Pereira M, Petretto E, Gordon S, Bassett JHD, Williams GR, Behmoaras J. Common signalling pathways in macrophage and osteoclast multinucleation. J Cell Sci. 2018;131(11) https://doi.org/10.1242/jcs.216267.
Feng X, Teitelbaum SL. Osteoclasts: new insights. Bone Res. 2013;1:11–26. https://doi.org/10.4248/BR201301003.
Article
CAS
PubMed
Google Scholar
Jacome-Galarza CE, Percin GI, Muller JT, Mass E, Lazarov T, Eitler J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568:541–5. https://doi.org/10.1038/s41586-019-1105-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 2021;184(5):1330–47 e13. https://doi.org/10.1016/j.cell.2021.02.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100. https://doi.org/10.1016/j.smim.2007.11.004.
Article
CAS
PubMed
Google Scholar
Milde R, Ritter J, Tennent GA, Loesch A, Martinez FO, Gordon S, et al. Multinucleated giant cells are specialized for complement-mediated phagocytosis and large target destruction. Cell Rep. 2015;13(9):1937–48. https://doi.org/10.1016/j.celrep.2015.10.065.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferrante AW Jr. The immune cells in adipose tissue. Diabetes Obes Metab. 2013;15(Suppl 3):34–8. https://doi.org/10.1111/dom.12154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keophiphath M, Achard V, Henegar C, Rouault C, Clement K, Lacasa D. Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol. 2009;23:11–24. https://doi.org/10.1210/me.2008-0183.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olona A, Terra X, Ko JH, Grau-Bove C, Pinent M, Ardevol A, et al. Epoxygenase inactivation exacerbates diet and aging-associated metabolic dysfunction resulting from impaired adipogenesis. Mol Metab. 2018;11:18–32. https://doi.org/10.1016/j.molmet.2018.03.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity. Immunology. 2018;155:407–17. https://doi.org/10.1111/imm.13002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808. https://doi.org/10.1172/JCI19246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–55. https://doi.org/10.1194/jlr.M500294-JLR200.
Article
CAS
PubMed
Google Scholar
Braune J, Lindhorst A, Froba J, Hobusch C, Kovacs P, Bluher M, et al. Multinucleated giant cells in adipose tissue are specialized in adipocyte degradation. Diabetes. 2021;70:538–48. https://doi.org/10.2337/db20-0293.
Article
CAS
PubMed
Google Scholar
Rossi G, Cavazza A, Spagnolo P, Bellafiore S, Kuhn E, Carassai P, et al. The role of macrophages in interstitial lung diseases: number 3 in the Series “Pathology for the clinician” Edited by Peter Dorfmuller and Alberto Cavazza. Eur Respir Rev. 2017;26 https://doi.org/10.1183/16000617.0009-2017.
Dayan D, Buchner A, Garlick J. Touton-like giant cells in periapical granulomas. J Endod. 1989;15:210–1. https://doi.org/10.1016/S0099-2399(89)80237-7.
Article
CAS
PubMed
Google Scholar
Prieto-Potin I, Roman-Blas JA, Martinez-Calatrava MJ, Gomez R, Largo R, Herrero-Beaumont G. Hypercholesterolemia boosts joint destruction in chronic arthritis. An experimental model aggravated by foam macrophage infiltration. Arthritis Res Ther. 2013;15:R81. https://doi.org/10.1186/ar4261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Losslein AK, Lohrmann F, Scheuermann L, Gharun K, Neuber J, Kolter J, et al. Monocyte progenitors give rise to multinucleated giant cells. Nat Commun. 2021;12:2027. https://doi.org/10.1038/s41467-021-22103-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest. 2017;127:74–82. https://doi.org/10.1172/JCI88883.
Article
PubMed
PubMed Central
Google Scholar
Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542:177–85. https://doi.org/10.1038/nature21363.
Article
CAS
PubMed
Google Scholar
Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111–7. https://doi.org/10.1172/JCI57132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13(11):633–43. https://doi.org/10.1038/nrendo.2017.90.
Article
CAS
PubMed
Google Scholar
Ruggiero AD, Key CC, Kavanagh K. Adipose tissue macrophage polarization in healthy and unhealthy obesity. Front Nutr. 2021;8:625331. https://doi.org/10.3389/fnut.2021.625331.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Eijk M, Aerts J. The Unique Phenotype of Lipid-Laden Macrophages. Int J Mol Sci. 2021;22(8) https://doi.org/10.3390/ijms22084039.
Hausberger FX. Pathological changes in adipose tissue of obese mice. Anat Rec. 1966;154:651–60. https://doi.org/10.1002/ar.1091540311.
Article
CAS
PubMed
Google Scholar
Hellman B. Studies in obese-hyperglycemic mice. Ann N Y Acad Sci. 1965;131:541–58. https://doi.org/10.1111/j.1749-6632.1965.tb34819.x.
Article
CAS
PubMed
Google Scholar
Pekala P, Kawakami M, Vine W, Lane MD, Cerami A. Studies of insulin resistance in adipocytes induced by macrophage mediator. J Exp Med. 1983;157:1360–5. https://doi.org/10.1084/jem.157.4.1360.
Article
CAS
PubMed
Google Scholar
Clement K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 2004;18:1657–69. https://doi.org/10.1096/fj.04-2204com.
Article
CAS
PubMed
Google Scholar
Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30. https://doi.org/10.1172/JCI19451.
Article
CAS
PubMed
PubMed Central
Google Scholar
Curat CA, Miranville A, Sengenes C, Diehl M, Tonus C, Busse R, et al. From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes. 2004;53(5):1285–92. https://doi.org/10.2337/diabetes.53.5.1285.
Article
CAS
PubMed
Google Scholar
Helming L, Winter J, Gordon S. The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. J Cell Sci. 2009;122:453–9. https://doi.org/10.1242/jcs.037200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells. 2014;37:365–71. https://doi.org/10.14348/molcells.2014.0074.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai L, Wang Z, Ji A, Meyer JM, van der Westhuyzen DR. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity. PLoS One. 2012;7(5):e36785. https://doi.org/10.1371/journal.pone.0036785.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW 2nd, DeFuria J, Jick Z, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56(12):2910–8. https://doi.org/10.2337/db07-0767.
Article
CAS
PubMed
Google Scholar
Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121:2094–101. https://doi.org/10.1172/JCI45887.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuroda M, Sakaue H. Adipocyte death and chronic inflammation in obesity. J Med Invest. 2017;64(3.4):193–6. https://doi.org/10.2152/jmi.64.193.
Article
PubMed
Google Scholar
Atkin-Smith GK. Phagocytic clearance of apoptotic, necrotic, necroptotic and pyroptotic cells. Biochem Soc Trans. 2021;49(2):793–804. https://doi.org/10.1042/BST20200696.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alkhouri N, Gornicka A, Berk MP, Thapaliya S, Dixon LJ, Kashyap S, et al. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J Biol Chem. 2010;285:3428–38. https://doi.org/10.1074/jbc.M109.074252.
Article
CAS
PubMed
Google Scholar
Giordano A, Murano I, Mondini E, Perugini J, Smorlesi A, Severi I, et al. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J Lipid Res. 2013;54:2423–36. https://doi.org/10.1194/jlr.M038638.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith U, Li Q, Ryden M, Spalding KL. Cellular senescence and its role in white adipose tissue. Int J Obes (Lond). 2021;45:934–43. https://doi.org/10.1038/s41366-021-00757-x.
Article
CAS
Google Scholar
Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, et al. Fat tissue, aging, and cellular senescence. Aging Cell. 2010;9:667–84. https://doi.org/10.1111/j.1474-9726.2010.00608.x.
Article
CAS
PubMed
Google Scholar
Coats BR, Schoenfelt KQ, Barbosa-Lorenzi VC, Peris E, Cui C, Hoffman A, et al. Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. Cell Rep. 2017;20(13):3149–61. https://doi.org/10.1016/j.celrep.2017.08.096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindhorst A, Raulien N, Wieghofer P, Eilers J, Rossi FMV, Bechmann I, et al. Adipocyte death triggers a pro-inflammatory response and induces metabolic activation of resident macrophages. Cell Death Dis. 2021;12:579. https://doi.org/10.1038/s41419-021-03872-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee YH, Petkova AP, Granneman JG. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab. 2013;18(3):355–67. https://doi.org/10.1016/j.cmet.2013.08.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, Castellucci M, et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res. 2008;49:1562–8. https://doi.org/10.1194/jlr.M800019-JLR200.
Article
CAS
PubMed
Google Scholar
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84. https://doi.org/10.1172/JCI29881.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008;57:3239–46. https://doi.org/10.2337/db08-0872.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem. 2007;282(48):35279–92. https://doi.org/10.1074/jbc.M706762200.
Article
CAS
PubMed
Google Scholar
Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 2014;20:614–25. https://doi.org/10.1016/j.cmet.2014.08.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, Smyth GK, et al. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes. 2010;59(7):1648–56. https://doi.org/10.2337/db09-0287.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harasymowicz NS, Rashidi N, Savadipour A, Wu CL, Tang R, Bramley J, et al. Single-cell RNA sequencing reveals the induction of novel myeloid and myeloid-associated cell populations in visceral fat with long-term obesity. FASEB J. 2021;35:e21417. https://doi.org/10.1096/fj.202001970R.
Article
CAS
PubMed
Google Scholar
Hildreth AD, Ma F, Wong YY, Sun R, Pellegrini M, O’Sullivan TE. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat Immunol. 2021;22:639–53. https://doi.org/10.1038/s41590-021-00922-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hill DA, Lim HW, Kim YH, Ho WY, Foong YH, Nelson VL, et al. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc Natl Acad Sci U S A. 2018;115:E5096–E105. https://doi.org/10.1073/pnas.1802611115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B, Descamps H, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell. 2019;178:686–98 e14. https://doi.org/10.1016/j.cell.2019.05.054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vijay J, Gauthier MF, Biswell RL, Louiselle DA, Johnston JJ, Cheung WA, et al. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab. 2020;2:97–109. https://doi.org/10.1038/s42255-019-0152-6.
Article
PubMed
Google Scholar
Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005;201:647–57. https://doi.org/10.1084/jem.20041611.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ulland TK, Colonna M. TREM2 - a key player in microglial biology and Alzheimer disease. Nat Rev Neurol. 2018;14:667–75. https://doi.org/10.1038/s41582-018-0072-1.
Article
CAS
PubMed
Google Scholar
Yeh FL, Hansen DV, Sheng M. TREM2, Microglia, and neurodegenerative diseases. Trends Mol Med. 2017;23(6):512–33. https://doi.org/10.1016/j.molmed.2017.03.008.
Article
CAS
PubMed
Google Scholar
Helming L, Tomasello E, Kyriakides TR, Martinez FO, Takai T, Gordon S, et al. Essential role of DAP12 signaling in macrophage programming into a fusion-competent state. Sci Signal. 2008;1:ra11. https://doi.org/10.1126/scisignal.1159665.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, Colonna M. Impaired differentiation of osteoclasts in TREM-2-deficient individuals. J Exp Med. 2003;198:645–51. https://doi.org/10.1084/jem.20022220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Humphrey MB, Ogasawara K, Yao W, Spusta SC, Daws MR, Lane NE, et al. The signaling adapter protein DAP12 regulates multinucleation during osteoclast development. J Bone Miner Res. 2004;19(2):224–34. https://doi.org/10.1359/JBMR.0301234.
Article
CAS
PubMed
Google Scholar
Otero K, Shinohara M, Zhao H, Cella M, Gilfillan S, Colucci A, et al. TREM2 and beta-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis. J Immunol. 2012;188(6):2612–21. https://doi.org/10.4049/jimmunol.1102836.
Article
CAS
PubMed
Google Scholar
Iizasa E, Chuma Y, Uematsu T, Kubota M, Kawaguchi H, Umemura M, et al. TREM2 is a receptor for non-glycosylated mycolic acids of mycobacteria that limits anti-mycobacterial macrophage activation. Nat Commun. 2021;12:2299. https://doi.org/10.1038/s41467-021-22620-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paloneva J, Kestila M, Wu J, Salminen A, Bohling T, Ruotsalainen V, et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet. 2000;25:357–61. https://doi.org/10.1038/77153.
Article
CAS
PubMed
Google Scholar
Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R, et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet. 2002;71:656–62. https://doi.org/10.1086/342259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang H, Kerloc’h A, Rotival M, Xu X, Zhang Q, D’Souza Z, et al. Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease. Cell Rep. 2014;8(4):1210–24. https://doi.org/10.1016/j.celrep.2014.07.032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pereira M, Ko JH, Logan J, Protheroe H, Kim KB, Tan ALM, et al. A trans-eQTL network regulates osteoclast multinucleation and bone mass. Elife. 2020;9 https://doi.org/10.7554/eLife.55549.
Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell. 2017;170:649–63 e13. https://doi.org/10.1016/j.cell.2017.07.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng Q, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB. TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci Signal. 2010;3:ra38. https://doi.org/10.1126/scisignal.2000500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atagi Y, Liu CC, Painter MM, Chen XF, Verbeeck C, Zheng H, et al. Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). J Biol Chem. 2015;290(43):26043–50. https://doi.org/10.1074/jbc.M115.679043.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey CC, DeVaux LB, Farzan M. The triggering receptor expressed on myeloid cells 2 binds apolipoprotein E. J Biol Chem. 2015;290:26033–42. https://doi.org/10.1074/jbc.M115.677286.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obradovic A, Chowdhury N, Haake SM, Ager C, Wang V, Vlahos L, et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell. 2021; https://doi.org/10.1016/j.cell.2021.04.038.
Gast CE, Silk AD, Zarour L, Riegler L, Burkhart JG, Gustafson KT, et al. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv. 2018;4:eaat7828. https://doi.org/10.1126/sciadv.aat7828.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell. 2015;160(6):1061–71. https://doi.org/10.1016/j.cell.2015.01.049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest. 2010;120:3466–79. https://doi.org/10.1172/JCI42845.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, et al. Single-Cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res. 2018;122(12):1661–74. https://doi.org/10.1161/CIRCRESAHA.117.312509.
Article
CAS
PubMed
Google Scholar
Ryu J, Kim H, Chang EJ, Kim HJ, Lee Y, Kim HH. Proteomic analysis of osteoclast lipid rafts: the role of the integrity of lipid rafts on V-ATPase activity in osteoclasts. J Bone Miner Metab. 2010;28:410–7. https://doi.org/10.1007/s00774-009-0150-y.
Article
CAS
PubMed
Google Scholar
Sato T, Morita I, Murota S. Involvement of cholesterol in osteoclast-like cell formation via cellular fusion. Bone. 1998;23(2):135–40. https://doi.org/10.1016/s8756-3282(98)00082-9.
Article
CAS
PubMed
Google Scholar
Okayasu M, Nakayachi M, Hayashida C, Ito J, Kaneda T, Masuhara M, et al. Low-density lipoprotein receptor deficiency causes impaired osteoclastogenesis and increased bone mass in mice because of defect in osteoclastic cell-cell fusion. J Biol Chem. 2012;287(23):19229–41. https://doi.org/10.1074/jbc.M111.323600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luegmayr E, Glantschnig H, Wesolowski GA, Gentile MA, Fisher JE, Rodan GA, et al. Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ. 2004;11(Suppl 1):S108–18. https://doi.org/10.1038/sj.cdd.4401399.
Article
CAS
PubMed
Google Scholar
Oh SR, Sul OJ, Kim YY, Kim HJ, Yu R, Suh JH, et al. Saturated fatty acids enhance osteoclast survival. J Lipid Res. 2010;51:892–9. https://doi.org/10.1194/jlr.M800626.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drosatos-Tampakaki Z, Drosatos K, Siegelin Y, Gong S, Khan S, Van Dyke T, et al. Palmitic acid and DGAT1 deficiency enhance osteoclastogenesis, while oleic acid-induced triglyceride formation prevents it. J Bone Miner Res. 2014;29:1183–95. https://doi.org/10.1002/jbmr.2150.
Article
CAS
PubMed
Google Scholar
Lucas S, Omata Y, Hofmann J, Bottcher M, Iljazovic A, Sarter K, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun. 2018;9(1):55. https://doi.org/10.1038/s41467-017-02490-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou W, Rohatgi N, Brestoff JR, Li Y, Barve RA, Tycksen E, et al. Ablation of fat cells in adult mice induces massive bone gain. Cell Metab. 2020;32:801–13 e6. https://doi.org/10.1016/j.cmet.2020.09.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leiria LO, Tseng YH. Lipidomics of brown and white adipose tissue: implications for energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 1865;2020:158788. https://doi.org/10.1016/j.bbalip.2020.158788.
Article
CAS
Google Scholar
Parthasarathy V, Martin F, Higginbottom A, Murray H, Moseley GW, Read RC, et al. Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells. Immunology. 2009;127(2):237–48. https://doi.org/10.1111/j.1365-2567.2008.02945.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takeda Y, Tachibana I, Miyado K, Kobayashi M, Miyazaki T, Funakoshi T, et al. Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J Cell Biol. 2003;161:945–56. https://doi.org/10.1083/jcb.200212031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takeda Y, He P, Tachibana I, Zhou B, Miyado K, Kaneko H, et al. Double deficiency of tetraspanins CD9 and CD81 alters cell motility and protease production of macrophages and causes chronic obstructive pulmonary disease-like phenotype in mice. J Biol Chem. 2008;283:26089–97. https://doi.org/10.1074/jbc.M801902200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Y, Takeda Y, Kondo Y, Tripathi LP, Kang S, Takeshita H, et al. Double deletion of tetraspanins CD9 and CD81 in mice leads to a syndrome resembling accelerated aging. Sci Rep. 2018;8:5145. https://doi.org/10.1038/s41598-018-23338-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oguri Y, Shinoda K, Kim H, Alba DL, Bolus WR, Wang Q, et al. CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell. 2020;182:563–77 e20. https://doi.org/10.1016/j.cell.2020.06.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N, Podbilewicz B, et al. Genetic basis of cell-cell fusion mechanisms. Trends Genet. 2013;29:427–37. https://doi.org/10.1016/j.tig.2013.01.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu NT, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575(7783):512–8. https://doi.org/10.1038/s41586-019-1631-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai AT, Rice J, Scatena M, Liaw L, Ratner BD, Giachelli CM. The role of osteopontin in foreign body giant cell formation. Biomaterials. 2005;26(29):5835–43. https://doi.org/10.1016/j.biomaterials.2005.03.003.
Article
CAS
PubMed
Google Scholar
Suzuki K, Zhu B, Rittling SR, Denhardt DT, Goldberg HA, McCulloch CA, et al. Colocalization of intracellular osteopontin with CD44 is associated with migration, cell fusion, and resorption in osteoclasts. J Bone Miner Res. 2002;17(8):1486–97. https://doi.org/10.1359/jbmr.2002.17.8.1486.
Article
CAS
PubMed
Google Scholar
Xiong X, Kuang H, Ansari S, Liu T, Gong J, Wang S, et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell. 2019;75(3):644–60 e5. https://doi.org/10.1016/j.molcel.2019.07.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daemen S, Gainullina A, Kalugotla G, He L, Chan MM, Beals JW, et al. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep. 2021;34(2):108626. https://doi.org/10.1016/j.celrep.2020.108626.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seidman JS, Troutman TD, Sakai M, Gola A, Spann NJ, Bennett H, et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity. 2020;52(6):1057–74 e7. https://doi.org/10.1016/j.immuni.2020.04.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169(7):1276–90 e17. https://doi.org/10.1016/j.cell.2017.05.018.
Article
CAS
PubMed
Google Scholar
Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci. 2020;23(2):194–208. https://doi.org/10.1038/s41593-019-0566-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
=McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2014;41(1):36–48. https://doi.org/10.1016/j.immuni.2014.05.010.
Article
CAS
PubMed
Google Scholar
Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127:1–4. https://doi.org/10.1172/JCI92035.
Article
PubMed
PubMed Central
Google Scholar
Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95:2409–15. https://doi.org/10.1172/JCI117936.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91. https://doi.org/10.1126/science.7678183.
Article
CAS
PubMed
Google Scholar
Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem. 2006;281(36):26602–14. https://doi.org/10.1074/jbc.M601284200.
Article
CAS
PubMed
Google Scholar
Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494–505. https://doi.org/10.1172/JCI26498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Chung K, Choi C, Beloor J, Ullah I, Kim N, et al. Silencing CCR2 in macrophages alleviates adipose tissue inflammation and the associated metabolic syndrome in dietary obese mice. Mol Ther Nucleic Acids. 2016;5:e280. https://doi.org/10.1038/mtna.2015.51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sullivan TJ, Miao Z, Zhao BN, Ertl LS, Wang Y, Krasinski A, et al. Experimental evidence for the use of CCR2 antagonists in the treatment of type 2 diabetes. Metabolism. 2013;62:1623–32. https://doi.org/10.1016/j.metabol.2013.06.008.
Article
CAS
PubMed
Google Scholar
Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116:115–24. https://doi.org/10.1172/JCI24335.
Article
CAS
PubMed
Google Scholar
van Teijlingen BN, Pearce EJ. Cell-intrinsic metabolic regulation of mononuclear phagocyte activation: findings from the tip of the iceberg. Immunol Rev. 2020;295(1):54–67. https://doi.org/10.1111/imr.12848.
Article
CAS
Google Scholar
Jung SB, Choi MJ, Ryu D, Yi HS, Lee SE, Chang JY, et al. Reduced oxidative capacity in macrophages results in systemic insulin resistance. Nat Commun. 2018;9:1551. https://doi.org/10.1038/s41467-018-03998-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Tang B, Long L, Luo P, Xiang W, Li X, et al. Improvement of obesity-associated disorders by a small-molecule drug targeting mitochondria of adipose tissue macrophages. Nat Commun. 2021;12:102. https://doi.org/10.1038/s41467-020-20315-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Romestaing C, Han X, Li Y, Hao X, Wu Y, et al. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab. 2010;12(2):154–65. https://doi.org/10.1016/j.cmet.2010.07.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma L, Liu TW, Wallig MA, Dobrucki IT, Dobrucki LW, Nelson ER, et al. Efficient Targeting of Adipose Tissue Macrophages in Obesity with Polysaccharide Nanocarriers. ACS Nano. 2016;10:6952–62. https://doi.org/10.1021/acsnano.6b02878.
Article
CAS
PubMed
Google Scholar
Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47. https://doi.org/10.1146/annurev-pathmechdis-012418-012718.
Article
CAS
PubMed
Google Scholar
Guermonprez P, Helft J. Inflammasome activation: a monocyte lineage privilege. Nat Immunol. 2019;20:383–5. https://doi.org/10.1038/s41590-019-0348-7.
Article
CAS
PubMed
Google Scholar
Olona A, Hateley C, Guerrero A, Ko JH, Johnson MR, Anand PK, et al. Cardiac glycosides cause cytotoxicity in human macrophages and ameliorate white adipose tissue homeostasis. Br J Pharmacol. 2021; https://doi.org/10.1111/bph.15423.
Cox N, Crozet L, Holtman IR, Loyher PL, Lazarov T, White JB, et al. Diet-regulated production of PDGFcc by macrophages controls energy storage. Science. 2021;373(6550) https://doi.org/10.1126/science.abe9383.
Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014;159(6):1312–26. https://doi.org/10.1016/j.cell.2014.11.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pirzgalska RM, Seixas E, Seidman JS, Link VM, Sanchez NM, Mahu I, et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat Med. 2017;23:1309–18. https://doi.org/10.1038/nm.4422.
Article
CAS
PubMed
PubMed Central
Google Scholar
Satoh T, Kidoya H, Naito H, Yamamoto M, Takemura N, Nakagawa K, et al. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature. 2013;495:524–8. https://doi.org/10.1038/nature11930.
Article
CAS
PubMed
Google Scholar
Bouchon A, Hernandez-Munain C, Cella M, Colonna M. A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J Exp Med. 2001;194(8):1111–22. https://doi.org/10.1084/jem.194.8.1111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kraal G, van der Laan LJ, Elomaa O, Tryggvason K. The macrophage receptor MARCO. Microbes Infect. 2000;2(3):313–6. https://doi.org/10.1016/s1286-4579(00)00296-3.
Article
CAS
PubMed
Google Scholar
Mukhopadhyay S, Chen Y, Sankala M, Peiser L, Pikkarainen T, Kraal G, et al. MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur J Immunol. 2006;36:940–9. https://doi.org/10.1002/eji.200535389.
Article
CAS
PubMed
Google Scholar
Pridans C, Raper A, Davis GM, Alves J, Sauter KA, Lefevre L, et al. Pleiotropic impacts of macrophage and microglial deficiency on development in rats with targeted mutation of the Csf1r Locus. J Immunol. 2018;201:2683–99. https://doi.org/10.4049/jimmunol.1701783.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brunner JS, Vogel A, Lercher A, Caldera M, Korosec A, Puhringer M, et al. The PI3K pathway preserves metabolic health through MARCO-dependent lipid uptake by adipose tissue macrophages. Nat Metab. 2020;2(12):1427–42. https://doi.org/10.1038/s42255-020-00311-5.
Article
CAS
PubMed
Google Scholar
Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR, Bennett ML, et al. Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab. 2017;26:185–97 e3. https://doi.org/10.1016/j.cmet.2017.05.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 2014;9(6):2124–38. https://doi.org/10.1016/j.celrep.2014.11.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharif O, Brunner JS, Korosec A, Martins R, Jais A, Snijder B, et al. Beneficial metabolic effects of TREM2 in obesity are uncoupled from its expression on macrophages. Diabetes. 2021;70:2042–57. https://doi.org/10.2337/db20-0572.
Article
PubMed
Google Scholar