Davidson GA, Lin SH, Secombes CJ, Ellis AE. Detection of specific and “constitutive” antibody secreting cells in the gills, head kidney and peripheral blood leucocytes of dab (Limanda limanda). Vet Immunol Immunopathol. 1997;58(3–4):363–74.
Article
CAS
Google Scholar
Covello JM, Bird S, Morrison RN, Bridle AR, Battaglene SC, Secombes CJ, Nowak BF. Isolation of RAG-1 and IgM transcripts from the striped trumpeter (Latris lineata), and their expression as markers for development of the adaptive immune response. Fish Shellfish Immunol. 2013;34(3):778–88.
Article
CAS
Google Scholar
Zwollo P, Hennessey E, Moore C, Marancik DP, Wiens GD, Epp L. A BCWD-resistant line of rainbow trout exhibits higher abundance of IgT(+) B cells and heavy chain tau transcripts compared to a susceptible line following challenge with Flavobacterium psychrophilum. Dev Comp Immunol. 2017;74:190–9.
Article
CAS
Google Scholar
Wiens GD, Brown M, Rittenberg MB. Repertoire shift in the humoral response to phosphocholine-keyhole limpet hemocyanin: VH somatic mutation in germinal center B cells impairs T15 Ig function. J Immunol. 2003;170(10):5095–102.
Article
CAS
Google Scholar
Jenne CN, Kennedy LJ, McCullagh P, Reynolds JD. A new model of sheep Ig diversification: shifting the emphasis toward combinatorial mechanisms and away from hypermutation. J Immunol. 2003;170(7):3739–50.
Article
CAS
Google Scholar
Bromage ES, Ye J, Kaattari SL. Antibody structural variation in rainbow trout fluids. Comp Biochem Physiol B Biochem Mol Biol. 2006;143(1):61–9.
Article
Google Scholar
Cain KD, Jones DR, Raison RL. Antibody-antigen kinetics following immunization of rainbow trout (Oncorhynchus mykiss) with a T-cell dependent antigen. Dev Comp Immunol. 2002;26(2):181–90.
Article
CAS
Google Scholar
Kaattari SL, Zhang HL, Khor IW, Kaattari IM, Shapiro DA. Affinity maturation in trout: clonal dominance of high affinity antibodies late in the immune response. Dev Comp Immunol. 2002;26(2):191–200.
Article
CAS
Google Scholar
Dooley H, Flajnik MF. Shark immunity bites back: affinity maturation and memory response in the nurse shark. Ginglymostoma cirratum Eur J Immunol. 2005;35(3):936–45.
Article
CAS
Google Scholar
Malecek K, Brandman J, Brodsky JE, Ohta Y, Flajnik MF, Hsu E. Somatic hypermutation and junctional diversification at Ig heavy chain loci in the nurse shark. J Immunol. 2005;175(12):8105–15.
Article
CAS
Google Scholar
Dooley H, Stanfield RL, Brady RA, Flajnik MF. First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proc Natl Acad Sci U S A. 2006;103(6):1846–51.
Article
CAS
Google Scholar
Hsu E. Assembly and Expression of Shark Ig Genes. J Immunol. 2016;196(9):3517–23.
Article
CAS
Google Scholar
Marianes AE, Zimmerman AM. Targets of somatic hypermutation within immunoglobulin light chain genes in zebrafish. Immunology. 2011;132(2):240–55.
Article
CAS
Google Scholar
Mehr R, Edelman H, Sehgal D, Mage R. Analysis of mutational lineage trees from sites of primary and secondary Ig gene diversification in rabbits and chickens. J Immunol. 2004;172(8):4790–6.
Article
CAS
Google Scholar
Wilson M, Hsu E, Marcuz A, Courtet M, Du Pasquier L, Steinberg C. What limits affinity maturation of antibodies in Xenopus–the rate of somatic mutation or the ability to select mutants? EMBO J. 1992;11(12):4337–47.
Article
CAS
Google Scholar
Yang F, Waldbieser GC, Lobb CJ. The nucleotide targets of somatic mutation and the role of selection in immunoglobulin heavy chains of a teleost fish. J Immunol. 2006;176(3):1655–67.
Article
CAS
Google Scholar
Abos B, Estensoro I, Perdiguero P, Faber M, Hu Y, Diaz Rosales P, Granja AG, Secombes CJ, Holland JW, Tafalla C. Dysregulation of B cell activity during proliferative kidney disease in rainbow trout. Front Immunol. 2018;9:1203.
Article
Google Scholar
Solem ST, Stenvik J. Antibody repertoire development in teleosts–a review with emphasis on salmonids and Gadus morhua L. Dev Comp Immunol. 2006;30(1–2):57–76.
Article
CAS
Google Scholar
Bransteitter R, Pham P, Scharff MD, Goodman MF. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A. 2003;100(7):4102–7.
Article
CAS
Google Scholar
Kolar GR, Mehta D, Pelayo R, Capra JD. A novel human B cell subpopulation representing the initial germinal center population to express AID. Blood. 2007;109(6):2545–52.
Article
CAS
Google Scholar
Larijani M, Frieder D, Basit W, Martin A. The mutation spectrum of purified AID is similar to the mutability index in Ramos cells and in ung(-/-)msh2(-/-) mice. Immunogenetics. 2005;56(11):840–5.
Article
CAS
Google Scholar
Meffre E, Catalan N, Seltz F, Fischer A, Nussenzweig MC, Durandy A. Somatic hypermutation shapes the antibody repertoire of memory B cells in humans. J Exp Med. 2001;194(3):375–8.
Article
CAS
Google Scholar
Muto T, Muramatsu M, Taniwaki M, Kinoshita K, Honjo T. Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics. 2000;68(1):85–8.
Article
CAS
Google Scholar
Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 1999;274(26):18470–6.
Article
CAS
Google Scholar
Quinlan EM, King JJ, Amemiya CT, Hsu E, Larijani M. Biochemical regulatory features of AID remain conserved from lamprey to humans. Molecular and Cellular Biology. 2017;37(15):e00077-17.
CAS
Google Scholar
Minegishi Y, Lavoie A, Cunningham-Rundles C, Bedard PM, Hebert J, Cote L, Dan K, Sedlak D, Buckley RH, Fischer A, et al. Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin Immunol. 2000;97(3):203–10.
Article
CAS
Google Scholar
Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Labelouse R, Gennery A, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102(5):565–75.
Article
CAS
Google Scholar
Liu MC, Liao WY, Buckley KM, Yang SY, Rast JP, Fugmann SD. AID/APOBEC-like cytidine deaminases are ancient innate immune mediators in invertebrates. Nat Commun. 2018;9(1):1948.
Article
Google Scholar
Krishnan A, Iyer LM, Holland SJ, Boehm T, Aravind L. Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proc Natl Acad Sci U S A. 2018;115(14):E3201–10.
Article
CAS
Google Scholar
Roth O, Solbakken MH, Torresen OK, Bayer T, Matschiner M, Baalsrud HT, Hoff SNK, Brieuc MSO, Haase D, Hanel R, et al. Evolution of male pregnancy associated with remodeling of canonical vertebrate immunity in seahorses and pipefishes. Proc Natl Acad Sci U S A. 2020;117(17):9431–9.
Article
CAS
Google Scholar
Swann JB, Holland SJ, Petersen M, Pietsch TW, Boehm T. The immunogenetics of sexual parasitism. Science. 2020;369(6511):1608–15.
Article
CAS
Google Scholar
Solbakken MH, Torresen OK, Nederbragt AJ, Seppola M, Gregers TF, Jakobsen KS, Jentoft S. Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions. Sci Rep. 2016;6:25211.
Article
CAS
Google Scholar
Malmstrom M, Matschiner M, Torresen OK, Star B, Snipen LG, Hansen TF, Baalsrud HT, Nederbragt AJ, Hanel R, Salzburger W, et al. Evolution of the immune system influences speciation rates in teleost fishes. Nat Genet. 2016;48(10):1204–10.
Article
Google Scholar
Magnadottir B, Jonsdottir H, Helgason S, Bjornsson B, Solem ST, Pilstrom L. Immune parameters of immunised cod (Gadus morhua L.). Fish Shellfish Immunol. 2001;11(1):75–89.
Article
CAS
Google Scholar
Magnadottir B, Jonsdottir H, Helgason S, Bjornsson B, Jorgensen TO, Pilstrom L. Humoral immune parameters in Atlantic cod (Gadus morhua L.) I. The effects of environmental temperature. Comp Biochem Physiol B Biochem Mol Biol. 1999;122(2):173–80.
Article
CAS
Google Scholar
Arnesen SM, Schroder MB, Dalmo RA, Bogwald J. Antigen uptake and immunoglobulin production in Atlantic cod (Gadus morhua L.) after intraperitoneal injection of Vibrio anguillarum. Fish Shellfish Immunol. 2002;13(2):159–70.
Article
CAS
Google Scholar
Corripio-Miyar Y, Mazorra de Quero C, Treasurer JW, Ford L, Smith PD, Secombes CJ. Vaccination experiments in the gadoid haddock, Melanogrammus aeglefinus L., against the bacterial pathogen Vibrio anguillarum. Vet Immunol Immunopathol. 2007;118(1–2):147–53.
Article
CAS
Google Scholar
Torresen OK, Star B, Jentoft S, Reinar WB, Grove H, Miller JR, Walenz BP, Knight J, Ekholm JM, Peluso P, et al. An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics. 2017;18(1):95.
Article
Google Scholar
Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, et al. The genome sequence of Atlantic cod reveals a unique immune system. Nature. 2011;477(7363):207–10.
Article
CAS
Google Scholar
Glasauer SM, Neuhauss SC. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics. 2014;289(6):1045–60.
Article
CAS
Google Scholar
King JJ, Manuel CA, Barrett CV, Raber S, Lucas H, Sutter P, Larijani M. Catalytic pocket inaccessibility of activation-induced cytidine deaminase is a safeguard against excessive mutagenic activity. Structure. 2015;23(4):615–27.
Article
CAS
Google Scholar
Chandra V, Bortnick A, Murre C. AID targeting: old mysteries and new challenges. Trends Immunol. 2015;36(9):527–35.
Article
CAS
Google Scholar
Barreto VM, Magor BG. Activation-induced cytidine deaminase structure and functions: a species comparative view. Dev Comp Immunol. 2011;35(9):991–1007.
Article
CAS
Google Scholar
Hu Y, Ericsson I, Torseth K, Methot SP, Sundheim O, Liabakk NB, Slupphaug G, Di Noia JM, Krokan HE, Kavli B. A combined nuclear and nucleolar localization motif in activation-induced cytidine deaminase (AID) controls immunoglobulin class switching. J Mol Biol. 2013;425(2):424–43.
Article
CAS
Google Scholar
Patenaude AM, Orthwein A, Hu Y, Campo VA, Kavli B, Buschiazzo A, Di Noia JM. Active nuclear import and cytoplasmic retention of activation-induced deaminase. Nat Struct Mol Biol. 2009;16(5):517–27.
Article
CAS
Google Scholar
McBride KM, Barreto V, Ramiro AR, Stavropoulos P, Nussenzweig MC. Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J Exp Med. 2004;199(9):1235–44.
Article
CAS
Google Scholar
Ito S, Nagaoka H, Shinkura R, Begum N, Muramatsu M, Nakata M, Honjo T. Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc Natl Acad Sci U S A. 2004;101(7):1975–80.
Article
CAS
Google Scholar
Brar SS, Watson M, Diaz M. Activation-induced cytosine deaminase (AID) is actively exported out of the nucleus but retained by the induction of DNA breaks. J Biol Chem. 2004;279(25):26395–401.
Article
CAS
Google Scholar
Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9(6):229.
Article
Google Scholar
Zhao Y, Pan-Hammarstrom Q, Zhao Z, Hammarstrom L. Identification of the activation-induced cytidine deaminase gene from zebrafish: an evolutionary analysis. Dev Comp Immunol. 2005;29(1):61–71.
Article
CAS
Google Scholar
Saunders HL, Magor BG. Cloning and expression of the AID gene in the channel catfish. Dev Comp Immunol. 2004;28(7–8):657–63.
Article
CAS
Google Scholar
Marr S, Morales H, Bottaro A, Cooper M, Flajnik M, Robert J. Localization and differential expression of activation-induced cytidine deaminase in the amphibian Xenopus upon antigen stimulation and during early development. J Immunol. 2007;179(10):6783–9.
Article
CAS
Google Scholar
Wu X, Darce JR, Chang SK, Nowakowski GS, Jelinek DF. Alternative splicing regulates activation-induced cytidine deaminase (AID): implications for suppression of AID mutagenic activity in normal and malignant B cells. Blood. 2008;112(12):4675–82.
Article
CAS
Google Scholar
McCarthy H, Wierda WG, Barron LL, Cromwell CC, Wang J, Coombes KR, Rangel R, Elenitoba-Johnson KS, Keating MJ, Abruzzo LV. High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor-prognosis chronic lymphocytic leukemia. Blood. 2003;101(12):4903–8.
Article
CAS
Google Scholar
Albesiano E, Messmer BT, Damle RN, Allen SL, Rai KR, Chiorazzi N. Activation-induced cytidine deaminase in chronic lymphocytic leukemia B cells: expression as multiple forms in a dynamic, variably sized fraction of the clone. Blood. 2003;102(9):3333–9.
Article
CAS
Google Scholar
Bascove M, Frippiat JP. Molecular characterization of Pleurodeles waltl activation-induced cytidine deaminase. Mol Immunol. 2010;47(7–8):1640–9.
Article
CAS
Google Scholar
Ohmori K, Maeda S, Okayama T, Masuda K, Ohno K, Tsujimoto H. Molecular cloning of canine activation-induced cytidine deaminase (AID) cDNA and its expression in normal tissues. J Vet Med Sci. 2004;66(6):739–41.
Article
CAS
Google Scholar
Verma S, Goldammer T, Aitken R. Cloning and expression of activation induced cytidine deaminase from Bos taurus. Vet Immunol Immunopathol. 2010;134(3–4):151–9.
Article
CAS
Google Scholar
Star B, Torresen OK, Nederbragt AJ, Jakobsen KS, Pampoulie C, Jentoft S. Genomic characterization of the Atlantic cod sex-locus. Sci Rep. 2016;6:31235.
Article
CAS
Google Scholar
Schreck S, Buettner M, Kremmer E, Bogdan M, Herbst H, Niedobitek G. Activation-induced cytidine deaminase (AID) is expressed in normal spermatogenesis but only infrequently in testicular germ cell tumours. J Pathol. 2006;210(1):26–31.
Article
CAS
Google Scholar
Rogozin IB, Basu MK, Jordan IK, Pavlov YI, Koonin EV. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle. 2005;4(9):1281–5.
Article
CAS
Google Scholar
Marino D, Perkovic M, Hain A, Jaguva Vasudevan AA, Hofmann H, Hanschmann KM, Muhlebach MD, Schumann GG, Konig R, Cichutek K, et al. APOBEC4 Enhances the Replication of HIV-1. PLoS ONE. 2016;11(6): e0155422.
Article
Google Scholar
Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell. 2008;135(7):1201–12.
Article
CAS
Google Scholar
Shimoda N, Hirose K, Kaneto R, Izawa T, Yokoi H, Hashimoto N, Kikuchi Y. No evidence for AID/MBD4-coupled DNA demethylation in zebrafish embryos. PLoS ONE. 2014;9(12): e114816.
Article
Google Scholar
Stavnezer J, Schrader CE. IgH chain class switch recombination: mechanism and regulation. J Immunol. 2014;193(11):5370–8.
Article
CAS
Google Scholar
Pone EJ, Zhang J, Mai T, White CA, Li G, Sakakura JK, Patel PJ, Al-Qahtani A, Zan H, Xu Z, et al. BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-kappaB pathway. Nat Commun. 2012;3:767.
Article
Google Scholar
Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, Ravindran R, Stewart S, Alam M, Kwissa M, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature. 2011;470(7335):543–7.
Article
CAS
Google Scholar
DeFranco AL. The germinal center antibody response in health and disease. F1000Res. 2016;5:1–10.
Hou B, Saudan P, Ott G, Wheeler ML, Ji M, Kuzmich L, Lee LM, Coffman RL, Bachmann MF, DeFranco AL. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity. 2011;34(3):375–84.
Article
CAS
Google Scholar
Larijani M, Petrov AP, Kolenchenko O, Berru M, Krylov SN, Martin A. AID associates with single-stranded DNA with high affinity and a long complex half-life in a sequence-independent manner. Mol Cell Biol. 2007;27(1):20–30.
Article
CAS
Google Scholar
Abdouni H, King JJ, Suliman M, Quinlan M, Fifield H, Larijani M. Zebrafish AID is capable of deaminating methylated deoxycytidines. Nucleic Acids Res. 2013;41(10):5457–68.
Article
CAS
Google Scholar
Dancyger AM, King JJ, Quinlan MJ, Fifield H, Tucker S, Saunders HL, Berru M, Magor BG, Martin A, Larijani M. Differences in the enzymatic efficiency of human and bony fish AID are mediated by a single residue in the C terminus modulating single-stranded DNA binding. FASEB J. 2012;26(4):1517–25.
Article
CAS
Google Scholar
Quinlan EM, King JJ, Amemiya CT, Hsu E, Larijani M. Biochemical regulatory features of activation-induced cytidine deaminase remain conserved from lampreys to humans. Mol Cell Biol. 2017;37(20):e00077-17.
Article
CAS
Google Scholar
Ghorbani A, King JJ, Larijani M. The optimal pH of AID is skewed from that of its catalytic pocket by DNA-binding residues and surface charge. Biochem J. 2022;479(1):39–55.
Article
CAS
Google Scholar
Freitas C, Olsen EM, Moland E, Ciannelli L, Knutsen H. Behavioral responses of Atlantic cod to sea temperature changes. Ecol Evol. 2015;5(10):2070–83.
Article
Google Scholar
Perez-Casanova JC, Rise ML, Dixon B, Afonso LO, Hall JR, Johnson SC, Gamperl AK. The immune and stress responses of Atlantic cod to long-term increases in water temperature. Fish Shellfish Immunol. 2008;24(5):600–9.
Article
CAS
Google Scholar
Barreto VM, Pan-Hammarstrom Q, Zhao Y, Hammarstrom L, Misulovin Z, Nussenzweig MC. AID from bony fish catalyzes class switch recombination. J Exp Med. 2005;202(6):733–8.
Article
CAS
Google Scholar
Wakae K, Magor BG, Saunders H, Nagaoka H, Kawamura A, Kinoshita K, Honjo T, Muramatsu M. Evolution of class switch recombination function in fish activation-induced cytidine deaminase. AID Int Immunol. 2006;18(1):41–7.
Article
CAS
Google Scholar
Larijani M, Frieder D, Sonbuchner TM, Bransteitter R, Goodman MF, Bouhassira EE, Scharff MD, Martin A. Methylation protects cytidines from AID-mediated deamination. Mol Immunol. 2005;42(5):599–604.
Article
CAS
Google Scholar
Ghorbani A, Quinlan EM, Larijani M. Evolutionary comparative analyses of DNA-editing enzymes of the immune system: from 5-dimensional description of protein structures to immunological insights and applications to protein engineering. Front Immunol. 2021;12:642343.
Article
CAS
Google Scholar
King JJ, Larijani M. A novel regulator of activation-induced cytidine deaminase/APOBECs in immunity and cancer: Schrodinger’s CATalytic Pocket. Front Immunol. 2017;8:351.
Article
Google Scholar
Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, Wu H. AID recognizes structured DNA for class switch recombination. Mol Cell. 2017;67(3):361-373 e364.
Article
CAS
Google Scholar
King JJ, Larijani M. Structural plasticity of substrate selection by activation-induced cytidine deaminase as a regulator of its genome-wide mutagenic activity. FEBS Lett. 2021;595(1):3–13.
Article
CAS
Google Scholar
Abdouni HS, King JJ, Ghorbani A, Fifield H, Berghuis L, Larijani M. DNA/RNA hybrid substrates modulate the catalytic activity of purified AID. Mol Immunol. 2018;93:94–106.
Article
CAS
Google Scholar
Harjes S, Solomon WC, Li M, Chen KM, Harjes E, Harris RS, Matsuo H. Impact of H216 on the DNA binding and catalytic activities of the HIV restriction factor APOBEC3G. J Virol. 2013;87(12):7008–14.
Article
CAS
Google Scholar
Shi K, Carpenter MA, Banerjee S, Shaban NM, Kurahashi K, Salamango DJ, McCann JL, Starrett GJ, Duffy JV, Demir O, et al. Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol. 2017;24(2):131–9.
Article
CAS
Google Scholar
Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol Biol Evol. 2005;22(2):367–77.
Article
CAS
Google Scholar
Ichikawa HT, Sowden MP, Torelli AT, Bachl J, Huang P, Dance GS, Marr SH, Robert J, Wedekind JE, Smith HC, et al. Structural phylogenetic analysis of activation-induced deaminase function. J Immunol. 2006;177(1):355–61.
Article
CAS
Google Scholar
Wu L, Fu S, Yin X, Leng W, Guo Z, Wang A, Ye J. Affinity maturation occurs in channel catfish (Ictalurus punctaus) following immunization with a T-cell dependent antigen. Fish Shellfish Immunol. 2019;84:781–6.
Article
CAS
Google Scholar
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–5.
Article
CAS
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.
Article
Google Scholar
Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics. 2004;20(3):407–15.
Article
CAS
Google Scholar
Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, Lewis PO, Huelsenbeck JP, Ronquist F, Swofford DL, Cummings MP, et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst Biol. 2012;61(1):170–3.
Article
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–4.
Article
CAS
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
Arenas M, Bastolla U. ProtASR2: ancestral reconstruction of protein sequences accounting for folding stability. Methods Ecol Evol. 2019;11(2):248–57.
Arenas M, Weber CC, Liberles DA, Bastolla U. ProtASR: an evolutionary framework for ancestral protein reconstruction with selection on folding stability. Syst Biol. 2017;66(6):1054–64.
CAS
Google Scholar
Joy JB, Liang RH, McCloskey RM, Nguyen T, Poon AFY. Ancestral reconstruction. PLOS Comput Biol. 2016;12(7):e1004763.
Article
Google Scholar
Randall RN, Radford CE, Roof KA, Natarajan DK, Gaucher EA. An experimental phylogeny to benchmark ancestral sequence reconstruction. Nat Commun. 2016;7:12847.
Article
Google Scholar
Eick GN, Bridgham JT, Anderson DP, Harms MJ, Thornton JW. Robustness of reconstructed ancestral protein functions to statistical uncertainty. Mol Biol Evol. 2017;34(2):247–61.
CAS
Google Scholar
Detanico T, Phillips M, Wysocki LJ. Functional versatility of AGY serine codons in immunoglobulin variable region genes. Front Immunol. 2016;7:525.
Article
Google Scholar
Wagner SD, Milstein C, Neuberger MS. Codon bias targets mutation. Nature. 1995;376(6543):732.
Article
CAS
Google Scholar
Jolly CJ, Wagner SD, Rada C, Klix N, Milstein C, Neuberger MS. The targeting of somatic hypermutation. Semin Immunol. 1996;8(3):159–68.
Article
CAS
Google Scholar
Oreste U, Coscia M. Specific features of immunoglobulin VH genes of the Antarctic teleost Trematomus bernacchii. Gene. 2002;295(2):199–204.
Article
CAS
Google Scholar
Golub R, Charlemagne J. Structure, diversity, and repertoire of VH families in the Mexican axolotl. J Immunol. 1998;160(3):1233–9.
CAS
Google Scholar
Wei L, Chahwan R, Wang S, Wang X, Pham PT, Goodman MF, Bergman A, Scharff MD, MacCarthy T. Overlapping hotspots in CDRs are critical sites for V region diversification. Proc Natl Acad Sci U S A. 2015;112(7):E728-737.
Article
CAS
Google Scholar
Tang C, Bagnara D, Chiorazzi N, Scharff MD, MacCarthy T. AID overlapping and Polη hotspots are key features of evolutionary variation within the human antibody heavy chain (IGHV) genes. Front Immunol. 2020;11:788.
Article
CAS
Google Scholar
Hwang JK, Wang C, Du Z, Meyers RM, Kepler TB, Neuberg D, Kwong PD, Mascola JR, Joyce MG, Bonsignori M, et al. Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies. Proc Natl Acad Sci U S A. 2017;114(32):8614–9.
Article
CAS
Google Scholar
Ohm-Laursen L, Barington T. Analysis of 6912 unselected somatic hypermutations in human VDJ rearrangements reveals lack of strand specificity and correlation between phase II substitution rates and distance to the nearest 3’ activation-induced cytidine deaminase target. J Immunol. 2007;178(7):4322–34.
Article
Google Scholar
Yeap LS, Hwang JK, Du Z, Meyers RM, Meng FL, Jakubauskaitė A, Liu M, Mani V, Neuberg D, Kepler TB, et al. Sequence-intrinsic mechanisms that target AID mutational outcomes on antibody genes. Cell. 2015;163(5):1124–37.
Article
CAS
Google Scholar
Kriwet J, Hecht T. A review of early gadiform evolution and diversification: first record of a rattail fish skull (Gadiformes, Macrouridae) from the Eocene of Antarctica, with otoliths preserved in situ. Naturwissenschaften. 2008;95(10):899–907.
Article
CAS
Google Scholar
Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev. 2011;75(2):361–422.
Article
CAS
Google Scholar
Catchen JM, Conery JS, Postlethwait JH. Automated identification of conserved synteny after whole-genome duplication. Genome Res. 2009;19(8):1497–505.
Article
CAS
Google Scholar
Hori TS, Gamperl AK, Booman M, Nash GW, Rise ML. A moderate increase in ambient temperature modulates the Atlantic cod (Gadus morhua) spleen transcriptome response to intraperitoneal viral mimic injection. BMC Genomics. 2012;13:431.
Article
CAS
Google Scholar
Hori TS, Gamperl AK, Nash G, Booman M, Barat A, Rise ML. The impact of a moderate chronic temperature increase on spleen immune-relevant gene transcription depends on whether Atlantic cod (Gadus morhua) are stimulated with bacterial versus viral antigens. Genome. 2013;56(10):567–76.
Article
CAS
Google Scholar
Rise ML, Hall JR, Alcock BP, Hori TS. Dynamic expression profiles of virus-responsive and putative antimicrobial peptide-encoding transcripts during Atlantic cod (Gadus morhua) embryonic and early larval development. Gene. 2012;509(2):232–46.
Article
CAS
Google Scholar
Eslamloo K, Ghorbani A, Xue X, Inkpen SM, Larijani M, Rise ML. Characterization and Transcript Expression Analyses of Atlantic Cod Viperin. Front Immunol. 2019;10:311.
Article
CAS
Google Scholar
Inkpen SM, Hori TS, Gamperl AK, Nash GW, Rise ML. Characterization and expression analyses of five interferon regulatory factor transcripts (Irf4a, Irf4b, Irf 7, Irf8, Irf10) in Atlantic cod (Gadus morhua). Fish Shellfish Immunol. 2015;44(1):365–81.
Article
CAS
Google Scholar
Eslamloo K, Xue X, Booman M, Smith NC, Rise ML. Transcriptome profiling of the antiviral immune response in Atlantic cod macrophages. Dev Comp Immunol. 2016;63:187–205.
Article
CAS
Google Scholar
Borzooee F, Larijani M. Pichia pastoris as a host for production and isolation of mutagenic AID/APOBEC enzymes involved in cancer and immunity. N Biotechnol. 2019;51:67–79.
Article
CAS
Google Scholar
Diamond CP, Im J, Button EA, Huebert DNG, King JJ, Borzooee F, Abdouni HS, Bacque L, McCarthy E, Fifield H, et al. AID, APOBEC3A and APOBEC3B efficiently deaminate deoxycytidines neighboring DNA damage induced by oxidation or alkylation. Biochim Biophys Acta Gen Subj. 2019;1863(11): 129415.
Article
CAS
Google Scholar
Zhu C, Tong J, Yu X, Guo W. Comparative mapping for bighead carp (Aristichthys nobilis) against model and non-model fishes provides insights into the genomic evolution of cyprinids. Mol Genet Genomics. 2015;290(4):1313–26.
Article
CAS
Google Scholar
Byeon IJ, Ahn J, Mitra M, Byeon CH, Hercik K, Hritz J, Charlton LM, Levin JG, Gronenborn AM. NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity. Nat Commun. 2013;4:1890.
Article
Google Scholar
Hayashi F, Nagata, T., Nagashima, T., Muto, Y., Inoue, M., Kigawa, T., Yokoyama, S., RIKEN Solution structure of the monomeric form of mouse APOBEC2: http://www.rcsb.org/pdb/explore/explore.do?structureId=2RPZ; 2009.
Holden LG, Prochnow C, Chang YP, Bransteitter R, Chelico L, Sen U, Stevens RC, Goodman MF, Chen XS. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. 2008;456(7218):121–4.
Article
CAS
Google Scholar
Kitamura S, Ode H, Nakashima M, Imahashi M, Naganawa Y, Kurosawa T, Yokomaku Y, Yamane T, Watanabe N, Suzuki A, et al. The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat Struct Mol Biol. 2012;19(10):1005–10.
Article
CAS
Google Scholar
Bohn MF, Shandilya SM, Albin JS, Kouno T, Anderson BD, McDougle RM, Carpenter MA, Rathore A, Evans L, Davis AN, et al. Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain. Structure. 2013;21(6):1042–50.
Article
CAS
Google Scholar
Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725–38.
Article
CAS
Google Scholar
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12(1):7–8.
Article
CAS
Google Scholar
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:40.
Article
Google Scholar
Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins. 2003;50(3):437–50.
Article
CAS
Google Scholar
Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39(Web Server issue):W270-277.
Article
CAS
Google Scholar
Grosdidier A, Zoete V, Michielin O. Fast docking using the CHARMM force field with EADock DSS. J Comput Chem. 2011;32(10):2149–59.
Article
CAS
Google Scholar
Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem. 2011;32(11):2359–68.
Article
CAS
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.
Article
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
Article
CAS
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
Google Scholar
Fu X, Zhang H, Tan E, Watabe S, Asakawa S. Characterization of the torafugu (Takifugu rubripes) immunoglobulin heavy chain gene locus. Immunogenetics. 2015;67(3):179–93.
Article
CAS
Google Scholar
Fu X, Zhang F, Watabe S, Asakawa S. Immunoglobulin light chain (IGL) genes in torafugu: genomic organization and identification of a third teleost IGL isotype. Sci Rep. 2017;7:40416.
Article
CAS
Google Scholar
Ruiz M, Giudicelli V, Ginestoux C, Stoehr P, Robinson J, Bodmer J, Marsh SG, Bontrop R, Lemaitre M, Lefranc G, et al. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. 2000;28(1):219–21.
Article
CAS
Google Scholar
Lefranc MP, Giudicelli V, Kaas Q, Duprat E, Jabado-Michaloud J, Scaviner D, Ginestoux C, Clement O, Chaume D, Lefranc G. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res. 2005;33(Database issue):D593-597.
Article
CAS
Google Scholar
Lefranc MP, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G, Bellahcene F, Wu Y, Gemrot E, Brochet X, Lane J, et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res. 2009;37(Database issue):D1006-1012.
Article
CAS
Google Scholar
Lefranc MP, Giudicelli V, Ginestoux C, Bodmer J, Muller W, Bontrop R, Lemaitre M, Malik A, Barbie V, Chaume D. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. 1999;27(1):209–12.
Article
CAS
Google Scholar
Lefranc MP, Giudicelli V, Duroux P, Jabado-Michaloud J, Folch G, Aouinti S, Carillon E, Duvergey H, Houles A, Paysan-Lafosse T, et al. IMGT(R), the international ImMunoGeneTics information system(R) 25 years on. Nucleic Acids Res. 2015;43(Database issue):D413-422.
Article
CAS
Google Scholar
Lefranc MP, Clement O, Kaas Q, Duprat E, Chastellan P, Coelho I, Combres K, Ginestoux C, Giudicelli V, Chaume D, et al. IMGT-Choreography for immunogenetics and immunoinformatics. In Silico Biol. 2005;5(1):45–60.
CAS
Google Scholar
Lefranc MP. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. 2001;29(1):207–9.
Article
CAS
Google Scholar
Lefranc MP. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. 2003;31(1):307–10.
Article
CAS
Google Scholar
Giudicelli V, Chaume D, Lefranc MP. IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res. 2005;33(Database issue):D256-261.
Article
CAS
Google Scholar
Van Rossum G, Drake FL. Python 3 Reference Manual: CreateSpace. 2009.
Google Scholar
Alexaki A, Kames J, Holcomb DD, Athey J, Santana-Quintero LV, Lam PVN, Hamasaki-Katagiri N, Osipova E, Simonyan V, Bar H, et al. Codon and Codon-Pair Usage Tables (CoCoPUTs): facilitating genetic variation analyses and recombinant gene design. J Mol Biol. 2019;431(13):2434–41.
Article
CAS
Google Scholar
Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34(suppl_2):W435–9.
Article
CAS
Google Scholar
Nishikawa T, Ota T, Isogai T. Prediction whether a human cDNA sequence contains initiation codon by combining statistical information and similarity with protein sequences. Bioinformatics. 2000;16(11):960–7.
Article
CAS
Google Scholar
Pei J, Kim BH, Grishin NV. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 2008;36(7):2295–300.
Article
CAS
Google Scholar
Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010;38(Web Server issue):W7-13.
Article
CAS
Google Scholar
Vialle RA, Tamuri AU, Goldman N. Alignment modulates ancestral sequence reconstruction accuracy. Mol Biol Evol. 2018;35(7):1783–97.
Article
CAS
Google Scholar
Merkl R, Sterner R. Ancestral protein reconstruction: techniques and applications. Biol Chem. 2016;397(1):1–21.
Article
CAS
Google Scholar
Groussin M, Hobbs JK, Szollosi GJ, Gribaldo S, Arcus VL, Gouy M. Toward more accurate ancestral protein genotype-phenotype reconstructions with the use of species tree-aware gene trees. Mol Biol Evol. 2015;32(1):13–22.
Article
CAS
Google Scholar
Larijani M. Gadus morhua activation induced cytidine deaminase (aicda) mRNA, complete CDS. Genbank. 2022. https://www.ncbi.nlm.nih.gov/nuccore/OP856785.