Panagos P, Ballabio C, Lugato E, Jones A, Borrelli P, Scarpa S, et al. Potential sources of anthropogenic copper inputs to European agricultural soils. Sustainability. 2018;10:2380.
Article
CAS
Google Scholar
Romic M, Romic D. Heavy metals distribution in agricultural topsoils in urban area. Environ Geol. 2003;43:795–805.
Article
CAS
Google Scholar
Orgiazzi A, Ballabio C, Panagos P, Jones A, Fernández-Ugalde O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur J Soil Sci. 2018;69:140–53.
Article
Google Scholar
Wilson TG. Drosophila: sentinels of environmental toxicants. Integr Comp Biol. 2005;45:127–36.
Article
CAS
Google Scholar
Navarro JA, Schneuwly S. Copper and zinc homeostasis: lessons from Drosophila melanogaster. Front Genet. 2017;8:223.
Article
Google Scholar
Calap-Quintana P, González-Fernández J, Sebastiá-Ortega N, Llorens JV, Moltó MD. Drosophila melanogaster models of metal-related human diseases and metal toxicity. Int J Mol Sci. 2017;18:1456.
Article
Google Scholar
Zhang B, Egli D, Georgiev O, Schaffner W. The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol Cell Biol. 2001;21:4505–14.
Article
CAS
Google Scholar
Turski ML, Thiele DJ. Drosophila Ctr1A functions as a copper transporter essential for development. J Biol Chem. 2007;282:24017–26.
Article
CAS
Google Scholar
Southon A, Farlow A, Norgate M, Burke R, Camakaris J. Malvolio is a copper transporter in Drosophila melanogaster. J Exp Biol. 2008;211:709–16.
Article
CAS
Google Scholar
Norgate M, Lee E, Southon A, Farlow A, Batterham P, Camakaris J, et al. Essential roles in development and pigmentation for the Drosophila copper transporter DmATP7. Mol Biol Cell. 2006;17:475–84.
Article
CAS
Google Scholar
Egli D, Yepiskoposyan H, Selvaraj A, Balamurugan K, Rajaram R, Simons A, et al. A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification. Mol Cell Biol. 2006;26:2286–96.
Article
CAS
Google Scholar
Yepiskoposyan H, Egli D, Fergestad T, Selvaraj A, Treiber C, Multhaup G, et al. Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc. Nucleic Acids Res. 2006;34:4866–77.
Article
CAS
Google Scholar
Li H, Qi Y, Jasper H. Preventing age-related decline of gut compartmentalization limits microbiota dysbiosis and extends lifespan. Cell Host Microbe. 2016;19:240–53.
Article
CAS
Google Scholar
McNulty M, Puljung M, Jefford G, Dubreuil RR. Evidence that a copper-metallothionein complex is responsible for fluorescence in acid-secreting cells of the Drosophila stomach. Cell Tissue Res. 2001;304:383–9.
Article
CAS
Google Scholar
Dubreuil RR. Copper cells and stomach acid secretion in the Drosophila midgut. Int J Biochem Cell Biol. 2004;36:742–52.
Article
Google Scholar
Maroni G, Wise J, Young JE, Otto E. Metallothionein gene duplications and metal tolerance in natural populations of Drosophila melanogaster. Genetics. 1987;117:739–44.
Article
CAS
Google Scholar
Catalán A, Glaser-Schmitt A, Argyridou E, Duchen P, Parsch J. An indel polymorphism in the MtnA 3’ untranslated region is associated with gene expression variation and local adaptation in Drosophila melanogaster. PLoS Genet. 2016;12:e1005987.
Article
Google Scholar
Pölkki M, Rantala MJ. Exposure to copper during larval development has intra- and trans-generational influence on fitness in later life. Ecotoxicol Environ Saf. 2021;207:111133.
Article
Google Scholar
Zamberlan DC, Halmenschelager PT, Silva LFO, da Rocha JBT. Copper decreases associative learning and memory in Drosophila melanogaster. Sci Total Environ. 2020;710:135306.
Article
CAS
Google Scholar
Everman ER, Cloud-Richardson KM, Macdonald SJ. Characterizing the genetic basis of copper toxicity in Drosophila reveals a complex pattern of allelic, regulatory, and behavioral variation. Genetics. 2021;217:1–20.
Article
Google Scholar
Merritt TJS, Bewick AJ. Genetic diversity in insect metal tolerance. Front Genet. 2017;8:172.
Article
Google Scholar
Roelofs D, Janssens TKS, Timmermans MJTN, Nota B, MariËn J, Bochdanovits Z, et al. Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod Orchesella cincta. Mol Ecol. 2009;18:3227–39.
Article
CAS
Google Scholar
Zhou S, Luoma SE, St. Armour GE, Thakkar E, Mackay TFC, Anholt RRH. A Drosophila model for toxicogenomics: genetic variation in susceptibility to heavy metal exposure. PLoS Genet. 2017;13:e1006907.
Article
Google Scholar
Rech GE, Radío S, Guirao-Rico S, Aguilera L, Horvath V, Green L, et al. Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila. Nat Commun. 2022;13:1–16.
Article
Google Scholar
Chakraborty M, Emerson JJ, Macdonald SJ, Long AD. Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits. Nat Commun. 2019;10:1–11.
Article
Google Scholar
Rech GE, Bogaerts-Márquez M, Barrón MG, Merenciano M, Villanueva-Cañas JL, Horváth V, et al. Stress response, behavior, and development are shaped by transposable element-induced mutations in Drosophila. PLoS Genet. 2019;15:e1007900.
Article
CAS
Google Scholar
Schmidt JM, Robin C. An adaptive allelic series featuring complex gene rearrangements. PLoS Genet. 2011;7:e1002347.
Article
CAS
Google Scholar
Guio L, Barrõn MG, González J. The transposable element Bari-Jheh mediates oxidative stress response in Drosophila. Mol Ecol. 2014;23:2020–30.
Article
CAS
Google Scholar
Mateo L, Ullastres A, González J. A transposable element insertion confers xenobiotic resistance in Drosophila. PLoS Genet. 2014;10:e1004560.
Article
Google Scholar
Merenciano M, Ullastres A, de Cara MAR, Barrón MG, González J. Multiple independent retroelement insertions in the promoter of a stress response gene have variable molecular and functional effects in Drosophila. PLoS Genet. 2016;12:e1006249.
Article
Google Scholar
Ullastres A, Merenciano M, González J. Regulatory regions in natural transposable element insertions drive interindividual differences in response to immune challenges in Drosophila. Genome Biol. 2021;22:1–30.
Article
Google Scholar
Le Manh H, Guio L, Merenciano M, Rovira Q, Barrón MG, González J. Natural and laboratory mutations in kuzbanian are associated with zinc stress phenotypes in Drosophila melanogaster. Sci Rep. 2017;7:1–12.
Google Scholar
Hallas R, Schiffer M, Hoffmann AA. Clinal variation in Drosophila serrata for stress resistance and body size. Genet Res (Camb). 2002;79:141–8.
Article
Google Scholar
Hoffmann AA, Weeks AR. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica. 2006;129:133–47.
Article
Google Scholar
Arthur AL, Weeks AR, Sgrò CM. Investigating latitudinal clines for life history and stress resistance traits in Drosophila simulans from eastern Australia. J Evol Biol. 2008;21:1470–9.
Article
CAS
Google Scholar
Kapun M, Barron MG, Staubach F, Obbard DJ, Axel R, Vieira J, et al. Genomic analysis of European Drosophila melanogaster populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses. Mol Biol Evol. 2020;37:2661–78.
Article
CAS
Google Scholar
OECD/European Commission. Cities in the world: a new perspective on urbanisation, OECD Urban Studies. Paris. Available online at: https://www.oecd.org/publications/cities-in-the-world-d0efcbda-en.htm: OECD Publishing; 2020.
Google Scholar
Hu Y, Comjean A, Perrimon N, Mohr SE. The Drosophila Gene Expression Tool (DGET) for expression analyses. BMC Bioinformatics. 2017;18:1–9.
Article
CAS
Google Scholar
Filshie BK, Poulson DF, Waterhouse DF. Ultrastructure of the copper-accumulating region of the Drosophila larval midgut. Tissue Cell. 1971;3:77–102.
Article
CAS
Google Scholar
Tapp RL, Hockaday A. Combined histochemical and x-ray microanalytical studies on the copper-accumulating granules in the mid-gut of larval Drosophila. J Cell Sci. 1977;26:201–15.
Article
CAS
Google Scholar
Marianes A, Spradling AC. Physiological and stem cell compartmentalization within the Drosophila midgut. Elife. 2013;2013:e00886.
Article
Google Scholar
Hung RJ, Hu Y, Kirchner R, Liu Y, Xu C, Comjean A, et al. A cell atlas of the adult Drosophila midgut. Proc Natl Acad Sci U S A. 2020;117:1514–23.
Article
CAS
Google Scholar
Terashima J, Bownes M. A microarray analysis of genes involved in relating egg production to nutritional intake in Drosophila melanogaster. Cell Death Differ. 2005;12:429–40.
Article
CAS
Google Scholar
Ojima N, Hara Y, Ito H, Yamamoto D. Genetic dissection of stress-induced reproductive arrest in Drosophila melanogaster females. PLoS Genet. 2018;14:e1007434.
Article
Google Scholar
Marshall KE, Sinclair BJ. Repeated stress exposure results in a survival–reproduction trade-off in Drosophila melanogaster. Proc R Soc B Biol Sci. 2010;277:963–9.
Article
Google Scholar
Klepsatel P, Gáliková M, Xu Y, Kühnlein RP. Thermal stress depletes energy reserves in Drosophila. Sci Rep. 2016;6:1–12.
Article
Google Scholar
Horváth V, Guirao-Rico S, Salces-Ortiz J, Rech GE, Green L, Aprea E, et al. Basal and stress-induced expression changes consistent with water loss reduction explain desiccation tolerance of natural Drosophila melanogaster populations. bioRxiv. 2022; 2022.03.21.485105.
Stone EA, Ayroles JF. Modulated modularity clustering as an exploratory tool for functional genomic inference. PLoS Genet. 2009;5:e1000479.
Article
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.
Article
CAS
Google Scholar
Palu RAS, Thummel CS. Sir2 acts through hepatocyte nuclear factor 4 to maintain insulin signaling and metabolic homeostasis in Drosophila. PLoS Genet. 2016;12:e1005978.
Article
Google Scholar
King-Jones K, Horner MA, Lam G, Thummel CS. The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metab. 2006;4:37–48.
Article
CAS
Google Scholar
Alic N, Andrews TD, Giannakou ME, Papatheodorou I, Slack C, Hoddinott MP, et al. Genome-wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling. Mol Syst Biol. 2011;7:502.
Article
CAS
Google Scholar
Barry WE, Thummel CS. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults. Elife. 2016;5:e11183.
Article
Google Scholar
Fields M, Lewis CG, Beal T. Accumulation of sorbitol in copper deficiency: dependency on gender and type of dietary carbohydrate. Metabolism. 1989;38:371–5.
Article
CAS
Google Scholar
Southon A, Burke R, Norgate M, Batterham P, Camakaris J. Copper homoeostasis in Drosophila melanogaster S2 cells. Biochem J. 2004;383:303–9.
Article
CAS
Google Scholar
Leader DP, Krause SA, Pandit A, Davies SA, Dow JAT. FlyAtlas 2: a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data. Nucleic Acids Res. 2018;46:D809–15.
Article
CAS
Google Scholar
Denecke S, Fusetto R, Martelli F, Giang A, Battlay P, Fournier-Level A, et al. Multiple P450s and variation in neuronal genes underpins the response to the insecticide imidacloprid in a population of Drosophila melanogaster. Sci Rep. 2017;7:1–11.
Article
CAS
Google Scholar
Green L, Battlay P, Fournier-Level A, Good RT, Robin C. Cis- And trans-acting variants contribute to survivorship in a naïve Drosophila melanogaster population exposed to ryanoid insecticides. Proc Natl Acad Sci U S A. 2019;116:10424–9.
Article
CAS
Google Scholar
Kalsi M, Palli SR. Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say). Insect Biochem Mol Biol. 2017;83:1–12.
Article
CAS
Google Scholar
Balamurugan K, Egli D, Hua H, Rajaram R, Seisenbacher G, Georgiev O, et al. Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance. EMBO J. 2007;26:1035–44.
Article
CAS
Google Scholar
Bonilla-Ramirez L, Jimenez-Del-Rio M, Velez-Pardo C. Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: a model to study Parkinsonism. BioMetals. 2011;24:1045–57.
Article
CAS
Google Scholar
Weber AL, Khan GF, Magwire MM, Tabor CL, Mackay TFC, Anholt RRH. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster. PLoS One. 2012;7:e34745.
Article
CAS
Google Scholar
Chow CY, Wolfner MF, Clark AG. Using natural variation in Drosophila to discover previously unknown endoplasmic reticulum stress genes. Proc Natl Acad Sci U S A. 2013;110:9013–8.
Article
CAS
Google Scholar
Horváth V, Merenciano M, González J. Revisiting the relationship between transposable elements and the eukaryotic stress response. Trends Genet. 2017;33:832–41.
Article
Google Scholar
Delaneau O, Ongen H, Brown AA, Fort A, Panousis NI, Dermitzakis ET. A complete tool set for molecular QTL discovery and analysis. Nat Commun. 2017;8:1–7.
Article
Google Scholar
Mackay TFC. Epistasis and quantitative traits: using model organisms to study gene–gene interactions. Nat Rev Genet. 2014;15:22–33.
Article
CAS
Google Scholar
Massadeh A, Al-Momani F, Elbetieha A. Assessment of heavy metals concentrations in soil samples from the vicinity of busy roads: influence on Drosophila melanogaster life cycle. Biol Trace Elem Res. 2008;122:292–9.
Article
CAS
Google Scholar
Adriano DC. Trace elements in terrestrial environments. New York: Springer New York; 2001.
Book
Google Scholar
Battlay P, Schmidt JM, Fournier-Level A, Robin C. Genomic and transcriptomic associations identify a new insecticide resistance phenotype for the selective sweep at the Cyp6g1 locus of Drosophila melanogaster. G3 Genes Genomes Genet. 2016;6:2573–81.
CAS
Google Scholar
Norgate M, Southon A, Zou S, Zhan M, Sun Y, Batterham P, et al. Copper homeostasis gene discovery in Drosophila melanogaster. BioMetals. 2007;20:683–97.
Article
CAS
Google Scholar
Banerjee KK, Ayyub C, Sengupta S, Kolthur-Seetharam U. dSir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies. Aging (Albany NY). 2012;4:206–23.
Article
CAS
Google Scholar
Banerjee KK, Deshpande RS, Koppula P, Ayyub C, Kolthur-Seetharam U. Central metabolic sensing remotely controls nutrient-sensitive endocrine response in Drosophila via Sir2/Sirt1-upd2-IIS axis. J Exp Biol. 2017;220:1187–91.
Google Scholar
Misra JR, Horner MA, Lam G, Thummel CS. Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev. 2011;25:1796–806.
Article
CAS
Google Scholar
Ross J, Jiang H, Kanost MR, Wang Y. Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene. 2003;304:117–31.
Article
CAS
Google Scholar
Vásquez-Procopio J, Rajpurohit S, Missirlis F. Cuticle darkening correlates with increased body copper content in Drosophila melanogaster. BioMetals. 2020;33:293–303.
Article
Google Scholar
Carlson KA, Gardner K, Pashaj A, Carlson DJ, Yu F, Eudy JD, et al. Genome-wide gene expression in relation to age in large laboratory cohorts of drosophila melanogaster. Genet Res Int. 2015;2015:835624.
Google Scholar
Chapman RF. The insects: structure and function. United Kingdom: Cambridge University Press; 1998.
Book
Google Scholar
Dow J. pH gradients in lepidopteran midgut. J Exp Biol. 1992;172:355–75.
Article
CAS
Google Scholar
Clark TM. Evolution and adaptive significance of larval midgut alkalinization in the insect superorder Mecopterida. J Chem Ecol. 1999;25:1945–60.
Article
CAS
Google Scholar
Wat LW, Chao C, Bartlett R, Buchanan JL, Millington JW, Chih HJ, et al. A role for triglyceride lipase brummer in the regulation of sex differences in Drosophila fat storage and breakdown. PLoS Biol. 2020;18:e3000595.
Article
Google Scholar
Hood SE, Kofler XV, Chen Q, Scott J, Ortega J, Lehmann M. Nuclear translocation ability of Lipin differentially affects gene expression and survival in fed and fasting Drosophila. J Lipid Res. 2020;61:1720.
Article
CAS
Google Scholar
Fernández-Ayala DJM, Chen S, Kemppainen E, O’Dell KMC, Jacobs HT. Gene expression in a Drosophila model of mitochondrial disease. PLoS One. 2010;5:e8549.
Article
Google Scholar
Sun Y, Liu C, Liu Y, Hosokawa T, Saito T, Kurasaki M. Changes in the expression of epigenetic factors during copper-induced apoptosis in PC12 cells. J Environ Sci Heal Part A. 2014;49:1023–8.
Article
CAS
Google Scholar
Song MO, Freedman JH. Role of hepatocyte nuclear factor 4α in controlling copper-responsive transcription. Biochim Biophys Acta Mol Cell Res. 2011;1813:102–8.
Article
CAS
Google Scholar
Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2011;108:15966–71.
Article
CAS
Google Scholar
Cruz GS, Wanderley-Teixeira V, Antonino JD, Gonçalves GGA, Costa HN, Ferreira MCN, et al. Lufenuron indirectly downregulates Vitellogenin in the boll weevil females reducing egg viability. Physiol Entomol. 2021;46:24–33.
Article
CAS
Google Scholar
Mateo L, Rech GE, González J. Genome-wide patterns of local adaptation in Western European Drosophila melanogaster natural populations. Sci Rep. 2018;8:1–14.
Article
CAS
Google Scholar
Johnson RM, Dahlgren L, Siegfried BD, Ellis MD. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS One. 2013;8:e54092.
Article
CAS
Google Scholar
Fernandez Falcon M, Perez Frances JF, López Carreño I, Borges-Perez A. Available micronutrients in agricultural soils of Tenerife (Canary Islands). I.: copper and zinc. Agrochimica. 1994;38:268–76.
CAS
Google Scholar
R Core Team. R: a language and environment for statistical computing. 2022.
Google Scholar
Kutner MH, Nachtsheim C, Neter J. Applied linear regression models. McGraw-Hill Irwin; 2005.
Google Scholar
Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017;35:316–9.
Article
Google Scholar
Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38:276–8.
Article
CAS
Google Scholar
Andrews S. FASTQC. A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2010.
Google Scholar
Krueger F. Trim galore. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. 2015.
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Article
Google Scholar
Larkin A, Marygold SJ, Antonazzo G, Attrill H, dos Santos G, Garapati PV, et al. FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Res. 2021;49:D899–907.
Article
CAS
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
Google Scholar
Sayols S, Scherzinger D, Klein H. dupRadar: a Bioconductor package for the assessment of PCR artifacts in RNA-Seq data. BMC Bioinformatics. 2016;17:1–5.
Article
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.
Article
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:1–12.
Article
Google Scholar
Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omi A J Integr Biol. 2012;16:284–7.
Article
CAS
Google Scholar
Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD, et al. Cytoscape Web: an interactive web-based network browser. Bioinformatics. 2010;26:2347–8.
Article
CAS
Google Scholar
Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 2007;448:151–6.
Article
CAS
Google Scholar
Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, et al. The transgenic RNAi project at Harvard medical school: resources and validation. Genetics. 2015;201:843–52.
Article
CAS
Google Scholar
Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G, et al. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics. 2004;167:761–81.
Article
CAS
Google Scholar
Chung H, Bogwitz MR, McCart C, Andrianopoulos A, Ffrench-Constant RH, Batterham P, et al. Cis-regulatory elements in the accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics. 2007;175:1071–7.
Article
CAS
Google Scholar
Phillips MD, Thomas GH. Brush border spectrin is required for early endosome recycling in Drosophila. J Cell Sci. 2006;119:1361–70.
Article
CAS
Google Scholar
Shell BC, Schmitt RE, Lee KM, Johnson JC, Chung BY, Pletcher SD, et al. Measurement of solid food intake in Drosophila via consumption-excretion of a dye tracer. Sci Rep. 2018;8:1–13.
Article
CAS
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.
Article
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.
Article
CAS
Google Scholar
Shumate A, Salzberg SL. Liftoff: accurate mapping of gene annotations. Bioinformatics. 2021;37:1639–43.
Article
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
Google Scholar
Behrman EL, Howick VM, Kapun M, Staubach F, Bergland AO, Petrov DA, et al. Rapid seasonal evolution in innate immunity of wild Drosophila melanogaster. Proc R Soc B Biol Sci. 2018:285.
Coronado-Zamora M, Salces-Ortiz J, González J. DrosOmics: the comparative genomics browser to explore omics data in natural strains of D. melanogaster. bioRxiv. 2022;2022.07.22.
Google Scholar