation. J Morphol. 1991;207(3):253–71. https://doi.org/10.1002/jmor.1052070304.
Article
PubMed
Google Scholar
Steiner C, Keil TA. Morphogenesis of the antenna of the male silkmoth, Antheraea polyphemus. VI. Experimental disturbance of antennal branch formation. Tissue Cell. 1995;27(3):289–97. https://doi.org/10.1016/S0040-8166(95)80049-2.
Article
CAS
PubMed
Google Scholar
Steiner C. Keil T a. Morphogenesis of the antenna of the male silkmoth, Antheraea polyphemus. V. Development of the peripheral nervous system. Tissue Cell. 1995;27(3):275–88. https://doi.org/10.1016/S0040-8166(95)80048-4.
Article
CAS
PubMed
Google Scholar
Steiner C, Keil TA. Morphogenesis of the antenna of the male silkmoth, Antheraea polyphemus. IV. Segmentation and branch formation. Tissue Cell. 1993;25(3):447–64. https://doi.org/10.1016/0040-8166(93)90085-Y.
Article
CAS
PubMed
Google Scholar
Keil TA, Steiner C. Morphogenesis of the antenna of the male silkmoth, Antheraea polyphemus. I. The leaf-shaped antenna of the pupa from diapause to apolysis. Tissue Cell. 1990;22(3):319–36. https://doi.org/10.1016/0040-8166(90)90007-V.
Article
CAS
PubMed
Google Scholar
Keil TA, Steiner C. Morphogenesis of the antenna of the male silkmoth, Antheraea polyphemus. II. Differential mitoses of ‘dark’ precursor cells create the Anlagen of sensilla. Tissue Cell. 1990;22(5):705–20. https://doi.org/10.1016/0040-8166(90)90066-I.
Article
CAS
PubMed
Google Scholar
Keil TA, Steiner C. Morphogenesis of the antenna of the male silkmoth. Antheraea polyphemus, III. Development of olfactory sensilla and the properties of hair-forming cells. Tissue Cell. 1991;23(6):821–51. https://doi.org/10.1016/0040-8166(91)90034-Q.
Article
CAS
PubMed
Google Scholar
Jefferis GSXE. Developmental origin of wiring specificity in the olfactory system of Drosophila. Development. 2004;131(1):117–30. https://doi.org/10.1242/dev.00896.
Article
CAS
PubMed
Google Scholar
Stocker RF. The organization of the chemosensory system in Drosophila melanogaster: a rewiew. Cell Tissue Res. 1994;275(1):3–26. https://doi.org/10.1007/BF00305372.
Article
CAS
PubMed
Google Scholar
Jhaveri D, Sen A, Rodrigues V. Mechanisms underlying olfactory neuronal connectivity in Drosophila - the atonal lineage organizes the periphery while sensory neurons and glia pattern the olfactory lobe. Dev Biol. 2000;226(1):73–87. https://doi.org/10.1006/dbio.2000.9855.
Article
CAS
PubMed
Google Scholar
Oland LA, Orr G, Tolbert LP. Construction of a protoglomerular template by olfactory axons initiates the formation of olfactory glomeruli in the insect brain. J Neurosci. 1990;10(7):2096–112. https://doi.org/10.1523/JNEUROSCI.10-07-02096.1990.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oland LA, Tolbert LP. Glial patterns during early development of antennal lobes of Manduca sexta: a comparison between normal lobes and lobes deprived of antennal axons. J Comp Neurol. 1987;255(2):196–207. https://doi.org/10.1002/cne.902550204.
Article
CAS
PubMed
Google Scholar
Schröter U, Malun D. Formation of antennal lobe and mushroom body neuropils during metamorphosis in the honeybee, Apis mellifera. J Comp Neurol. 2000;422(2):229–45. https://doi.org/10.1002/(SICI)1096-9861(20000626)422:2<229::AID-CNE6>3.0.CO;2-N.
Article
PubMed
Google Scholar
Rössler W, Kuduz J, Schürmann FW, Schild D. Aggregation of f-actin in olfactory glomeruli: a common feature of glomeruli across phyla. Chem Senses. 2002;27(9):803–10. https://doi.org/10.1093/chemse/27.9.803.
Article
PubMed
Google Scholar
De Camili P, Haucke V, Takei K, Mignani E. The structure of synapses. In: Cowan MW, Südhof TL, Stevens CF, editors. Synapses. Baltimore: Johns Hopkins University Press; 2001. p. 89–133.
Google Scholar
Morales M, Colicos MA, Goda Y. Actin-dependent regulation of neurotransmitter release at central synapses. Neuron. 2000;27(3):539–50. https://doi.org/10.1016/S0896-6273(00)00064-7.
Article
CAS
PubMed
Google Scholar
Tolbert LP, Oland LA, Tucker ES, Gibson NJ, Higgins MR, Lipscomb BW. Bidirectional influences between neurons and glial cells in the developing olfactory system. Prog Neurobiol. 2004;73(2):73–105. https://doi.org/10.1016/j.pneurobio.2004.04.004.
Article
PubMed
Google Scholar
Ramaekers A, Magnenat E, Marin EC, Gendre N, Jefferis GSXE, Luo L, et al. Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. Curr Biol. 2005;15(11):982–92. https://doi.org/10.1016/j.cub.2005.04.032.
Article
CAS
PubMed
Google Scholar
Dubuque SH, Schachtner J, Nighorn AJ, Menon KP, Zinn K, Tolbert LP. Immunolocalization of synaptotagmin for the study of synapses in the developing antennal lobe of Manduca sexta. J Comp Neurol. 2001;441(4):277–87. https://doi.org/10.1002/cne.1412.
Article
CAS
PubMed
Google Scholar
Hildebrand JG, Rössler W, Tolbert LP. Postembryonic development of the olfactory system in the moth Manduca sexta: primary-afferent control of glomerular development. Semin Cell Dev Biol. 1997;8(2):163–70. https://doi.org/10.1006/scdb.1996.0139.
Article
CAS
PubMed
Google Scholar
Huetteroth W, El Jundi B, El Jundi S, Schachtner J. 3D-Reconstructions and virtual 4D-visualization to study metamorphic brain development in the sphinx moth Manduca sexta. Front Syst Neurosci. 2010;4:7.
PubMed
PubMed Central
Google Scholar
Tolbert LP, Matsumoto SG, Hildebrand JG. Development of synapses in the antennal lobes of the moth Manduca sexta during metamorphosis. J Neurosci. 1983;3(6):1158–75. https://doi.org/10.1523/JNEUROSCI.03-06-01158.1983.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groh C, Rössler W. Caste-specific postembryonic development of primary and secondary olfactory centers in the female honeybee brain. Arthropod Struct Dev. 2008;37(6):459–68. https://doi.org/10.1016/j.asd.2008.04.001.
Article
PubMed
Google Scholar
Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR. A novel family of divergent seven-transmembrane proteins. Neuron. 1999;22(2):327–38. https://doi.org/10.1016/S0896-6273(00)81093-4.
Article
CAS
PubMed
Google Scholar
Jefferis GSXE, Hummel T. Wiring specificity in the olfactory system. Semin Cell Dev Biol. 2006;17(1):50–65. https://doi.org/10.1016/j.semcdb.2005.12.002.
Article
PubMed
Google Scholar
Schachtner J, Trosowski B, D’Hanis W, Stubner S, Homberg U. Development and steroid regulation of RFamide immunoreactivity in antennal-lobe neurons of the sphinx moth Manduca sexta. J Exp Biol. 2004;207(Pt 14):2389–400. https://doi.org/10.1242/jeb.01036.
Article
CAS
PubMed
Google Scholar
Parthasarathy R, Tan A, Bai H, Palli SR. Transcription factor broad suppresses precocious development of adult structures during larval–pupal metamorphosis in the red flour beetle, Tribolium castaneum. Mech Dev. 2008;125(3-4):299–313. https://doi.org/10.1016/j.mod.2007.11.001.
Article
CAS
PubMed
Google Scholar
Wu Z-N, Chen X, Du Y-J, Zhou J-J, ZhuGe Q-C. Molecular identification and characterization of the Orco orthologue of Spodoptera litura. Insect Sci. 2013;20(2):175–82. https://doi.org/10.1111/j.1744-7917.2011.01483.x.
Article
CAS
PubMed
Google Scholar
Engsontia P, Sanderson AP, Cobb M, Walden KKO, Robertson HM, Brown S. The red flour beetle’s large nose: an expanded odorant receptor gene family in Tribolium castaneum. Insect Biochem Mol Biol. 2008;38(4):387–97. https://doi.org/10.1016/j.ibmb.2007.10.005.
Article
CAS
PubMed
Google Scholar
Utz S, Schachtner J. Development of A-type allatostatin immunoreactivity in antennal lobe neurons of the sphinx moth Manduca sexta. Cell Tissue Res. 2005;320(1):149–62. https://doi.org/10.1007/s00441-004-1059-3.
Article
CAS
PubMed
Google Scholar
Utz S, Huetteroth W, Vömel M, Schachtner J. Mas-allatotropin in the developing antennal lobe of the sphinx moth Manduca sexta: distribution, time course, developmental regulation, and colocalization with other neuropeptides. Dev Neurobiol. 2008;68(1):123–42. https://doi.org/10.1002/dneu.20579.
Article
CAS
PubMed
Google Scholar
Homberg U. Distribution of neurotransmitters in the insect brain. Stuttgart: G. Fischer; 1994.
Google Scholar
Homberg U, Hildebrand JG. Postembryonic development of γ-aminobutyric acid-like Immunoreactivity in the brain of the sphinx moth Manduca sexta. J Comp Neurol. 1994;339(1):132–49. https://doi.org/10.1002/cne.903390112.
Article
CAS
PubMed
Google Scholar
Sokoloff A. The genetics of Tribolium and related species. New York; London: Academic Press; 1966.
Google Scholar
Berghammer AJ, Bucher G, Maderspacher F, Klingler M. A system to efficiently maintain embryonic lethal mutations in the flour beetle Tribolium castaneum. Dev Genes Evol. 1999;209(6):382–9. https://doi.org/10.1007/s004270050268.
Article
CAS
PubMed
Google Scholar
Ho FK. Optic Organs of Tribolium confusum and T. castaneum and Their Usefulness in Age Determination (Coleoptera: Tenebrionidae). Ann Entomol Soc Am. 1961;54:921–5. https://doi.org/10.1093/aesa/54.6.921.
Friedrich M, Rambold I, Melzer RR. The early stages of ommatidial development in the flour beetle Tribolium castaneum (Coleoptera; Tenebrionidae). Dev Genes Evol. 1996;206(2):136–46. https://doi.org/10.1007/s004270050039.
Article
CAS
PubMed
Google Scholar
Heuer CM, Kollmann M, Binzer M, Schachtner J. Neuropeptides in insect mushroom bodies. Arthropod Struct Dev. 2012;41(3):199–226. https://doi.org/10.1016/j.asd.2012.02.005.
Article
PubMed
Google Scholar
Mowiol embedding medium. Cold Spring Harb Protoc. 2010;2010:pdb.rec12110-pdb.rec12110.
Chehrehasa F, Meedeniya ACB, Dwyer P, Abrahamsen G, Mackay-Sim A. EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J Neurosci Methods. 2009;177(1):122–30. https://doi.org/10.1016/j.jneumeth.2008.10.006.
Article
CAS
PubMed
Google Scholar
Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A. 2008;105(7):2415–20. https://doi.org/10.1073/pnas.0712168105.
Article
PubMed
PubMed Central
Google Scholar
Vandekerckhove J, Deboben A, Nassal M, Wieland T. The phalloidin binding site of F-actin. EMBO J. 1985;4(11):2815–8. https://doi.org/10.1002/j.1460-2075.1985.tb04008.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vitzthum H, Homberg U, Agricola H. Distribution of Dip-allatostatin I-like immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of immunostaining in the central complex. J Comp Neurol. 1996;369(3):419–37. https://doi.org/10.1002/(SICI)1096-9861(19960603)369:3<419::AID-CNE7>3.0.CO;2-8.
Article
CAS
PubMed
Google Scholar
Klagges BR, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, et al. Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci. 1996;16(10):3154–65. https://doi.org/10.1523/JNEUROSCI.16-10-03154.1996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasch E, Muenz TS, Rössler W. CaMKII is differentially localized in synaptic regions of kenyon cells within the mushroom bodies of the honeybee brain. J Comp Neurol. 2011;519(18):3700–12. https://doi.org/10.1002/cne.22683.
Article
CAS
PubMed
Google Scholar
Oertel WH, Schmechel DE, Tappaz ML, Kopin IJ. Production of a specific antiserum to rat brain glutamic acid decarboxylase by injection of an antigen-antibody complex. Neuroscience. 1981;6(12):2689–700. https://doi.org/10.1016/0306-4522(81)90113-5.
Article
CAS
PubMed
Google Scholar
Trebels B, Dippel S, Goetz B, Graebner M, Hofmann C, Hofmann F, et al. Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST) - Dataset Staging; 2020. https://doi.org/10.17192/FDR/42.
Book
Google Scholar
Trebels B, Dippel S, Goetz B, Graebner M, Hofmann C, Hofmann F, et al. Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST) – Dataset Orco RNAi; 2020. https://doi.org/10.17192/FDR/35.
Book
Google Scholar
Trebels B, Dippel S, Goetz B, Graebner M, Hofmann C, Hofmann F, et al. Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST) - Dataset Antennal OSNs; 2020. https://doi.org/10.17192/FDR/37.
Book
Google Scholar
Trebels B, Dippel S, Goetz B, Graebner M, Hofmann C, Hofmann F, et al. Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST) – Dataset AL Local Neurons; 2020. https://doi.org/10.17192/FDR/40.
Book
Google Scholar
Trebels B, Dippel S, Goetz B, Graebner M, Hofmann C, Hofmann F, et al. Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST) - Dataset Antennal CSNs; 2020. https://doi.org/10.17192/FDR/38.
Book
Google Scholar
Trebels B, Dippel S, Goetz B, Graebner M, Hofmann C, Hofmann F, et al. Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST) – Dataset Apis mellifera supplemental experiments; 2020. https://doi.org/10.17192/FDR/39.
Book
Google Scholar
Trebels B, Dippel S, Goetz B, Graebner M, Hofmann C, Hofmann F, et al. Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST) - Datast AL Glomeruli; 2020. https://doi.org/10.17192/FDR/41.
Book
Google Scholar
Trebels B, Dippel S, Goetz B, Graebner M, Hofmann C, Hofmann F, et al. Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST) – Dataset GOC Glomeruli; 2020. https://doi.org/10.17192/FDR/36.
Book
Google Scholar
Trebels B, Dippel S, Goetz B, Graebner M, Hofmann C, Hofmann F, et al. Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST) - Dataset GAD Western Blot Raw Images; 2020. https://doi.org/10.17192/FDR/34.
Book
Google Scholar