Sachse S, Krieger J. Olfaction in insects. The primary processes of odor recognition and coding. e-Neuroforum. 2011;2(3):49–60. https://doi.org/10.1007/s13295-011-0020-7.
Article
Google Scholar
Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 2013;58:373–91. https://doi.org/10.1146/annurev-ento-120811-153635.
Article
CAS
PubMed
Google Scholar
Hansson BS, Stensmyr MC. Evolution of insect olfaction. Neuron. 2011;72(5):698–711. https://doi.org/10.1016/j.neuron.2011.11.003.
Article
CAS
PubMed
Google Scholar
Fleischer J, Pregitzer P, Breer H, Krieger J. Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cell. Mol. Life Sci. 2018;75(3):485–508. https://doi.org/10.1007/s00018-017-2627-5.
Article
CAS
PubMed
Google Scholar
Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim JH, Carlson JR. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron. 1999;22(2):327–38. https://doi.org/10.1016/s0896-6273(00)81093-4.
Article
CAS
PubMed
Google Scholar
Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell. 2009;136(1):149–62. https://doi.org/10.1016/j.cell.2008.12.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao CA, Ignell R, Carlson JR. Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J. Neurosci. 2005;25(37):8359–67. https://doi.org/10.1523/JNEUROSCI.2432-05.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R. Functional architecture of olfactory ionotropic glutamate receptors. Neuron. 2011;69(1):44–60. https://doi.org/10.1016/j.neuron.2010.11.042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Bisch-Knaden S, Fandino RA, Yan S, Obiero GF, Grosse-Wilde E, et al. The olfactory coreceptor IR8a governs larval feces- mediated competition avoidance in a hawkmoth. Proc. Natl. Acad. Sci. U.S.A. 2019;116(43):21828–33. https://doi.org/10.1073/pnas.1913485116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koh TW, He Z, Gorur-Shandilya S, Menuz K, Larter NK, Stewart S, et al. The Drosophila IR20a clade of ionotropic receptors are candidate taste and pheromone receptors. Neuron. 2014;83(4):850–65. https://doi.org/10.1016/j.neuron.2014.07.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stewart S, Koh TW, Ghosh AC, Carlson JR. Candidate ionotropic taste receptors in the Drosophila larva. Proc. Natl. Acad. Sci. U.S.A. 2015;112(14):4195–201. https://doi.org/10.1073/pnas.1503292112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahn JE, Chen Y, Amrein H. Molecular basis of fatty acid taste in Drosophila. eLife. 2017;6:e30115. https://doi.org/10.7554/eLife.30115.
Article
PubMed
PubMed Central
Google Scholar
Chen Y, Amrein H. Ionotropic receptors mediate Drosophila oviposition preference through sour gustatory receptor neurons. Curr. Biol. 2017;27(18):2741–50. https://doi.org/10.1016/j.cub.2017.08.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Buhl E, Xu M, Croset V, Rees JS, Lilley KS, et al. Drosophila ionotropic receptor 25a mediates circadian clock resetting by temperature. Nature. 2015;527(7579):516–20. https://doi.org/10.1038/nature16148.
Article
CAS
PubMed
Google Scholar
Ni L, Klein M, Svec KV, Budelli G, Chang EC, Ferrer AJ, et al. The ionotropic receptors IR21a and IR25a mediate cool sensing in Drosophila. eLife. 2016;5:e13254. https://doi.org/10.7554/eLife.13254.
Article
PubMed
PubMed Central
Google Scholar
Enjin A, Zaharieva EE, Frank DD, Mansourian S, Suh GS, Gallio M, et al. Humidity sensing in Drosophila. Curr. Biol. 2016;26(10):1352–8. https://doi.org/10.1016/j.cub.2016.03.049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knecht ZA, Silbering AF, Ni L, Klein M, Budelli G, Bell R, et al. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila. eLife. 2016;5:e17879. https://doi.org/10.7554/eLife.17879.
Article
PubMed
PubMed Central
Google Scholar
Knecht ZA, Silbering AF, Cruz J, Yang L, Croset V, Benton R, et al. Ionotropic receptor-dependent moist and dry cells control hygrosensation in Drosophila. eLife. 2017;6:e26654. https://doi.org/10.7554/eLife.26654.
Article
PubMed
PubMed Central
Google Scholar
Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, et al. Drosophila auditory organ genes and genetic hearing defects. Cell. 2012;150(5):1042–54. https://doi.org/10.1016/j.cell.2012.06.043.
Article
CAS
PubMed
Google Scholar
Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron. 2004;43(5):703–14. https://doi.org/10.1016/j.neuron.2004.08.019.
Article
CAS
PubMed
Google Scholar
Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature. 2008;452(7190):1007–11. https://doi.org/10.1038/nature06850.
Article
CAS
Google Scholar
Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature. 2008;452(7190):1007–11. https://doi.org/10.1038/nature06861.
Article
CAS
PubMed
Google Scholar
Grosjean Y, Rytz R, Farine JP, Abuin L, Cortot J, Jefferis GS, et al. An olfactory receptor for food-derived odors promotes male courtship in Drosophila. Nature. 2011;478(7368):236–40. https://doi.org/10.1038/nature10428.
Article
CAS
PubMed
Google Scholar
Silbering AF, Rytz R, Grosjean Y, Abuin L, Ramdya P, Jefferis GS, et al. Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. J. Neurosci. 2011;31(38):13357–75. https://doi.org/10.1523/JNEUROSCI.2360-11.2011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rytz R, Croset V, Benton R. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem. Mol. Biol. 2013;43(9):888–97. https://doi.org/10.1016/j.ibmb.2013.02.007.
Article
CAS
PubMed
Google Scholar
Ai M, Blais S, Park JY, Min S, Neubert TA, Suh GS. Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila. J. Neurosci. 2013;33(26):10741–9. https://doi.org/10.1523/JNEUROSCI.5419-12.2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hussain A, Zhang M, Üçpunar HK, Svensson T, Quillery E, Gompel N, et al. Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLoS Biol. 2018;14(5):e1002454. https://doi.org/10.1371/journal.pbio.1002454.
Article
CAS
Google Scholar
Ganguly A, Pang L, Duong VK, Lee A, Schoniger H, Varady E, et al. A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Rep. 2017;18(3):737–50. https://doi.org/10.1016/j.celrep.2016.12.071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, et al. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 2010;6(8):e1001064. https://doi.org/10.1371/journal.pgen.1001064.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersson MN, Keeling CI, Mitchell RF. Genomic content of chemosensory genes correlates with host range in wood-boring beetles (Dendroctonus ponderosae, Agrilus planipennis, and Anoplophora glabripennis). BMC Genom. 2019;20(1):690. https://doi.org/10.1186/s12864-019-6054-x.
Article
CAS
Google Scholar
He Z, Luo Y, Shang X, Sun JS, Carlson JR. Chemosensory sensilla of the Drosophila wing express a candidate ionotropic pheromone receptor. PLoS Biol. 2019;17(5):e2006619. https://doi.org/10.1371/journal.pbio.2006619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olivier V, Monsempes C, Francois MC, Poivet E, Jacquin-Joly E. Candidate chemosensory ionotropic receptors in a Lepidoptera. Insect Mol. Biol. 2011;20(2):189–99. https://doi.org/10.1111/j.1365-2583.2010.01057.x.
Article
CAS
PubMed
Google Scholar
Bengtsson JM, Trona F, Montagné N, Anfora G, Ignell R, Witzgall P, et al. Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis. PloS One. 2012;7(2):e31620. https://doi.org/10.1371/journal.pone.0031620.
Poivet E, Gallot A, Montagné N, Glaser N, Legeai F, Jacquin-Joly E. A comparison of the olfactory gene repertoires of adults and larvae in the noctuid moth Spodoptera littoralis. PloS One. 2013;8(4):e60263. https://doi.org/10.1371/journal.pone.0060263.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Schooten B, Jiggins CD, Briscoe AD, Papa R. Genome-wide analysis of ionotropic receptors provides insight into their evolution in Heliconius butterflies. BMC Genom. 2016;17(1):254. https://doi.org/10.1186/s12864-016-2572-y.
Article
CAS
Google Scholar
Liu NY, Xu W, Dong SL, Zhu JY, Xu YX, Anderson A. Genome-wide analysis of ionotropic receptor gene repertoire in Lepidoptera with an emphasis on its functions of Helicoverpa armigera. Insect Biochem. Mol. Biol. 2018;99:37–53. https://doi.org/10.1016/j.ibmb.2018.05.005.
Article
CAS
PubMed
Google Scholar
Zhu JY, Xu ZW, Zhang XM, Liu NY. Genome-based identification and analysis of ionotropic receptors in Spodoptera litura. Sci. Nat. 2018;105(5):38. https://doi.org/10.1007/s00114-018-1563-z.
Article
CAS
Google Scholar
Yuvaraj JK, Andersson MN, Zhang DD, Löfstedt C. Antennal transcriptome analysis of the chemosensory gene families from Trichoptera and basal Lepidoptera. Front. Physiol. 2018;9:1365. https://doi.org/10.3389/fphys.2018.01365.
Article
PubMed
PubMed Central
Google Scholar
Yin NN, Nuo SM, Xiao HY, Zhao YJ, Zhu JY, Liu NY. The ionotropic receptor gene family in Lepidoptera and Trichoptera: annotation, evolutionary and functional perspectives. Genomics. 2021;113(1):601–12. https://doi.org/10.1016/j.ygeno.2020.09.056.
Article
CAS
PubMed
Google Scholar
Eyun SI, Soh HY, Posavi M, Munro JB, Hughes DS, Murali SC, et al. Evolutionary history of chemosensory-related gene families across the Arthropoda. Mol. Biol. Evol. 2017;34(8):1838–62. https://doi.org/10.1093/molbev/msx147.
Shan S, Wang SN, Song X, Khashaveha A, Lu ZY, Dhiloof KH, et al. Antennal ionotropic receptors IR64a1 and IR64a2 of the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidate) collaboratively perceive habitat and host cues. Insect Biochem. Mol. Biol. 2019;114:103204. https://doi.org/10.1016/j.ibmb.2019.103204.
Article
CAS
PubMed
Google Scholar
Tang R, Jiang NJ, Ning C, Li GC, Huang LQ, Wang CZ. The olfactory reception of acetic acid and ionotropic receptors in the Oriental armyworm, Mythimna separata Walker. Insect Biochem. Mol. Biol. 2020;118:103312. https://doi.org/10.1016/j.ibmb.2019.103312.
Article
CAS
PubMed
Google Scholar
Klinner CF, KönigC MC, Werckenthin A, Daly KC, Bisch-Knaden S, et al. Functional olfactory sensory neurons housed in olfactory sensilla on the ovipositor of the hawkmoth Manduca sexta. Front. Ecol. Evol. 2016;4:130. https://doi.org/10.3389/fevo.2016.00130.
Article
Google Scholar
Hou X-Q, Zhang D-D, Powell D, Wang H-L, Andersson MN, Löfstedt C. Transcriptome sequencing of the turnip moth, Agrotis segetum. NCBI GenBank https://www.ncbi.nlm.nih.gov/bioproject/PRJNA707654. 2021.
Liu C, Pitts RJ, Bohbot JD, Jones PL, Wang G, Zwiebel LJ. Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae. PLoS Biol. 2010;8(8):e1000467. https://doi.org/10.1371/journal.pbio.1000467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. https://doi.org/10.1186/1471-2105-12-323.
Article
CAS
Google Scholar
Liu Y, Gu S, Zhang Y, Guo Y, Wang G. Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome. PLoS One. 2012;7(10):e48260. https://doi.org/10.1371/journal.pone.0048260.
Article
CAS
PubMed
PubMed Central
Google Scholar
Menuz K, Larter NK, Park J, Carlson JR. An RNA-seq screen of the Drosophila antenna identifies a transporter necessary for ammonia detection. PLoS Genet. 2014;10(11):e1004810. https://doi.org/10.1371/journal.pgen.1004810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pitts RJ, Derryberry SL, Zhang ZW, Zwiebel LJ. Variant ionotropic receptors in the malaria vector mosquito Anopheles gambiae tuned to amines and carboxylic acids. Sci. Rep. 2017;7(1):40297. https://doi.org/10.1038/srep40297.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mullens BA, Reifenrath WG, Butler SM. Laboratory trials of fatty acids as repellents or antifeedants against houseflies, horn flies and stable flies (Diptera: Muscidae). Pest. Manage. Sci. 2009;65(12):1360–6. https://doi.org/10.1002/ps.1823.
Article
CAS
Google Scholar
Venter GJ, Labuschagne K, Boikanyo SN, Morey L, Snyman MG. The repellent effect of organic fatty acids on Culicoides midges as determined with suction light traps in South Africa. Vet. Parasitol. 2011;181(2-4):365–9. https://doi.org/10.1016/j.vetpar.2011.04.034.
Article
CAS
PubMed
Google Scholar
Legal L, Plawecki M. Comparative sensitivity of various insects to toxic compounds from Morinda citrifolia (L.). Entomol. Probl. 1995;26(2):155–9.
Google Scholar
Legal L, Moulin B, Jallon JM. The relation between structures and toxicity of oxygenated aliphatic compounds homologous to the insecticide octanoic acid and the chemotaxis of two pecies of Drosophila. Pestic Biochem Physiol. 1999;65(2):90–101. https://doi.org/10.1006/pest.1999.2430.
Article
CAS
Google Scholar
Zhu JJ, Cermak SC, Kenar JA, Brewer G, Haynes KF, Boxler D, et al. Better than DEET repellent compounds derived from coconut oil. Sci. rep. 2018;8(1):1–12. https://doi.org/10.1038/s41598-018-32373-7.
Article
CAS
Google Scholar
Ramadan GRM, Abdelgaleil SAM, Shawir MS, El-bakary AS, Zhu KY, Phillips TW. Terpenoids, DEET and short chain fatty acids as toxicants and repellents for Rhyzopertha dominica (coleoptera: Bostrichidae) and Lasioderma serricorne (Coleoptera: Ptinidae). J. Stored Prod. Res. 2020;87:101610. https://doi.org/10.1016/j.jspr.2020.101610.
Article
Google Scholar
Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y. Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol. 2007;5(5):e118. https://doi.org/10.1371/journal.pbio.0050118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrade López JM, Lanno SM, Auerbach JM, Moskowitz EC, Sligar LA, Wittkopp PJ, et al. Genetic basis of octanoic acid resistance in Drosophila sechellia: functional analysis of a fine-mapped region. Mol. Ecol. 2017;26(4):1148–60. https://doi.org/10.1111/mec.14001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skinner WA, Tong HC, Maibach HI, Skidmore D. Human skin surface lipid fatty acids – mosquito repellents. Experientia. 1970;26(7):728–30. https://doi.org/10.1007/BF02232510.
Article
CAS
PubMed
Google Scholar
Hwang YS, Schultz GW, Axelrod H, Kramer WL, Mulla MS. Ovipositional repellency of fatty acids and their derivatives against Culex and Aedes mosquitoes. Ecol. Entomol. 1982;11(1):223–6. https://doi.org/10.1093/ee/11.1.223.
Article
CAS
Google Scholar
Guo M, Krieger J, Große-Wilde E, Mißbach C, Zhang L, Breer H. Variant ionotropic receptors are expressed in olfactory sensory neurons of coeloconic sensilla on the antenna of the desert locust (Schistocerca gregaria). Int. J. Biol. Sci. 2014;10(1):1–14. https://doi.org/10.7150/ijbs.7624.
Article
CAS
Google Scholar
Qiu YT, Van Loon JJ, Takken W, Meijerink J, Smid HM. Olfactory coding in antennal neurons of the malaria mosquito, Anopheles gambiae. Chem. Senses. 2006;31(9):845–63. https://doi.org/10.1093/chemse/bjl027.
Article
CAS
PubMed
Google Scholar
Missbach C, Dweck HKM, Vogel H, Vilcinskas A, Stensmyr MC, Hansson BS, et al. Evolution of insect olfactory receptors. eLife. 2014;3:e02115. https://doi.org/10.7554/eLife.02115.
Article
PubMed
PubMed Central
Google Scholar
Pophof B. Olfactory responses from sensilla coeloconica of the silkmoth Bombyx mori. Physiol. Entomol. 1997;22(3):239–48. https://doi.org/10.1111/j.1365-3032.1997.tb01164.x.
Article
Google Scholar
Crow KD, Wagner GP. What is the role of genome duplication in the evolution of complexity and diversity? Mol. Biol. Evol. 2006;23(5):887–92. https://doi.org/10.1093/molbev/msj083.
Article
CAS
PubMed
Google Scholar
Moleirinho A, Carneiro J, Matthiesen R, Silva RM, Amorim A, Azevedo L. Gains, losses and changes of function after gene duplication: study of the metallothionein family. PLoS One. 2011;6(4):e18487. https://doi.org/10.1371/journal.pone.0018487.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersson MN, Löfstedt C, Newcomb RD. Insect olfaction and the evolution of receptor tuning. Front. Ecol. Evol. 2015;3:53. https://doi.org/10.3389/fevo.2015.00053.
Article
Google Scholar
Benton R. Multigene family evolution: perspectives from insect chemoreceptors. Trends Ecol. Evol. 2015;30(10):590–600. https://doi.org/10.1016/j.tree.2015.07.009.
Article
PubMed
Google Scholar
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531–45. https://doi.org/10.1093/genetics/151.4.1531.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–9. https://doi.org/10.1093/bioinformatics/btl158.
Article
CAS
PubMed
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–30. https://doi.org/10.1093/nar/gkt1223.
Article
CAS
PubMed
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2. https://doi.org/10.1093/bioinformatics/btv351.
Article
CAS
PubMed
Google Scholar
Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods. 2015;12(2):115–21. https://doi.org/10.1038/nmeth.3252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008;3(6):1101–8. https://doi.org/10.1038/nprot.2008.73.
Article
CAS
PubMed
Google Scholar
Karner T, Kellner I, Schultze A, Berre H, Krieger J. Co-expression of six tightly clustered odorant receptor genes in the antenna of the malaria mosquito Anopheles gambiae. Front. Ecol. Evol. 2015;3:26. https://doi.org/10.3389/fevo.2015.00026.
Article
Google Scholar
Zhang DD, Wang HL, Schultze A, Froß H, Francke W, Krieger J, et al. Receptor for detection of a type II sex pheromone in the winter moth Operohphtera brumata. Sci. Rep. 2016;6(1):18576. https://doi.org/10.1038/srep18576.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang DD, Zhu KY, Wang CZ. Sequencing and characterization of six cDNAs putatively encoding three pairs of pheromone receptors in two sibling species, Helicoverpa armigera and Helicoverpa assulta. J. Insect Physiol. 2010;56(6):586–93. https://doi.org/10.1016/j.jinsphys.2009.12.002.
Article
CAS
PubMed
Google Scholar
Zhang DD, Löfstedt C. Functional evolution of a multigene family: orthologous and paralogous pheromone receptor genes in the turnip moth, Agrotis segetum. PLoS One. 2013;8(10):e77345. https://doi.org/10.1371/journal.pone.0077345.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou X, Zhang DD, Yuvaraj JK, Corcoran JA, Andersson MN, Löfstedt C. Functional characterization of odorant receptors from the moth Eriocrania semipurpurella: a comparison of results in the Xenopus oocyte and HEK cell systems. Insect Biochem. Mol. Biol. 2020;117:103289. https://doi.org/10.1016/j.ibmb.2019.103289.
Article
CAS
PubMed
Google Scholar