Carter RF. Description of a Naegleria sp. isolated from two cases of primary amoebic meningo-encephalitis, and of the experimental pathological changes induced by it. J Pathol. 1970;100:217–44.
Article
CAS
PubMed
Google Scholar
Puzon GJ, Wylie JT, Walsh T, Braun K, Morgan MJ. Comparison of biofilm ecology supporting growth of individual Naegleria species in a drinking water distribution system. FEMS Microbiol Ecol. 2017;93:1–8.
Article
CAS
Google Scholar
Puzon GJ, Lancaster JA, Wylie JT, Plumb JJ. Rapid detection of Naegleria fowleri in water distribution pipeline biofilms and drinking water samples. Environ Sci Technol. 2009;43:6691–6.
Article
CAS
PubMed
Google Scholar
Morgan MJ, Halstrom S, Wylie JT, Walsh T, Kaksonen AH, Sutton D, et al. Characterization of a drinking water distribution pipeline terminally colonized by Naegleria fowleri. Environ Sci Technol. 2016;50(6):2890–8. https://doi.org/10.1021/acs.est.5b05657.
Article
CAS
PubMed
Google Scholar
Kazi AN, Riaz T. Deaths from rare protozoan encephalitis in Karachi blamed on unchlorinated water. BMJ. 2013;346:4461.
Google Scholar
Mahmood K. Naegleria fowleri in Pakistan - an emerging catastrophe. J Coll Physicians Surg Pak. 2015;25:159–60.
PubMed
Google Scholar
Naqvi AA, Yazdani N, Ahmad R, Zehra F, Ahmad N. Epidemiology of primary amoebic meningoencephalitis-related deaths due to Naegleria fowleri infections from freshwater in Pakistan: An analysis of 8-year dataset. Arch Pharm Pract. 2016;7:119–29.
Article
Google Scholar
Dorsch MM. Primary amoebic meningoencephalitis: an historical and epidemiological perspective with particular reference to South Australia. Adelaide: Epidemiology Branch, South Australian Health Commission; 1982.
Google Scholar
Cope JR, Ratard RC, Hill VR, Sokol T, Causey JJ, Yoder JS, et al. The first association of a primary amebic meningoencephalitis death with culturable Naegleria fowleri in tap water from a US treated public drinking water system. Clin Infect Dis. 2015;60(8):e36–42. https://doi.org/10.1093/cid/civ017.
Article
PubMed
Google Scholar
Yoder JS, Straif-Bourgeois S, Roy SL, Moore TA, Visvesvara GS, Ratard RC, et al. Primary amebic meningoencephalitis deaths associated with sinus irrigation using contaminated tap water. Clin Infect Dis. 2012;55:79–85.
Article
Google Scholar
Linam WM, Ahmed M, Cope JR, Chu C, Visvesvara GS, Da Silva AJ, et al. Successful treatment of an adolescent with Naegleria fowleri primary amebic meningoencephalitis. Pediatrics. 2015;135(3):e744–8. https://doi.org/10.1542/peds.2014-2292.
Article
PubMed
Google Scholar
Cope JR, Conrad DA, Cohen N, Cotilla M, Dasilva A, Jackson J, et al. Use of the novel therapeutic agent miltefosine for the treatment of primary amebic meningoencephalitis: report of 1 fatal and 1 surviving case. Clin Infect Dis. 2016;62(6):774–6. https://doi.org/10.1093/cid/civ1021.
Article
PubMed
Google Scholar
Gharpure R, Bliton J, Goodman A, Ali IKM, Yoder JS, Cope JR. Epidemiology and clinical characteristics of primary amebic meningoencephalitis caused by Naegleria fowleri: a global review. Clin Infect Dis. 2020:ciaa520.
Matanock A, Mehal JM, Liu L, Blau DM, Cope JR. Estimation of undiagnosed Naegleria fowleri primary amebic meningoencephalitis, United States. Emerg Infect Dis. 2018;24(1):162–4. https://doi.org/10.3201/eid2401.170545.
Article
PubMed
PubMed Central
Google Scholar
Maciver SK, Piñero JE, Lorenzo-Morales J. Is Naegleria fowleri an emerging parasite? Trends Parasitol. 2019.
Gharpure R, Gleason M, Salah Z, Blackstock A, Hess-Homeier D, Yoder J, et al. Geographic range of recreational water–associated primary amebic meningoencephalitis, United States, 1978–2018. Emerg Infect Dis J. 2021;27(1):271–4. https://doi.org/10.3201/eid2701.202119.
Article
Google Scholar
Baral R, Vaidya B. Fatal case of amoebic encephalitis masquerading as herpes. Oxford Med Case Rep. 2018;2018:134–7.
Article
Google Scholar
Kemble SK, Lynfield R, DeVries AS, Drehner DM, Pomputius WF, Beach MJ, et al. Fatal Naegleria fowleri infection acquired in Minnesota: possible expanded range of a deadly thermophilic organism. Clin Infect Dis. 2012;54(6):805–9. https://doi.org/10.1093/cid/cir961.
Article
PubMed
Google Scholar
Siddiqui R, Khan NA. Primary amoebic meningoencephalitis caused by Naegleria fowleri: an old enemy presenting new challenges. PLoS Negl Trop Dis. 2014;8.
De Jonckheere JF. What do we know by now about the genus Naegleria? Exp Parasitol. 2014;145:S2–9. https://doi.org/10.1016/j.exppara.2014.07.011.
Article
PubMed
Google Scholar
Aldape K, Huizinga H, Bouvier J, McKerrow J. Naegleria fowleri: characterization of a secreted histolytic cysteine protease. Exp Pathol. 1994;78:230–41.
CAS
Google Scholar
Herbst R, Ott C, Jacobs T, Marti T, Marciano-Cabral F, Leippe M. Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. J Biol Chem. 2002;277(25):22353–60. https://doi.org/10.1074/jbc.M201475200.
Article
CAS
PubMed
Google Scholar
Hu WN, Band RN, Kopachik WJ. Virulence-related protein synthesis in Naegleria fowleri. Infect Immun. 1991;59(11):4278–82. https://doi.org/10.1128/iai.59.11.4278-4282.1991.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serrano-Luna J, Cervantes-Sandoval I, Tsutsumi V, Shibayama M. A biochemical comparison of proteases from pathogenic Naegleria fowleri and non-pathogenic Naegleria gruberi. J Eukaryot Microbiol. 2007;54(5):411–7. https://doi.org/10.1111/j.1550-7408.2007.00280.x.
Article
CAS
PubMed
Google Scholar
Toney DM, Marciano-Cabral F. Alterations in protein expression and complement resistance of pathogenic Naegleria amoebae. Infect Immun. 1992;60(7):2784–90. https://doi.org/10.1128/iai.60.7.2784-2790.1992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbour SE, Marciano-Cabral F. Naegleria fowleri amoebae express a membrane-associated calcium-independent phospholipase A2. Biochim Biophys Acta Mol Cell Biol Lipids. 2001;1530(2-3):123–33. https://doi.org/10.1016/S1388-1981(00)00069-X.
Article
CAS
Google Scholar
Fritz-Laylin LKLK, Prochnik SESE, Ginger MLML, Dacks JB, Carpenter MLML, Field MCMC, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140:631–42.
Article
CAS
PubMed
Google Scholar
Zysset-Burri DC, Müller N, Beuret C, Heller M, Schürch N, Gottstein B, et al. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC Genomics. 2014;15:496.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liechti N, Schürch N, Bruggmann R, Wittwer M. Nanopore sequencing improves the draft genome of the human pathogenic amoeba Naegleria fowleri. Sci Rep. 2019;9:16040.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baverstock PR, Illana S, Christy PE, Robinson BS, Johnson AM. srRNA evolution and phylogenetic relationships of the genus Naegleria (Protista: Rhizopoda). Mol Biol Evol. 1989;6(3):243–57. https://doi.org/10.1093/oxfordjournals.molbev.a040549.
Article
CAS
PubMed
Google Scholar
Koonin EV. The Incredible Expanding Ancestor of Eukaryotes. Cell. 2010;140(5):606–8. https://doi.org/10.1016/j.cell.2010.02.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weirauch MT, Hughes TR. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. Subcell Biochem. 2011;52:25–73.
Article
CAS
PubMed
Google Scholar
Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014;158:1431–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: The protein families database. Nucleic Acids Res. 2014;42(D1):D222–30. https://doi.org/10.1093/nar/gkt1223.
Article
CAS
PubMed
Google Scholar
Eddy SR. A new generation of homology search tools based on probabilistic inference. In: Genome Informatics; 2009. p. 2009.
Google Scholar
Desmond E, Gribaldo S. Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol Evol. 2009;1:364–81. https://doi.org/10.1093/gbe/evp036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi JY, Podust LM, Roush WR. Drug strategies targeting CYP51 in neglected tropical diseases. Chem Rev. 2014;114(22):11242–71. https://doi.org/10.1021/cr5003134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu C, Xiong J, Miao W. Genome-wide identification and characterization of cytochrome P450 monooxygenase genes in the ciliate Tetrahymena thermophila. BMC Genomics. 2009;10(1):208. https://doi.org/10.1186/1471-2164-10-208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raederstorff D, Rohmer M. Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoeba Naegleria lovaniensis and Naegleria gruberi. Eur J Biochem. 1987;164(2):427–34. https://doi.org/10.1111/j.1432-1033.1987.tb11075.x.
Article
CAS
PubMed
Google Scholar
Debnath A, Calvet CM, Jennings G, Zhou W, Aksenov A, Luth MR, et al. CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLoS Negl Trop Dis. 2017;11(12):e0006104. https://doi.org/10.1371/journal.pntd.0006104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshiyama-Yanagawa T, Enya S, Shimada-Niwa Y, Yaguchi S, Haramoto Y, Matsuya T, et al. The conserved Rieske oxygenase DAF-36/Neverland is a novel cholesterol-metabolizing enzyme. J Biol Chem. 2011;286:25756–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wollam J, Magomedova L, Magner DB, Shen Y, Rottiers V, Motola DL, et al. The Rieske oxygenase DAF-36 functions as a cholesterol 7-desaturase in steroidogenic pathways governing longevity. Aging Cell. 2011;10(5):879–84. https://doi.org/10.1111/j.1474-9726.2011.00733.x.
Article
CAS
PubMed
Google Scholar
Najle SR, Nusblat AD, Nudel CB, Uttaro AD. The sterol-C7 desaturase from the ciliate tetrahymena thermophila is a rieske oxygenase, which is highly conserved in animals. Mol Biol Evol. 2013;30:1630–43.
Article
CAS
PubMed
Google Scholar
Najle SR, Molina MC, Ruiz-Trillo I, Uttaro AD. Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals. Open Biol. 2016;6(7). https://doi.org/10.1098/rsob.160029.
Kodner RB, Summons RE, Pearson A, King N, Knoll AH. Sterols in a unicellular relative of the metazoans. Proc Natl Acad Sci U S A. 2008;105(29):9897–902. https://doi.org/10.1073/pnas.0803975105.
Article
PubMed
PubMed Central
Google Scholar
Najle SR, Hernandez J, Ocana-Pallares E, Garcia Siburu N, Nusblat AD, Nudel CB, et al. Genome-wide transcriptional analysis of tetrahymena thermophila response to exogenous cholesterol. J Eukaryot Microbiol. 2019.
Lai EY, Walsh C, Wardell D, Fulton C. Programmed appearance of translatable flagellar tubulin mRNA during cell differentiation in Naegleria. Cell. 1979;17(4):867–78. https://doi.org/10.1016/0092-8674(79)90327-1.
Article
CAS
PubMed
Google Scholar
Patterson M, Woodworth TW, Marciano-Cabral F, Bradley SG. Ultrastructure of Naegleria fowleri enflagellation. J Bacteriol. 1981;147(1):217–26. https://doi.org/10.1128/jb.147.1.217-226.1981.
Article
CAS
PubMed
PubMed Central
Google Scholar
González-Robles A, Cristóbal-Ramos AR, González-Lázaro M, Omaña-Molina M, Martínez-Palomo A. Naegleria fowleri: light and electron microscopy study of mitosis. Exp Parasitol. 2009;122:212–7.
Article
PubMed
CAS
Google Scholar
Walsh CJ. The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria. PLoS One. 2012;7:e34763.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jamerson M, Schmoyer JA, Park J, Marciano-Cabral F, Cabral GA. Identification of Naegleria fowleri proteins linked to primary amoebic meningoencephalitis. Microbiology. 2017;163(3):322–32. https://doi.org/10.1099/mic.0.000428.
Article
CAS
PubMed
Google Scholar
Campellone KG, Welch MD. A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. 2010;11(4):237–51. https://doi.org/10.1038/nrm2867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dominguez R. The WH2 domain and actin nucleation: necessary but insufficient. Trends Biochem Sci. 2016;41:478–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rotty JD, Wu C, Bear JE. New insights into the regulation and cellular functions of the ARP2/3 complex. Nat Rev Mol Cell Biol. 2013;14(1):7–12. https://doi.org/10.1038/nrm3492.
Article
CAS
PubMed
Google Scholar
Fritz-Laylin LK, Lord SJ, Mullins RD. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. J Cell Biol. 2017;216:1673–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sohn HJ, Kim JH, Shin MH, Song KJ, Shin HJ. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri. Parasitol Res. 2010;106:917–24.
Article
PubMed
Google Scholar
Walsh CJ. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates. Eur J Cell Biol. 2007;86:85–98.
Article
CAS
PubMed
Google Scholar
Breitsprecher D, Goode BL. Formins at a glance. J Cell Sci. 2013;126(Pt 1):1–7. https://doi.org/10.1242/jcs.107250.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siddiqui R, Ali IKM, Cope JR, Khan NA. Biology and pathogenesis of Naegleria fowleri. Acta Trop. 2016;164:375–94.
Article
PubMed
Google Scholar
Rojas-Hernández S, Jarillo-Luna A, Rodríguez-Monroy M, Moreno-Fierros L, Campos-Rodríguez R. Immunohistochemical characterization of the initial stages of Naegleria fowleri meningoencephalitis in mice. Parasitol Res. 2004;94(1):31–6. https://doi.org/10.1007/s00436-004-1177-6.
Article
PubMed
Google Scholar
Brown T. Observations by light microscopy on the cytopathogenicity of Naegleria fowleri in mouse embryo-cell cultures. J Med Microbiol. 1978;11(3):249–59. https://doi.org/10.1099/00222615-11-3-249.
Article
CAS
PubMed
Google Scholar
Visvesvara GS, Callaway CS. Light and electron microsopic observations on the pathogenesis of Naegleria fowleri in mouse brain and tissue culture. J Protozool. 1974;21:239–50.
Article
CAS
PubMed
Google Scholar
Martínez-Castillo M, Cárdenas-Guerra RE, Arroyo R, Debnath A, Rodríguez MA, Sabanero M, et al. Nf-GH, a glycosidase secreted by Naegleria fowleri, causes mucin degradation: an in vitro and in vivo study. Future Microbiol. 2017;12(9):781–99. https://doi.org/10.2217/fmb-2016-0230.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fritz-Laylin LK, Cande WZ. Ancestral centriole and flagella proteins identified by analysis of Naegleria differentiation. J Cell Sci. 2010;123(Pt 23):4024–31. https://doi.org/10.1242/jcs.077453.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci. 2005;118(Pt 5):843–6.
Article
CAS
PubMed
Google Scholar
Görlich D, Mattaj IW. Nucleocytoplasmic transport. Science. 1996;271(5255):1513–8. https://doi.org/10.1126/science.271.5255.1513.
Article
PubMed
Google Scholar
Vlahou G, Eliáš M, von Kleist-Retzow J-C, Wiesner RJ, Rivero F. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur J Cell Biol. 2011;90(4):342–55. https://doi.org/10.1016/j.ejcb.2010.10.012.
Article
CAS
PubMed
Google Scholar
Kipreos ET, Pagano M. The F-box protein family. Genome Biol. 2000;1:REVIEWS3002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez-Torrado R, Yamada D, Defossez P-A. Born to bind: the BTB protein-protein interaction domain. Bioessays. 2006;28(12):1194–202. https://doi.org/10.1002/bies.20500.
Article
CAS
PubMed
Google Scholar
Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, et al. Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol. 2011;12(2):R20. https://doi.org/10.1186/gb-2011-12-2-r20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Lacal J, Firtel RA, Kortholt A. Connecting G protein signaling to chemoattractant-mediated cell polarity and cytoskeletal reorganization. Small GTPases. 2018;9(4):360–4. https://doi.org/10.1080/21541248.2016.1235390.
Article
CAS
PubMed
Google Scholar
Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci. 2012;125(Pt 10):2500–8. https://doi.org/10.1242/jcs.101378.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marín I, van Egmond WN, van Haastert PJM. The Roco protein family: a functional perspective. FASEB J Off Publ Fed Am Soc Exp Biol. 2008;22:3103–10.
Google Scholar
van Dam TJP, Zwartkruis FJT, Bos JL, Snel B. Evolution of the TOR pathway. J Mol Evol. 2011;73:209–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Záhonová K, Petrželková R, Valach M, Yazaki E, Tikhonenkov DV, Butenko A, et al. Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase. Sci Rep. 2018;8(1):5239. https://doi.org/10.1038/s41598-018-23575-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leung KF, Baron R, Seabra MC. Thematic review series: lipid posttranslational modifications. Geranylgeranylation of Rab GTPases. J Lipid Res. 2006;47:467–75.
Article
CAS
PubMed
Google Scholar
Elias M, Novotny M. cpRAS: a novel circularly permuted RAS-like GTPase domain with a highly scattered phylogenetic distribution. Biol Direct. 2008;3:21.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Dam TJP, Bos JL, Snel B. Evolution of the Ras-like small GTPases and their regulators. Small GTPases. 2011;2(1):4–16. https://doi.org/10.4161/sgtp.2.1.15113.
Article
PubMed
PubMed Central
Google Scholar
Ji W, Rivero F. Atypical Rho GTPases of the RhoBTB subfamily: roles in vesicle trafficking and tumorigenesis. Cells. 2016;5.
Whiteman LY, Marciano-Cabral F. Susceptibility of pathogenic and nonpathogenic Naegleria spp. to complement-mediated lysis. Infect Immun. 1987;55:2442–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu WN, Kopachik W, Band RN. Cloning and characterization of transcripts showing virulence-related gene expression in Naegleria fowleri. Infect Immun. 1992;60:2418–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sussman DJ, Lai EY, Fulton C. Rapid disappearance of translatable actin mRNA during cell differentiation in Naegleria. J Biol Chem. 1984;259(11):7355–60. https://doi.org/10.1016/S0021-9258(17)39879-4.
Article
CAS
PubMed
Google Scholar
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: the tail of a molecular gymnast. Cytoskeleton. 2013;70:360–84.
Article
CAS
PubMed
Google Scholar
Kayman SC, Clarke M. Relationship between axenic growth of Dictyostelium discoideum strains and their track morphology on substrates coated with gold particles. J Cell Biol. 1983;97(4):1001–10. https://doi.org/10.1083/jcb.97.4.1001.
Article
CAS
PubMed
Google Scholar
Sillo A, Bloomfield G, Balest A, Balbo A, Pergolizzi B, Peracino B, et al. Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BMC Genomics. 2008;9:291.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jamerson M, da Rocha-Azevedo B, Cabral GA, Marciano-Cabral F. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins. Microbiology. 2012;158(3):791–803. https://doi.org/10.1099/mic.0.055020-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang S-Y, Song K-J, Jeong S-R, Kim J-H, Park S, Kim K, et al. Role of the Nfa1 protein in pathogenic Naegleria fowleri cocultured with CHO target cells. Clin Vaccine Immunol. 2005;12:873–6.
Article
CAS
Google Scholar
Bexkens ML, Zimorski V, Sarink MJ, Wienk H, Brouwers JF, De Jonckheere JF, et al. Lipids are the preferred substrate of the protist Naegleria gruberi, relative of a human brain pathogen. Cell Rep. 2018;25:537–543.e3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65:1–105.
Article
CAS
PubMed
Google Scholar
Featherstone DE, Shippy SA. Regulation of synaptic transmission by ambient extracellular glutamate. Neuroscientist. 2008;14(2):171–81. https://doi.org/10.1177/1073858407308518.
Article
CAS
PubMed
Google Scholar
Holtze M, Mickiené A, Atlas A, Lindquist L, Schwieler L. Elevated cerebrospinal fluid kynurenic acid levels in patients with tick-borne encephalitis. J Intern Med. 2012;272:394–401.
Article
CAS
PubMed
Google Scholar
Opperdoes FR, De Jonckheere JF, Tielens AGM. Naegleria gruberi metabolism. Int J Parasitol. 2011;41:915–24.
Article
CAS
PubMed
Google Scholar
Colotti G, Ilari A. Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids. 2011;40(2):269–85. https://doi.org/10.1007/s00726-010-0630-3.
Article
CAS
PubMed
Google Scholar
Fairlamb AH, Cerami A. Metabolism and functions of trypanothione in the Kinetoplastea. Annu Rev Microbiol. 1992;46(1):695–729. https://doi.org/10.1146/annurev.mi.46.100192.003403.
Article
CAS
PubMed
Google Scholar
Ondarza RN, Hurtado G, Tamayo E, Iturbe A, Hernández E. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems. Exp Parasitol. 2006;114(3):141–6. https://doi.org/10.1016/j.exppara.2006.03.001.
Article
CAS
PubMed
Google Scholar
Steiger RF, Steiger E. Cultivation of Leishmania donovani and Leishmania braziliensis in defined media: nutritional requirements. J Protozool. 1977;24:437–41.
Article
CAS
PubMed
Google Scholar
Krassner SM, Flory B. Essential amino acids in the culture of Leishmania tarentolae. J Parasitol. 1971;57:917–20.
Article
CAS
PubMed
Google Scholar
de Jonckheere JF. Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infect Genet Evol. 2011;11(7):1520–8. https://doi.org/10.1016/j.meegid.2011.07.023.
Article
PubMed
Google Scholar
Miller HC, Wylie J, Dejean G, Kaksonen AH, Sutton D, Braun K, et al. Reduced efficiency of chlorine disinfection of Naegleria fowleri in a drinking water distribution biofilm. Environ Sci Technol. 2015;49(18):11125–31. https://doi.org/10.1021/acs.est.5b02947.
Article
CAS
PubMed
Google Scholar
Miller HC, Morgan MJ, Wylie JT, Kaksonen AH, Sutton D, Braun K, et al. Elimination of Naegleria fowleri from bulk water and biofilm in an operational drinking water distribution system. Water Res. 2017;110:15–26. https://doi.org/10.1016/j.watres.2016.11.061.
Article
CAS
PubMed
Google Scholar
Miller HC, Wylie JT, Kaksonen AH, Sutton D, Puzon GJ. Competition between Naegleria fowleri and free living amoeba colonizing laboratory scale and operational drinking water distribution systems. Environ Sci Technol. 2018;52:2549–57.
Article
CAS
PubMed
Google Scholar
Herman EK, Greninger AL, Visvesvara GS, Marciano-Cabral F, Dacks JB, Chiu CY. The mitochondrial genome and a 60-kb nuclear DNA segment from Naegleria fowleri, the causative agent of primary amoebic meningoencephalitis. J Eukaryot Microbiol. 2013;60(2):179–91. https://doi.org/10.1111/jeu.12022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. https://doi.org/10.1089/cmb.2012.0021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27(4):578–9. https://doi.org/10.1093/bioinformatics/btq683.
Article
CAS
PubMed
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM: arXiv e-prints; 2013. p. arXiv:1303.3997.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013.
Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010.
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. https://doi.org/10.1186/gb-2013-14-4-r36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5. https://doi.org/10.1038/nbt.1621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts A, Pimentel H, Trapnell C, Pachter L. Identification of novel transcripts in annotated genomes using RNA-seq. Bioinformatics. 2011;27:2325–9.
Article
CAS
PubMed
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512. https://doi.org/10.1038/nprot.2013.084.
Article
CAS
PubMed
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–78. https://doi.org/10.1038/nprot.2012.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey C. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12(1):323. http://www.biomedcentral.com/1471-2105/12/323. https://doi.org/10.1186/1471-2105-12-323.
Article
CAS
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32(suppl 2):W309–12. https://doi.org/10.1093/nar/gkh379.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19(suppl 2):ii215–25. https://doi.org/10.1093/bioinformatics/btg1080.
Article
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
PubMed
Google Scholar
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402. https://doi.org/10.1093/nar/25.17.3389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter DJ, Berney C, Strassert JFH, Burki F, de Vargas C. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotic life. bioRxiv. 2020:2020.06.30.180687. https://doi.org/10.1101/2020.06.30.180687.
Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996;241:779–86.
Article
CAS
PubMed
Google Scholar
Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300(4):1005–16. https://doi.org/10.1006/jmbi.2000.3903.
Article
CAS
PubMed
Google Scholar
Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35(suppl_2):W585–7. https://doi.org/10.1093/nar/gkm259.
Article
PubMed
PubMed Central
Google Scholar
Millar AH, Sweetlove LJ, Giegé P, Leaver CJ. Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol. 2001;127(4):1711–27. https://doi.org/10.1104/pp.010387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atteia A, Adrait A, Brugière S, Tardif M, van Lis R, Deusch O, et al. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol. 2009;26(7):1533–48. https://doi.org/10.1093/molbev/msp068.
Article
CAS
PubMed
Google Scholar
Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong S-E, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134(1):112–23. https://doi.org/10.1016/j.cell.2008.06.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith DGS, Gawryluk RMR, Spencer DF, Pearlman RE, Siu KWM, Gray MW. Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J Mol Biol. 2007;374(3):837–63. https://doi.org/10.1016/j.jmb.2007.09.051.
Article
CAS
PubMed
Google Scholar
Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A. 2003;100(23):13207–12. https://doi.org/10.1073/pnas.2135385100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jedelský PL, Doležal P, Rada P, Pyrih J, Smíd O, Hrdý I, et al. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One. 2011;6(2):e17285. https://doi.org/10.1371/journal.pone.0017285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A. 2009;106(51):21731–6. https://doi.org/10.1073/pnas.0907106106.
Article
PubMed
PubMed Central
Google Scholar
Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, et al. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol. 2011;41(13-14):1421–34. https://doi.org/10.1016/j.ijpara.2011.10.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. The Pfam protein families database. Nucleic Acids Res. 2004;32(Database issue):D138–41. https://doi.org/10.1093/nar/gkh121.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res. 1996;24:21–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol. 2013;30(4):772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
CAS
Google Scholar
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Procedings of the Gateway Computing Environments Workshop (GCE) 2010. New Orleans; 2010. p. 1–8.
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. https://doi.org/10.1038/nmeth.4285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 2015;43(Database issue):D257–60. https://doi.org/10.1093/nar/gku949.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43(Database issue):D222–6.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. https://doi.org/10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. 2015. http://mesquiteproject.org.
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest-HPC: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;6586(LNCS):177–84.
Google Scholar
Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25:2286–8. https://doi.org/10.1093/bioinformatics/btp368.
Article
CAS
PubMed
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42. https://doi.org/10.1093/sysbio/sys029.
Article
PubMed
PubMed Central
Google Scholar
Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35(3):543–8. https://doi.org/10.1093/molbev/msx319.
Article
CAS
PubMed
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2. https://doi.org/10.1093/bioinformatics/btv351.
Article
CAS
PubMed
Google Scholar
Li L, Stoeckert CJ, Roos DS. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 2003;13(9):2178–89. https://doi.org/10.1101/gr.1224503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen. J Mol Biol. 2001;305(3):567–80. https://doi.org/10.1006/jmbi.2000.4315.
Article
CAS
PubMed
Google Scholar
Sonnhammer EL, von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Sixth Int Conf Intell Syst Mol Biol. 1998;6:175–82.
CAS
Google Scholar
Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, et al. BioProject PRJNA643799-N. fowleri strain V212 Genomic sequence and predicted proteins. Genomics and transcriptomics yields a systems-level view of the biology of the pathogen Naegleria fowleri. 2021.
Google Scholar
Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, et al. BioProject PRJNA734907 -N. fowleri strain 986 Genomic sequence and predicted proteins. Genomics and transcriptomics yields a systems-level view of the biology of the pathogen Naegleria fowleri.
Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, et al. Genomes and predicted proteins of Naegleria fowleri strains CDC:V212, 986, and ATCC30863; 2021. https://doi.org/10.1101/2020.01.16.908186.
Book
Google Scholar
Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, et al. BioProject PRJNA647238 -LEE RNASeq Reads. A comparative ’omics approach to candidate pathogenicity factor discovery in the brain-eating amoeba Naegleria fowleri. 2021. https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA647238.
Google Scholar