Branstetter MG, Danforth BN, Pitts JP, Faircloth BC, Ward PS, Buffington ML, et al. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Curr Biol. 2017;27(7):1019–25. https://doi.org/10.1016/j.cub.2017.03.027.
Article
CAS
PubMed
Google Scholar
Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, et al. Evolutionary history of the Hymenoptera. Curr Biol. 2017;27(7):1013–8. https://doi.org/10.1016/j.cub.2017.01.027.
Article
CAS
PubMed
Google Scholar
Olmi M. A revision of the Dryinidae (Hymenoptera). Memoirs Am Entomol Inst. 1984;37:947–1913.
Google Scholar
Guglielmino A. Dryinidae (Hymenoptera Chrysidoidea): an interesting group among the natural enemies of the Auchenorrhyncha (Hemiptera). Denisia. 2002;4:549–56.
Google Scholar
Melo GA, Marcel MG, Garcete-Barrett BR. Origin and occurrence of predation among Hymenoptera: a phylogenetic perspective. In: Polidori C, editor. Predation in the Hymenoptera: an evolutionary perspective. Kerala: Transworld Research Network; 2011. p. 1–22.
Google Scholar
Xu Z, Olmi M, He J. Dryinidae of the oriental region (Hymenoptera: Chrysidoidea). Zootaxa. 2013;3614(1):1–460. https://doi.org/10.11646/zootaxa.3614.1.1.
Article
PubMed
Google Scholar
Tian JC, Romeis J, Liu K, Zhang FC, Zheng XS, Xu HX, et al. Assessing the effects of Cry1C rice and Cry2A rice to Pseudogonatopus flavifemur, a parasitoid of rice planthoppers. Sci Rep. 2017;7(1):7838. https://doi.org/10.1038/s41598-017-08173-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
He J, He Y, Lai F, Chen X, Fu Q. Biological traits of the pincer wasp Gonatopus flavifemur (Esaki & Hashimoto) associated with different stages of its host, the brown planthopper, Nilaparvata lugens (Stål). Insects. 2020;11(5):279. https://doi.org/10.3390/insects11050279.
Article
PubMed Central
Google Scholar
Mora-Kepfer F, Espinoza AM. Parasitism and predation of the planthopper Tagosodes orizicolus (Homoptera: Delphacidae) by a dryinid parasitoid in Costa Rica. Rev Biol Trop. 2009;57(Suppl 1):203–11.
Google Scholar
Uy FMK, Espinoza AM. Differential host handling behavior between feeding and oviposition in the parasitic wasp Haplogonatopus hernandezae. J Insect Behav. 2018;31(5):569–84. https://doi.org/10.1007/s10905-018-9699-4.
Article
Google Scholar
Wheeler D, Redding AJ, Werren JH. Characterization of an ancient Lepidopteran lateral gene transfer. PLOS One. 2013;8(3):e59262. https://doi.org/10.1371/journal.pone.0059262.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poynton HC, Hasenbein S, Benoit JB, Sepulveda MS, Poelchau MF, Hughes DST, et al. The toxicogenome of Hyalella azteca: a model for sediment ecotoxicology and evolutionary toxicology. Environ Sci Technol. 2018;52(10):6009–22. https://doi.org/10.1021/acs.est.8b00837.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye XH, Yan ZC, Yang Y, Xiao S, Chen LF, Wang JL, et al. A chromosome-level genome assembly of the parasitoid wasp Pteromalus puparum. Mol Ecol Resour. 2020;20(5):1384–402. https://doi.org/10.1111/1755-0998.13206.
Article
CAS
PubMed
Google Scholar
Lindsey ARI, Kelkar YD, Wu X, Sun D, Martinson EO, Yan Z, et al. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biol. 2018;16(1):54. https://doi.org/10.1186/s12915-018-0520-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olafson PU, Aksoy S, Attardo GM, Buckmeier G, Chen X, Coates CJ, et al. The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biol. 2021;19(1):41. https://doi.org/10.1186/s12915-021-00975-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421. https://doi.org/10.1186/1471-2105-10-421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014;42(D1):D206–14. https://doi.org/10.1093/nar/gkt1226.
Article
CAS
PubMed
Google Scholar
Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34(8):2115–22. https://doi.org/10.1093/molbev/msx148.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cabanettes F, Klopp C. D-GENIES: dot plot large genomes in an interactive, efficient and simple way. PeerJ. 2018;6:e4958. https://doi.org/10.7717/peerj.4958.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238. https://doi.org/10.1186/s13059-019-1832-y.
Article
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3. https://doi.org/10.1093/bioinformatics/btp348.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. https://doi.org/10.1093/molbev/msaa015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. https://doi.org/10.1038/nmeth.4285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–22. https://doi.org/10.1093/molbev/msx281.
Article
CAS
PubMed
Google Scholar
Darby AC, Choi JH, Wilkes T, Hughes MA, Werren JH, Hurst GDD, et al. Characteristics of the genome of Arsenophonus nasoniae, son-killer bacterium of the wasp Nasonia. Insect Mol Biol. 2010;19:75–89. https://doi.org/10.1111/j.1365-2583.2009.00950.x.
Article
CAS
PubMed
Google Scholar
Wallberg A, Bunikis I, Pettersson OV, Mosbech MB, Childers AK, Evans JD, et al. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genomics. 2019;20(1):275. https://doi.org/10.1186/s12864-019-5642-0.
Article
PubMed
PubMed Central
Google Scholar
Gokhman VE. Karyotypes of parasitic Hymenoptera. Dordrecht: Springer Netherlands; 2009. https://doi.org/10.1007/978-1-4020-9807-9.
Book
Google Scholar
Branstetter M, Childers AK, Cox-Foster D, Hopper KR, Kapheim KM, Toth AL, et al. Genomes of the Hymenoptera. Curr Opin Insect Sci. 2018;25:65–75. https://doi.org/10.1016/j.cois.2017.11.008.
Article
PubMed
Google Scholar
Petersen M, Armisén D, Gibbs RA, Hering L, Khila A, Mayer G, et al. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Evol Biol. 2019;19(1):11. https://doi.org/10.1186/s12862-018-1324-9.
Article
PubMed
PubMed Central
Google Scholar
Brand P, Saleh N, Pan H, Li C, Kapheim KM, Ramírez SR. The nuclear and mitochondrial genomes of the facultatively eusocial orchid Bee Euglossa dilemma. G3 (Bethesda). 2017;7:2891–8.
Article
CAS
Google Scholar
Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, et al. The locust genome provides insight into swarm formation and long-distance flight. Nat Commun. 2014;5(1):2957. https://doi.org/10.1038/ncomms3957.
Article
CAS
PubMed
Google Scholar
Sun C, Huang J, Wang Y, Zhao X, Su L, Thomas GWC, et al. Genus-wide characterization of bumblebee genomes provides insights into their evolution and variation in ecological and behavioral traits. Mol Biol Evol. 2020;38:486–501.
Article
CAS
PubMed Central
Google Scholar
Wu C, Lu J. Diversification of transposable elements in arthropods and its impact on genome evolution. Genes. 2019;10(5):338. https://doi.org/10.3390/genes10050338.
Article
CAS
PubMed Central
Google Scholar
Oeyen JP, Baa-Puyoulet P, Benoit JB, Beukeboom LW, Bornberg-Bauer E, Buttstedt A, et al. Sawfly genomes reveal evolutionary acquisitions that fostered the mega-radiation of parasitoid and eusocial Hymenoptera. Genome Biol Evol. 2020;12(7):1099–188. https://doi.org/10.1093/gbe/evaa106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kraaijeveld K, Neleman P, Mariën J, de Meijer E, Ellers J. Genomic resources for Goniozus legneri, Aleochara bilineata and Paykullia maculata, representing three independent origins of the parasitoid lifestyle in insects. G3 (Bethesda). 2019;9:987–91.
Article
CAS
Google Scholar
Rhooms S-K, Murari A, Goparaju NS, Vilanueva M, Owusu-Ansah E. Insights from Drosophila on mitochondrial complex I. Cell Mol Life Sci. 2020;77(4):607–18. https://doi.org/10.1007/s00018-019-03293-0.
Article
CAS
PubMed
Google Scholar
Matsushima Y, Adán C, Garesse R, Kaguni LS. Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells. J Biol Chem. 2005;280(17):16815–20. https://doi.org/10.1074/jbc.M500569200.
Article
CAS
PubMed
Google Scholar
Grover R, Burse SA, Shankrit S, Aggarwal A, Kirty K, Narta K, et al. Myg1 exonuclease couples the nuclear and mitochondrial translational programs through RNA processing. Nucleic Acids Res. 2019;47(11):5852–66. https://doi.org/10.1093/nar/gkz371.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies SMK, Rackham O, Shearwood A-MJ, Hamilton KL, Narsai R, Whelan J, et al. Pentatricopeptide repeat domain protein 3 associates with the mitochondrial small ribosomal subunit and regulates translation. FEBS Lett. 2009;583(12):1853–8. https://doi.org/10.1016/j.febslet.2009.04.048.
Article
CAS
PubMed
Google Scholar
Senetar MA, McCann RO. Gene duplication and functional divergence during evolution of the cytoskeletal linker protein talin. Gene. 2005;362:141–52. https://doi.org/10.1016/j.gene.2005.08.012.
Article
CAS
PubMed
Google Scholar
Jin S, Pan L, Liu Z, Wang Q, Xu Z, Zhang YQ. Drosophila Tubulin-specific chaperone E functions at neuromuscular synapses and is required for microtubule network formation. Development. 2009;136(9):1571–81. https://doi.org/10.1242/dev.029983.
Article
CAS
PubMed
Google Scholar
Hashimoto R, Yamaguchi M. Genetic link between β-sarcoglycan and the Egfr signaling pathway. Biochem Biophys Res Commun. 2006;348(1):212–21. https://doi.org/10.1016/j.bbrc.2006.07.045.
Article
CAS
PubMed
Google Scholar
Pérez-Brangulí F, Mishra HK, Prots I, Havlicek S, Kohl Z, Saul D, et al. Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet. 2014;23(18):4859–74. https://doi.org/10.1093/hmg/ddu200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takayama Y, Itoh RE, Tsuyama T, Uemura T. Age-dependent deterioration of locomotion in Drosophila melanogaster deficient in the homologue of amyotrophic lateral sclerosis 2. Genes Cells Devoted Mol Cell Mech. 2014;19(6):464–77. https://doi.org/10.1111/gtc.12146.
Article
CAS
Google Scholar
Wang D, Zhang L, Zhao G, Wahlström G, Heino TI, Chen J, et al. Drosophila twinfilin is required for cell migration and synaptic endocytosis. J Cell Sci. 2010;123(9):1546–56. https://doi.org/10.1242/jcs.060251.
Article
CAS
PubMed
Google Scholar
Wahlström G, Vartiainen M, Yamamoto L, Mattila PK, Lappalainen P, Heino TI. Twinfilin is required for actin-dependent developmental processes in Drosophila. J Cell Biol. 2001;155(5):787–96. https://doi.org/10.1083/jcb.200108022.
Article
PubMed
PubMed Central
Google Scholar
Nambu JR, Lewis JO, Wharton KA, Crews ST. The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell. 1991;67(6):1157–67. https://doi.org/10.1016/0092-8674(91)90292-7.
Article
CAS
PubMed
Google Scholar
Sarot E, Payen-Groschêne G, Bucheton A, Pélisson A. Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics. 2004;166(3):1313–21. https://doi.org/10.1534/genetics.166.3.1313.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomson T, Lin H. The biogenesis and function PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol. 2009;25(1):355–76. https://doi.org/10.1146/annurev.cellbio.24.110707.175327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ku HY, Lin H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev. 2014;1(2):205–18. https://doi.org/10.1093/nsr/nwu014.
Article
CAS
PubMed
Google Scholar
Sun YH, Xie LH, Zhuo X, Chen Q, Ghoneim D, Zhang B, et al. Domestic chickens activate a piRNA defense against avian leukosis virus. eLife. 2017;6:e24695. https://doi.org/10.7554/eLife.24695.
Article
PubMed
PubMed Central
Google Scholar
Floyd BJ, Wilkerson EM, Veling MT, Minogue CE, Xia C, Beebe ET, et al. Mitochondrial protein interaction mapping identifies new regulators of respiratory chain function. Mol Cell. 2016;63(4):621–32. https://doi.org/10.1016/j.molcel.2016.06.033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shao J, Welch WJ, DiProspero NA, Diamond MI. Phosphorylation of profilin by ROCK1 regulates polyglutamine aggregation. Mol Cell Biol. 2008;28(17):5196–208. https://doi.org/10.1128/MCB.00079-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacPherson MR, Lohmann SM, Davies SA. Analysis of Drosophila cGMP-dependent protein kinases and assessment of their in vivo roles by targeted expression in a renal transporting epithelium. J Biol Chem. 2004;279(38):40026–34. https://doi.org/10.1074/jbc.M405619200.
Article
CAS
PubMed
Google Scholar
de la Cruz IP, Levin JZ, Cummins C, Anderson P, Horvitz HR. sup-9, sup-10, and unc-93 may encode components of a two-pore K+ channel that coordinates muscle contraction in Caenorhabditis elegans. J Neurosci. 2003;23(27):9133–45. https://doi.org/10.1523/JNEUROSCI.23-27-09133.2003.
Article
PubMed
PubMed Central
Google Scholar
Tussié-Luna MI, Bayarsaihan D, Ruddle FH, Roy AL. Repression of TFII-I-dependent transcription by nuclear exclusion. Proc Natl Acad Sci U S A. 2001;98(14):7789–94. https://doi.org/10.1073/pnas.141222298.
Article
PubMed
PubMed Central
Google Scholar
Martinson EO, Wheeler D, Wright J, Mrinalini, Siebert AL, Werren JH. Nasonia vitripennis venom causes targeted gene expression changes in its fly host. Mol Ecol. 2014;23(23):5918–30. https://doi.org/10.1111/mec.12967.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mrinalini, Siebert AL, Wright J, Martinson E, Wheeler D, Werren JH. Parasitoid venom induces metabolic cascades in fly hosts. Metabolomics. 2015;11:350–66.
Article
CAS
PubMed
Google Scholar
Rivers DB, Denlinger DL. Redirection of metabolism in the flesh fly, Sarcophaga bullata, following envenomation by the ectoparasitoid Nasonia vitripennis and correlation of metabolic effects with the diapause status of the host. J Insect Physiol. 1994;40(3):207–15. https://doi.org/10.1016/0022-1910(94)90044-2.
Article
CAS
Google Scholar
Martinson EO, Mrinalini, Kelkar YD, Chang CH, Werren JH. The evolution of venom by co-option of single-copy genes. Curr Biol. 2017;27(13):2007–13. https://doi.org/10.1016/j.cub.2017.05.032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreau SJM, Asgari S. Venom proteins from parasitoid wasps and their biological functions. Toxins. 2015;7(7):2385–412. https://doi.org/10.3390/toxins7072385.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28(4):219–29. https://doi.org/10.1016/j.tree.2012.10.020.
Article
PubMed
Google Scholar
Walker AA, Robinson SD, Yeates DK, Jin J, Baumann K, Dobson J, et al. Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon. 2018;154:15–27. https://doi.org/10.1016/j.toxicon.2018.09.004.
Article
CAS
PubMed
Google Scholar
Kote S, Faktor J, Dapic I, Mayordomo MY, Kocikowski M, Kagansky A, et al. Analysis of venom sac constituents from the solitary, aculeate wasp Cerceris rybyensis. Toxicon. 2019;169:1–4. https://doi.org/10.1016/j.toxicon.2019.07.012.
Article
CAS
PubMed
Google Scholar
Robinson SD, Mueller A, Clayton D, Starobova H, Hamilton BR, Payne RJ, et al. A comprehensive portrait of the venom of the giant red bull ant, Myrmecia gulosa, reveals a hyperdiverse hymenopteran toxin gene family. Sci Adv. 2018;4:eaau4640.
Article
PubMed
PubMed Central
Google Scholar
de Graaf DC, Aerts M, Brunain M, Desjardins CA, Jacobs FJ, Werren JH, et al. Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Mol Biol. 2010;19(Suppl 1):11–26. https://doi.org/10.1111/j.1365-2583.2009.00914.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan Z, Fang Q, Wang L, Liu J, Zhu Y, Wang F, et al. Insights into the venom composition and evolution of an endoparasitoid wasp by combining proteomic and transcriptomic analyses. Sci Rep. 2016;6(1):19604. https://doi.org/10.1038/srep19604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang L, Yang Y, Liu MM, Yan ZC, Qiu LM, Fang Q, et al. Identification and comparative analysis of venom proteins in a pupal ectoparasitoid, Pachycrepoideus vindemmiae. Front Physiol. 2020;11:9. https://doi.org/10.3389/fphys.2020.00009.
Article
PubMed
PubMed Central
Google Scholar
Yoon KA, Kim K, Kim WJ, Bang WY, Ahn NH, Bae CH, et al. Characterization of venom components and their phylogenetic properties in some Aculeate bumblebees and wasps. Toxins. 2020;12(1):47. https://doi.org/10.3390/toxins12010047.
Article
CAS
PubMed Central
Google Scholar
Wan B, Poirie M, Gatti JL. Parasitoid wasp venom vesicles (venosomes) enter Drosophila melanogaster lamellocytes through a flotillin/lipid raft-dependent endocytic pathway. Virulence. 2020;11(1):1512–21. https://doi.org/10.1080/21505594.2020.1838116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinson EO, Martinson VG, Edwards R, Mrinalini M, Werren JH. Laterally transferred gene recruited as a venom in parasitoid wasps. Mol Biol Evol. 2016;33(4):1042–52. https://doi.org/10.1093/molbev/msv348.
Article
CAS
PubMed
Google Scholar
Sitnik JL, Francis C, Hens K, Huybrechts R, Wolfner MF, Callaerts P. Neprilysins: An evolutionarily conserved family of metalloproteases that play important roles in reproduction in Drosophila. Genetics. 2014;196(3):781–97. https://doi.org/10.1534/genetics.113.160945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Zhou Y, Liu D, Wang Q, Ruan Z, He Q, et al. Global transcriptome analysis of the tentacle of the jellyfish Cyanea capillata using deep sequencing and expressed sequence tags: insight into the toxin- and degenerative disease-related transcripts. PLoS One. 2015;10(11):e0142680. https://doi.org/10.1371/journal.pone.0142680.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arvidson R, Kaiser M, Pan S, Libersat F, Adams ME. Bioinformatic and functional analysis of venom from the jewel wasp Ampulex compressa. FASEB J. 2016;30:819.1.
Google Scholar
Tan KY, Tan CH, Chanhome L, Tan NH. Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: elucidating geographical venom variation and insights into sequence novelty. PeerJ. 2017;5:e3142. https://doi.org/10.7717/peerj.3142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arvidson R, Kaiser M, Lee SS, Urenda JP, Dail C, Mohammed H, et al. Parasitoid jewel wasp mounts multipronged neurochemical attack to hijack a host brain. Mol Cell Proteomics. 2019;18(1):99–114. https://doi.org/10.1074/mcp.RA118.000908.
Article
CAS
PubMed
Google Scholar
Zobel-Thropp PA, Mullins J, Kristensen C, Kronmiller BA, David CL, Breci LA, et al. Not so dangerous after all? Venom composition and potency of the pholcid (daddy long-leg) spider Physocyclus mexicanus. Front Ecol Evol. 2019;7:256. https://doi.org/10.3389/fevo.2019.00256.
Article
PubMed
PubMed Central
Google Scholar
Turner AJ, Isaac RE, Coates D. The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays. 2001;23(3):261–9. https://doi.org/10.1002/1521-1878(200103)23:3<261::AID-BIES1036>3.0.CO;2-K.
Article
CAS
PubMed
Google Scholar
Ellsworth SA, Nystrom GS, Ward MJ, Freitas de Sousa LA, Hogan MP, Rokyta DR. Convergent recruitment of adamalysin-like metalloproteases in the venom of the red bark centipede (Scolopocryptops sexspinosus). Toxicon. 2019;168:1–15.
Article
CAS
PubMed
Google Scholar
Park SY, Kim CH, Jeong WH, Lee JH, Seo SJ, Han YS, et al. Effects of two hemolymph proteins on humoral defense reactions in the wax moth, Galleria mellonella. Dev Comp Immunol. 2005;29(1):43–51. https://doi.org/10.1016/j.dci.2004.06.001.
Article
CAS
PubMed
Google Scholar
Xue J, Zhou X, Zhang CX, Yu LL, Fan HW, Wang Z, et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol. 2014;15(12):521. https://doi.org/10.1186/s13059-014-0521-0.
Article
PubMed
PubMed Central
Google Scholar
Xi Y, Pan PL, Ye YX, Yu B, Xu HJ, Zhang CX. Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Mol Biol. 2015;24(1):29–40. https://doi.org/10.1111/imb.12133.
Article
CAS
PubMed
Google Scholar
Nakabachi A, Shigenobu S, Miyagishima S. Chitinase-like proteins encoded in the genome of the pea aphid, Acyrthosiphon pisum. Insect Mol Biol. 2010;19(Suppl 2):175–85. https://doi.org/10.1111/j.1365-2583.2009.00985.x.
Article
CAS
PubMed
Google Scholar
Zhang J, Zhang X, Arakane Y, Muthukrishnan S, Kramer KJ, Ma E, et al. Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae). PLOS One. 2011;6(5):e19899. https://doi.org/10.1371/journal.pone.0019899.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Q, Deng Y, Vanka P, Brown SJ, Muthukrishnan S, Kramer KJ. Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome. Bioinformatics. 2004;20(2):161–9. https://doi.org/10.1093/bioinformatics/bth020.
Article
CAS
PubMed
Google Scholar
Pan Y, Lü P, Wang Y, Yin L, Ma H, Ma G, et al. In silico identification of novel chitinase-like proteins in the silkworm, Bombyx mori, genome. J Insect Sci. 2012;12:150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arakane Y, Muthukrishnan S. Insect chitinase and chitinase-like proteins. Cell Mol Life Sci. 2010;67(2):201–16. https://doi.org/10.1007/s00018-009-0161-9.
Article
CAS
PubMed
Google Scholar
Vincent B, Kaeslin M, Roth T, Heller M, Poulain J, Cousserans F, et al. The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach. BMC Genomics. 2010;11(1):693. https://doi.org/10.1186/1471-2164-11-693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Z, Wang RJ, Cheng Y, Du J, Volovych O, Han LB, et al. Insights into the venom protein components of Microplitis mediator, an endoparasitoid wasp. Insect Biochem Mol Biol. 2019;105:33–42. https://doi.org/10.1016/j.ibmb.2018.12.013.
Article
CAS
PubMed
Google Scholar
Chen XX, van Achterberg C. Systematics, phylogeny, and evolution of Braconid wasps: 30 years of progress. Annu Rev Entomol. 2019;64(1):335–58. https://doi.org/10.1146/annurev-ento-011118-111856.
Article
CAS
PubMed
Google Scholar
Roy SG, Raikhel AS. Nutritional and hormonal regulation of the TOR effector 4E-binding protein (4E-BP) in the mosquito Aedes aegypti. Faseb J. 2012;26(3):1334–42. https://doi.org/10.1096/fj.11-189969.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferguson LC, Green J, Surridge A, Jiggins CD. Evolution of the insect yellow gene family. Mol Biol Evol. 2011;28(1):257–72. https://doi.org/10.1093/molbev/msq192.
Article
CAS
PubMed
Google Scholar
Drapeau MD, Albert S, Kucharski R, Prusko C, Maleszka R. Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Res. 2006;16(11):1385–94. https://doi.org/10.1101/gr.5012006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claycomb JM, Benasutti M, Bosco G, Fenger DD, Orr-Weaver TL. Gene amplification as a developmental strategy: isolation of two developmental amplicons in Drosophila. Dev Cell. 2004;6(1):145–55. https://doi.org/10.1016/S1534-5807(03)00398-8.
Article
CAS
PubMed
Google Scholar
Noh MY, Kim SH, Gorman MJ, Kramer KJ, Muthukrishnan S, Arakane Y. Yellow-g and Yellow-g2 proteins are required for egg desiccation resistance and temporal pigmentation in the Asian tiger mosquito, Aedes albopictus. Insect Biochem Mol Biol. 2020;122:103386. https://doi.org/10.1016/j.ibmb.2020.103386.
Article
CAS
PubMed
Google Scholar
Xia AH, Zhou QX, Yu LL, Li WG, Yi YZ, Zhang YZ, et al. Identification and analysis of YELLOW protein family genes in the silkworm, Bombyx mori. BMC Genomics. 2006;7(1):195. https://doi.org/10.1186/1471-2164-7-195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feuda R, Marlétaz F, Bentley MA, Holland PWH. Conservation, duplication, and divergence of five opsin genes in insect evolution. Genome Biol Evol. 2016;8(3):579–87. https://doi.org/10.1093/gbe/evw015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merzendorfer H. Insect-derived chitinases. In: Vilcinskas A, editor. Yellow biotechnology II: Insect biotechnology in plant protection and industry. Berlin, Heidelberg: Springer; 2013. p. 19–50. https://doi.org/10.1007/10_2013_207.
Chapter
Google Scholar
Zhao Y, Li Z, Gu X, Su Y, Liu L. Imaginal disc growth factor 6 (Idgf6) is involved in larval and adult wing development in Bactrocera correcta (Bezzi) (Diptera: Tephritidae). Front Genet. 2020;11:451. https://doi.org/10.3389/fgene.2020.00451.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uraki R, Hastings AK, Brackney DE, Armstrong PM, Fikrig E. AgBR1 antibodies delay lethal Aedes aegypti-borne West Nile virus infection in mice. NPJ Vaccines. 2019;4(1):23. https://doi.org/10.1038/s41541-019-0120-x.
Article
PubMed
PubMed Central
Google Scholar
Isaac RE. Neuropeptide-degrading endopeptidase activity of locust (Schistocerca gregaria) synaptic membranes. Biochem J. 1988;255(3):843–7. https://doi.org/10.1042/bj2550843.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gordh G, Legner EF, Caltagirone LE. CHAPTER 15 - Biology of parasitic Hymenoptera. In: Bellows TS, Fisher TW, editors. Handbook of biological control. San Diego: Academic; 1999. p. 355–81. https://doi.org/10.1016/B978-012257305-7/50062-X.
Chapter
Google Scholar
Barrón MG, Fiston-Lavier AS, Petrov DA, González J. Population genomics of transposable elements in Drosophila. Annu Rev Genet. 2014;48(1):561–81. https://doi.org/10.1146/annurev-genet-120213-092359.
Article
CAS
PubMed
Google Scholar
Burns KH, Boeke JD. Human transposon tectonics. Cell. 2012;149(4):740–52. https://doi.org/10.1016/j.cell.2012.04.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet. 2008;9(5):397–405. https://doi.org/10.1038/nrg2337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Böhne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff JN. Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res. 2008;16(1):203–15. https://doi.org/10.1007/s10577-007-1202-6.
Article
CAS
PubMed
Google Scholar
González J, Karasov TL, Messer PW, Petrov DA. Genome-wide patterns of adaptation to temperate environments associated with transposable elements in Drosophila. PLoS Genet. 2010;6(4):e1000905. https://doi.org/10.1371/journal.pgen.1000905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim YB, Oh JH, McIver LJ, Rashkovetsky E, Michalak K, Garner HR, et al. Divergence of Drosophila melanogaster repeatomes in response to a sharp microclimate contrast in Evolution Canyon, Israel. Proc Natl Acad Sci U S A. 2014;111(29):10630–5. https://doi.org/10.1073/pnas.1410372111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert C, Peccoud J, Cordaux R. Transposable elements and the evolution of insects. Annu Rev Entomol. 2021;66(1):355–72. https://doi.org/10.1146/annurev-ento-070720-074650.
Article
CAS
PubMed
Google Scholar
Dang C, Sun C, Lu Z, Zhong F, Wang F, Wang Q, et al. Cry2A rice did not affect the interspecific interactions between two rice planthoppers, Nilaparvata lugens, and Sogatella furcifera. GM Crops Food. 2019;10(3):170–80. https://doi.org/10.1080/21645698.2019.1649530.
Article
PubMed
PubMed Central
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. https://doi.org/10.1093/bioinformatics/bty560.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 2017;33(14):2202–4. https://doi.org/10.1093/bioinformatics/btx153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764–70. https://doi.org/10.1093/bioinformatics/btr011.
Article
CAS
PubMed
PubMed Central
Google Scholar
He K, Lin K, Wang G, Li F. Genome sizes of nine insect species determined by flow cytometry and k-mer analysis. Front Physiol. 2016;7:569.
PubMed
PubMed Central
Google Scholar
Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020;17(2):155–8. https://doi.org/10.1038/s41592-019-0669-3.
Article
CAS
PubMed
Google Scholar
Hu J, Fan J, Sun Z, Liu S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics. 2020;36(7):2253–5. https://doi.org/10.1093/bioinformatics/btz891.
Article
CAS
PubMed
Google Scholar
Seppey M, Manni M, Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness. Methods Mol Biol Clifton NJ. 1962;2019:227–45.
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15. https://doi.org/10.1038/s41587-019-0201-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5. https://doi.org/10.1038/nbt.3122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. https://doi.org/10.1186/1471-2105-12-323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 2019;20(1):275. https://doi.org/10.1186/s13059-019-1905-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35(Suppl 2):W265–8. https://doi.org/10.1093/nar/gkm286.
Article
PubMed
PubMed Central
Google Scholar
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008;9(1):18. https://doi.org/10.1186/1471-2105-9-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ou S, Jiang N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 2018;176(2):1410–22. https://doi.org/10.1104/pp.17.01310.
Article
CAS
PubMed
Google Scholar
Su W, Gu X, Peterson T. TIR-Learner, a new ensemble method for TIR transposable element annotation, provides evidence for abundant new transposable elements in the maize genome. Mol Plant. 2019;12(3):447–60. https://doi.org/10.1016/j.molp.2019.02.008.
Article
CAS
PubMed
Google Scholar
Xiong W, He L, Lai J, Dooner HK, Du C. HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proc Natl Acad Sci U S A. 2014;111(28):10263–8. https://doi.org/10.1073/pnas.1410068111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A. 2020;117(17):9451–7. https://doi.org/10.1073/pnas.1921046117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinforma. 2009;25:4.10.1–4.10.14.
Article
Google Scholar
Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6(1):11. https://doi.org/10.1186/s13100-015-0041-9.
Article
PubMed
PubMed Central
Google Scholar
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80. https://doi.org/10.1093/nar/27.2.573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9(1):R7. https://doi.org/10.1186/gb-2008-9-1-r7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33(Suppl 2):W465–7. https://doi.org/10.1093/nar/gki458.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5(1):59. https://doi.org/10.1186/1471-2105-5-59.
Article
PubMed
PubMed Central
Google Scholar
Gremme G, Brendel V, Sparks ME, Kurtz S. Engineering a software tool for gene structure prediction in higher organisms. Inf Softw Technol. 2005;47(15):965–78. https://doi.org/10.1016/j.infsof.2005.09.005.
Article
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6. https://doi.org/10.1093/bioinformatics/bti610.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428(4):726–31. https://doi.org/10.1016/j.jmb.2015.11.006.
Article
CAS
PubMed
Google Scholar
Ye XH, Yang Y, Tian Z, Xu L, Yu KL, Xiao S, et al. A high-quality de novo genome assembly from a single parasitoid wasp. 2020. Preprint at https://www.biorxiv.org/content/10.1101/2020.07.13.200725v1.
Rago A, Gilbert DG, Choi J-H, Sackton TB, Wang X, Kelkar YD, et al. OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis. BMC Genomics. 2016;17(1):678. https://doi.org/10.1186/s12864-016-2886-9.
Article
PubMed
PubMed Central
Google Scholar
Gatesy J, Baker RH. Hidden likelihood support in genomic data: can forty-five wrongs make a right? Syst Biol. 2005;54(3):483–92. https://doi.org/10.1080/10635150590945368.
Article
PubMed
Google Scholar
Kubatko LS, Degnan JH. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol. 2007;56(1):17–24. https://doi.org/10.1080/10635150601146041.
Article
CAS
PubMed
Google Scholar
Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics. 2018;19(S6):153. https://doi.org/10.1186/s12859-018-2129-y.
Article
PubMed
PubMed Central
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91. https://doi.org/10.1093/molbev/msm088.
Article
CAS
PubMed
Google Scholar
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35(3):526–8. https://doi.org/10.1093/bioinformatics/bty633.
Article
CAS
PubMed
Google Scholar
Pond SLK, Frost SDW, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21(5):676–9. https://doi.org/10.1093/bioinformatics/bti079.
Article
CAS
PubMed
Google Scholar
Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol. 2015;32(5):1342–53. https://doi.org/10.1093/molbev/msv022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol. 2013;30(8):1987–97. https://doi.org/10.1093/molbev/mst100.
Article
CAS
PubMed
Google Scholar
Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420–3. https://doi.org/10.1038/s41587-019-0036-z.
Article
CAS
PubMed
Google Scholar
Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics. 2010;11(1):431. https://doi.org/10.1186/1471-2105-11-431.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427–32. https://doi.org/10.1093/nar/gky995.
Article
CAS
PubMed
Google Scholar
Zhu Q, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S. Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem Mol Biol. 2008;38(4):452–66. https://doi.org/10.1016/j.ibmb.2007.06.010.
Article
CAS
PubMed
Google Scholar
Crawford AM, Brauning R, Smolenski G, Ferguson C, Barton D, Wheeler TT, et al. The constituents of Microctonus sp. parasitoid venoms. Insect Mol Biol. 2008;17(3):313–24. https://doi.org/10.1111/j.1365-2583.2008.00802.x.
Article
CAS
PubMed
Google Scholar
Colinet D, Deleury E, Anselme C, Cazes D, Poulain J, Azema-Dossat C, et al. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem Mol Biol. 2013;43(7):601–11. https://doi.org/10.1016/j.ibmb.2013.03.010.
Article
CAS
PubMed
Google Scholar
Dorémus T, Urbach S, Jouan V, Cousserans F, Ravallec M, Demettre E, et al. Venom gland extract is not required for successful parasitism in the polydnavirus-associated endoparasitoid Hyposoter didymator (Hym. Ichneumonidae) despite the presence of numerous novel and conserved venom proteins. Insect Biochem Mol Biol. 2013;43(3):292–307. https://doi.org/10.1016/j.ibmb.2012.12.010.
Article
CAS
PubMed
Google Scholar
Burke GR, Strand MR. Systematic analysis of a wasp parasitism arsenal. Mol Ecol. 2014;23(4):890–901. https://doi.org/10.1111/mec.12648.
Article
PubMed
PubMed Central
Google Scholar
Colinet D, Anselme C, Deleury E, Mancini D, Poulain J, Azéma-Dossat C, et al. Identification of the main venom protein components of Aphidius ervi, a parasitoid wasp of the aphid model Acyrthosiphon pisum. BMC Genomics. 2014;15(1):342. https://doi.org/10.1186/1471-2164-15-342.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teng ZW, Xiong SJ, Xu G, Gan SY, Chen X, Stanley D, et al. Protein discovery: Combined transcriptomic and proteomic analyses of venom from the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae). Toxins. 2017;9(4):135. https://doi.org/10.3390/toxins9040135.
Article
CAS
PubMed Central
Google Scholar
Li LF, Xu ZW, Liu NY, Wu GX, Ren XM, Zhu JY. Parasitism and venom of ectoparasitoid Scleroderma guani impairs host cellular immunity. Arch Insect Biochem Physiol. 2018;98(2):e21451. https://doi.org/10.1002/arch.21451.
Article
CAS
PubMed
Google Scholar
Tang BZ, Meng E, Zhang HJ, Zhang XM, Asgari S, Lin YP, et al. Combination of label-free quantitative proteomics and transcriptomics reveals intraspecific venom variation between the two strains of Tetrastichus brontispae, a parasitoid of two invasive beetles. J Proteomics. 2019;192:37–53. https://doi.org/10.1016/j.jprot.2018.08.003.
Article
CAS
PubMed
Google Scholar
Alvarado G, Holland SR, DePerez-Rasmussen J, Jarvis BA, Telander T, Wagner N, et al. Bioinformatic analysis suggests potential mechanisms underlying parasitoid venom evolution and function. Genomics. 2020;112(2):1096–104. https://doi.org/10.1016/j.ygeno.2019.06.022.
Article
CAS
PubMed
Google Scholar
Klopfenstein DV, Zhang L, Pedersen BS, Ramírez F, Warwick Vesztrocy A, Naldi A, et al. GOATOOLS: A Python library for Gene Ontology analyses. Sci Rep. 2018;8(1):10872. https://doi.org/10.1038/s41598-018-28948-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Ye XH, Dang C, Cao YS, Hong, R, Sun HY, et al. Gonatopus flavifemur, genome sequencing and assembly. BioProject. 2021. https://identifiers.org/ncbi/bioproject:PRJNA695321.
Yang Y. Gonatopus flavifemur isolate zju, whole genome shotgun sequencing project. 2021. GenBank https://identifiers.org/ncbi/insdc:JAFFJZ000000000.
Yang Y, Ye XH, Dang C, Cao YS, Hong R, Sun Y, et al. Gonatopus flavifemur, genome sequencing and assembly. 2021. InsectBase http://insect-genome.com/Gfla.